永磁同步电机内永磁体退磁研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土永磁电机由于其效率高、转矩质量比高、功率密度大、控制性能好,且结构简单、运行可靠,因此获得了越来越广泛的应用。但是永磁体磁场波动和退磁与电机内电流、温升以及功角相互影响,导致电机发热和转矩性能变差,严重情况下电机可能报废,限制了永磁电机的应用范围。这也使得永磁体退磁分析正逐步成为人们所关注的科研方向及研究课题。
     本文围绕永磁电机的异步起动及稳态运行两种工况,对永磁体的退磁分析方法、退磁风险预估以及局部退磁现象展开研究,主要内容有以下几个方面:
     (1)从永磁材料退磁机理出发,对永磁材料的特性与性质做了较为详尽的描述。结合电流、温升、损耗与永磁体退磁的相互影响关系,分析了电机内永磁体的退磁方式与主要退磁原因。
     (2)基于电机气隙内磁动势的基波分布,分析了定、转子合成磁动势对于永磁磁场的增磁以及去磁作用。使用路与场两种方法搭建了自起动永磁同步电动机模型,通过综合对比两者的仿真计算结果,分析了转子鼠笼导条磁动势对于定子绕组磁动势的互补屏蔽作用,同时分析了不同负载条件下定转子合成磁场与永磁磁场的夹角和夹角余弦变化情况。
     (3)常温时,通过施加不同负载以及参数化设置不同转子起动位置,对白起动永磁同步电动机在起动过程中的退磁规律进行了归纳、分析与总结。
     (4)在额定工作温度时,通过电磁转矩-功角特性以及突加不同重载,对永磁同步电机稳态运行以及稳态运行失步时的退磁情况进行了分析。
     (5)基于本文中起动与稳态运行中的两个最恶劣工况,结合电机内温升所导致钕铁硼永磁材料的退磁拐点的改变情况,建立了在产生局部退磁后的永磁体模型。根据该模型,对比分析了退磁前后电机内电磁参量值以及电机性能的变化情况,进一步分析了退磁恶化的趋势。
Rare earth permanent magnet electrical machines are widely used because of the high efficiency, big torque-quality ratio, large power density and good control performance; moreover, they also have outstanding advantages of simple structure and reliable operation. However, motor heating and bad torque property are caused by filed fluctuation and demagnetization of the permanent magnet and the mutual interaction of current, temperature rise and power angle, motors could be scrapped under serious circumstances, which significantly restrict further application of permanent magnet machines. Therefore, the demagnetization analysis of permanent magnet machine becomes a widespread concern of scientific study area and research subjects.
     This thesis is primarily concerned the method of demagnetization analysis, risk estimation and partial phenomenon of demagnetization, under asynchronous starting operation and steady-state operation these two working condition, the main contents are as follows:
     (1) From the demagnetization principle of permanent magnet material, the properties and characteristics are thoroughly described. Combining with the mutual interaction of current, temperature rise, losses and demagnetization, the methods and main reasons of demagnetization of permanent magnet in the machine are discussed.
     (2) Based on the fundamental harmonic distribution of MMF in the air gap, the increasing magnetization effect and demagnetization effect on permanent magnet field produced by the synthesis MMF of stator and rotor. The model of self-starting synchronous motors are modeled by the methods of circus and filed. By comparing two simulating calculation results, complementary and shielded effects on the stator winding MMF caused by the MMF in squirrel-cage conductor of the rotor are analyzed, at the same time, the changes of the angle between the stator and rotor synthesis field and the permanent magnet field and its cosine value under different loading circumstances are discussed, too.
     (3) Under normal temperature, by exerting different loadings and giving parameterized different rotor starting positions, the demagnetization principles of the self-starting synchronous permanent magnet machine in the starting operation are generalized, analyzed and summarized.
     (4) Under rated operation temperature, by the electromagnetic torque and power factor angle characteristic and giving different sudden overloads, the demagnetization conditions in steady state operation and out-of-step operation are analyzed.
     (5) Based on the two most serious working conditions in starting and steady state operations, combing with the changes of demagnetization inflection point of the NdFeB permanent magnet material caused by temperature rises in the motor, the magnet model, which under the situation that the partial demagnetization area has been produced, is created. According to this model, by comparing the conditions before and after demagnetization, the changes of electromagnetic parameters and properties of the machine are analyzed; tendency of the demagnetization deterioration is under further investigation.
引文
[1]王秀和,杨玉波,朱常青.异步起动永磁同步电动机[M].北京:机械工业出版社,2009:4-5.
    [2]唐任远.稀土永磁电机的关键技术与高性能电机开发[J].沈阳工业大报,2005,27(2):162-166.
    [3]肖曦,张猛,李永东.永磁同步电机永磁体状况在线监测[J].中国电机工程学报,2007,27(24):43-47.
    [4]卢伟甫,刘明基,罗应立,张健.白起动永磁同步电机起动过程退磁磁场的计算与分析[J].中国电机j工程学报,2011,31(15):53-60.
    [5]唐任远.现代永磁电机[M].北京:机械工业出版社,1997:186.
    [6]Kang, G-H. Hur, J. Nam, H.Hong, J-P. Analysis of Irreversible Magnet Demagnetization in Line-Start Motors Based on the Finite-Element Method[J]. IEEE Transactions on Magnetics, 2003,39(3):1488-1491.
    [7]Rosu,M. Saitz,J. Arkkio, A. Hysteresis. Model for Finite-Element Analysis of Permanent-Magnet Demagnetization in a Large Synchronous Motor Under a Fault Condition[J]. IEEE Transactions, on Magnetics,2005,41(6):2118-2123.
    [8]Lim, H. B. Kim, Y. H. Lee, H. M. Lee. J. H. Chun, J. S. Permanent Magnet Demagnetization Characteristics Analysis of a Variable Flux Memory Motor Using Coupled Preisach Modeling and FEM[A]. Electric Machines & Drives Conference[C]. Antalya:IEEE Conference Publications,2007, pp.647-651.
    [9]Lee, J. H.& J.P. Hong. Permanent Magnet Demagnetization Characteristic Analysis of a Variable Flux Memory Motor Using Coupled Preisach Modeling and FEM[J]. IEEE Transactions on Magnetics,2008,44(6):1550-1553.
    [10]Enokizono, M. Takahashi, S. Kiyohara, T. Magnetic Field Analysis of Permanent Magnet Motor With Magnetoanisotropic Materials Nd-Fe-B[J]. IEEE Transactions on Magnetics, 2003,39(3):1373-1376.
    [11]Ruoho, S. Dlala, E. Arkkio, A. Comparison of Demagnetization Models for Finite-Element Analysis of Permanent-Magnet Synchronous Machines[J]. IEEE Transactions on Magnetics, 2007,43(11):3964-3968.
    [12]Farooq, J. Srairi, S. Djerdir, A. Miraoui, A. Use of Permeance Network Method in the Demagnetization Phenomenon Modeling in a Permanent Magnet Motor[J]. IEEE Transactions on Magnetics,2006,42(2):1295-1298.
    [13]Kim,K-C. Lim,S-B. Koo, D-H. Lee,J. The Shape Design of Permanent Magnet for Permanent Magnet Synchronous Motor Considering Partial Demagnetization[J]. IEEE Transactions on Magnetics,2006,42(10):3485-3487.
    [14]Lee, B-K. Kang, G-H. Hur, J. You, D-W. Design of Spoke Type BLDC Motors with High Power Density for Traction Applications[A]. Industry Applications Conference,2004.39th IAS Annual Meeting[C]. Los Angeles:Conference Record of the 2004 IEEE.2004, PP: 1068-1074.
    [15]Katter, M. Angular Dependence of the Demagnetization Stability of Sintered Nd-Fe-B Magnets[J]. IEEE Transactions on Magnetics.2005,10(10):3853-3855.
    [16]Ruoho, S. Kolehmainen, J. Ikaheimo, J. Arkkio, A. Interdependence of Demagnetization, Loading, and Temperature Rise in a Permanent-Magnet Synchronous Motor[J]. IEEE Transactions on Magnetics,2010,46(3):949-953.
    [17]卢素华,张小波,陈东锁.永磁电机退磁电流分析[A].国家节能环保制冷设备工程技术研究中心2010年国际制冷技术交流会论文集[C].珠海:国家节能环保制冷设备工程技术研究中心,2010,PP.300-304.
    [18]Espinosa, A.G. Rosero, J. A. Cusid'o, J. Romeral, L. Ortega, J. A. Fault Detection by Means of Hilbert-Huang Transform of the Stator Current in a PMSM With Demagnetization[J]. IEEE Transactions on Energy Conversion,2010,25(2):312-318.
    [19]Rosero, J. Romeral, L, Cusido, J. Ortega, J.A. Fault detection by means of wavelet transform in a PMSM under demagnetization[A]. The 33rd Annual Conference of the IEEE Industrial Electronics Society[A]. Taipei:the Institute of Electrical and Electronics Engineers.2007. PP: 1149-1154.
    [20]Hong, J. Park, S. Hyun, D. Kang, T-j. Lee, S. B. Kral, C. Kral, A. Detection and Classification of Rotor Demagnetization and Eccentricity Faults for PM Synchronous Motors[C].3rd Annual IEEE Energy Conversion Congress & Exposition[A]. Phoenix:IEEE Conference Publications,2011, PP:2512-2519.
    [21]Ruiz, J-R. R. Rosero, J. A. Espinosa, A. G. Romeral. L. Detection of Demagnetization Faults in Permanent-Magnet Synchronous Motors Under Nonstationary Conditions[J]. IEEE Transactions on Magnetics,2009,45(7):2961-2969.
    [22]Khoobroo, A. Fahimi, B. A novel method for permanent magnet demagnetization fault detection and treatment in permanent magnet synchronous machines[A].26th Annual IEEE Applied Power Electronics Conference and Exposition[C]. Palm Springs:Power Sources Manufacturers Association,2010,2231-2237.
    [23]伍召莉.永磁同步电机失磁分析及在线监测[D].北京:北京交通大学,2012.
    [24]大本豊明.磁性材料手册[M].刘代奇等编译.北京:机械工业出版社,1987.
    [25]王秀和等.永磁电机[M].北京:中国的电力出版社,2007.
    [26]Ruoho, S. Modeling Demagnetization of Sintered NdFeB Magnet Material in Time-Discretized Finite Element Analysis[D]. Helsinki:Aalto University,2011:33-35.
    [27]黄浩,柴建云,姜忠良,陈秀云.钕铁硼稀土永磁材料交流失磁[J].清华大学学报(自然科学版),2001,44(6):721-724.
    [28]Ruoho, S., Santa-Nokki, T., Kolehmainen, J. Arkkio, A. Modeling Magnet Length In 2-D Finite-Element Analysis of Electric Machines[J] IEEE Transactions on Magnetics,2009, 45(8):3114-3120.
    [29]Ruoho, S., Haavisto, M., Takala, E., Santa-Nokki, T., Paju, M. Temperature Dependence of Resistivity of Sintered Rare-Earth Permanent Magnet Materials[J]. IEEE Transactions on Magnetics,2010,46(1):15-20.
    [30]Enokizono, M., Kumoi, M., Kawano. Finite Element Analysis of Anisotropic Magnetic Materials Taking Rotation Magnetization into Account[J]. IEEE Transactions on Magnetics, 1994,30(5):3387-3390.
    [31]Ruoho, S. Arkkio, A. Partial Demagnetization of Permanent Magnets in Electrical Machines Caused by an Inclined Field[J]. IEEE Transactions on Magnetics,2008,44(7):1773-1778.
    [32]Kim, K-C. Kim, k. Kim, K. J. Lee, J. Demagnetization Analysis of Permanent Magnets According to Rotor Types of Interior Permanent Magnet Synchronous Motor[J]. IEEE Transactions on Magnetics,2009,45(6):2799-2802.
    [33]Sami Ruoho. Modeling Demagnetization of Sintered NdFeB Magnet Material in Time-Discretized Finite Element Analysis[D]. Espoo:Aalto University,2010.
    [34]阮毅,陈伯时.电力拖动自动控制系统(第4版)[M].北京:机械工业出版社,2009,162-163.
    [35]黄进.P对极N相对称系统的变换理论[J].电工技术学报,1995,1:53-58.
    [36]汤蕴璆,张奕黄,范瑜.交流电机动态分析[M].北京:机械工业出版社,2004:44-44.
    [37]王秀和,孙雨萍.电机学[M].北京:机械工业出版社,2007.
    [38]石有计.起重机用绕线转子自起动永磁同步电动机起动过程仿真[J].微特电机,2012,40(3):15-17.
    [39]李国建,王道涵,朱常青.基于MATLABPSIMULINK的三相异步起动永磁同步电动机的建模与仿真[J].山东大学学报(工学版),2006,36(5):40-43.
    [40]刘仲恕.永磁同步电动机状态方程研究和起动过程仿真[J].福建工程学院学报,2003,1(2):43-46.
    [41]卢伟甫,罗应立,赵海森.白起动永磁同步电机起动过程电枢反应退磁分析[J].电机与控制学报,2012,16(7):29-33.
    [42]李志强.自起动永磁电机动态过程的有限元分析与实验研究[D].北京:华北电力大学,2009.
    [43]汤蕴璆.电机内的电磁场[M].北京:科学出版社,1998:203-206.
    [44]周凤争.高速永磁无刷直流电机转子涡流损耗的研究[D].杭州:浙江大学,2008.
    [45]谢李丹.直驱式风力永磁同步发电机损耗与发热计算[D].重庆:重庆大学,2010.
    [46]张洪亮,邹继斌,陈霞,江善林.PMSM定子铁耗与磁极涡流损耗计算及其对温度场的影响[J].微特电机,2008,5:1-5.
    [47]李娟.永磁体涡流损耗的有限元分析及其对电机性能的影响研究[D].天津:天津大学,2005.
    [48]姜代维.稀土永磁同步电机电抗参数测试与研究[D].沈阳:沈阳工业大学,2003.
    [49]陈玉庆,王秀和,杨玉波.永磁体分散性对自起动永磁同步电动机的影响[J].电机与控制学报,2007,11(1):41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700