脊波、曲线波和偏微分方程在图像处理中的算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寻求客观事物的“稀疏”表示方法,是计算机视觉、数学、数据压缩等领域的专家学者们致力于的目标。小波分析之所以成功,一个重要的原因是其对范围广泛的函数类的“稀疏”表示能力,尤其表现为对“点奇异”的最优非线性逼近能力。然而,对于含线奇异、面奇异的二维或高维函数,小波的非线性逼近能力却不尽如人意,事实上,此时M项非线性逼近误差ε_n(M)=‖f_M-f‖~2的衰减速度只能达到O(M~(-1))。小波分析的不足,促使人们开始从不同角度试图寻找比小波更好的“稀疏”表示工具。脊波理论由Emmanuel J.Candes在1998年提出,脊波变换对含直线奇异的多变量函数具有最优非线性逼近性能。后来,Candes又提出了曲线波的概念,曲线波变换对含有曲线奇异的多变量函数具有最优的非线性逼近阶。由于脊波、曲线波的这种能力,这使得它们在图像处理中比起小波具有一定的优势,更能保持图像的边缘,所以它们越来越受到广大研究者的重视。在数学图像处理中,相对于计算调和分析方法,另外一种方法就是偏微分方程方法。自从Perona和Malik在1990年引入了各向异性扩散的概念,人们提出了无数的各向异性扩散模型。这些模型在图像去噪、图像增强、边缘检测等方面具有很好的效果。时至今日,偏微分方程方法仍然是图像处理中的一个重要方法,是近年来图像处理的热点。本文将对脊波、曲线波和偏微分方程中有关领域的若干算法进行探讨,得到了一些新的有意义的算法。
     (1)有限脊波变换方法是脊波变换的一种数字化实现方法,其核心是有限Radon变换的实现。本文针对有限Radon变换中每一斜率投影的排序问题,利用Besov空间光滑模理论,在时域构造了一种光滑性判别函数,以判别函数值最小的序作为最优序,从而给出了一种新的自适应排序算法。用该算法对图像进行压缩和去噪,得到了很好的效果。
     (2)基于真脊函数的数字脊波变换是另一种脊波变换的数字化实现方法。比起有限脊波,它克服了环绕噪声,但是它不具有正交性,而是构成一个紧框架。这样,在对图像做稀疏逼近时并不是最优的。本文给出了数字脊波重构算法的全局对偶框架(GDF)表示,提出了局部对偶框架(LDF)的新概念,并讨论了LDF的性质,在此基础上给出了一种基于(LDF)的新的数字脊波重构算法。该算法减少了脊波重构的冗余,保持了快速计算的特点,提高了逼近的效果。用该算法对图像进行压缩和去噪,得到了很好的结果。
     (3)曲线波变换是脊波变换的衍生物,它是由多尺度脊波变换合并带通滤波器得到的,它对具有曲线奇异的图像具有很好的逼近效果。因而对于含有边缘的图像,小波不能很好的探测出线奇异并且会让去噪后的图像边缘变的模糊,然而曲线波能很好的保持图像的边缘,获得很好的去噪效果。本文基于曲线波变换的思想,提出了一种新的数字曲线波变换的重构算法。我们的算法具有更稀疏的表示并且计算量较小。我们用提出的算法对图像进行去噪,得到了比原始算法好得多的结果。
     (4)相对于各向同性扩散,各向异性扩散引入了一个关于图像梯度的空间变化的扩散系数。在图象梯度大的地方做弱的扩散,在图象梯度小的地方做强的扩散,因而在去噪的同时很好的保留了图像的边缘,而且不会产生像小波、曲线波引起的Gibbs震荡,是一种很好的图像处理方法。本文提出了一种新的各向异性分数扩散模型,这些方程是图像灰度值函数的分数导数的绝对值的一个增函数的欧拉-拉格朗日方程,所以该模型可以被看成二阶和四阶各向异性扩散模型的推广。我们用离散傅立叶变换计算分数阶导数并且得到了一个在频域的迭代算法。这个算法导致输入图像被看成一个周期图像。为了克服这个问题,我们将图像关于它的边缘对称的延拓(折叠算法)。最后,我们给出了在去噪实际的图像上的数值结果,实验结果表明提出的分数阶各向异性扩散模型产生了很好的视觉效果和信噪比。
     (5)将图像分解为卡通部分(有界变差部分)和震荡部分(纹理部分)是近年来图像处理的一个重要问题。图像的卡通部分是由一个有界变差(BV)函数来刻画,相应的将BV罚项合并到变分泛函中需要解偏微分方程。Daubechies用Besov罚项代替BV罚项并且用小波解变分问题。按照这种思想,我们通过设计一种数字曲线波算法和一种依赖于尺度的阈值规则,从而得到了一种有效的基于数字曲线波变换的图像分解算法。我们可以看出该算法对噪声具有很强的鲁棒性并且能使图像边缘保持稳定。
Many image processing tasks take advantages of sparse representations of image data where most information is packed into a small number of samples.Typically, these representations are achieved via invertible and nonredundant transforms. Currently,the most popular choices for this purpose are the wavelet transform.The success of wavelets is mainly due to the good performance for piecewise smooth functions in one dimension.Unfortunately,such is not the case in two dimensions.For two-dimensional linear,surface singularities functions,the wavelet can't approximate them very well.In fact,the decay of the error of the M term approximationε_n(M)=‖f_M-f‖~2 only reach O(M~(-1)).The lack of the wavelet makes reseacher try to seek the other harmonic analysis tools.Emmanuel J.Candes introduced the concept of the ridgelet in 1998.Such system is very well at representing the smooth functions with line singularities.Candes also proposed the concept of the curvelet later.The curvelet has the best ability at representing the smooth functions with curvilinear singularities.Abilities of ridgelet and curvelet make them superior to the wavelet for image processing.They are valued by more and more researchers.Relative to the computational harmonic analysis method in the image processing,another method is partial differential equations.Since the work of Perona and Malik,which replaced the isotropic diffusion by an anisotropic difuusion,reserchers have proposed many anisotropic diffusion models which preserve important structures in images,while removing noise.These models make good effects in image denoising,image enhancement,edge detetion et al.Until now,the partial differential equation(PDE) method is still an important method and a hotspot in image processing.In this paper we will study some aspects of algorithms of ridgelet,curvelet and PDE and obtain some new instructive algorithms.
     (1)The finite ridgelet transform is one of the digital methods of ridgelet transform. The key is the implementation of the finite Radon transform.The sequencing problem of each slope projection in finite Radon transform is studied on this paper.We use the theory of modulus of smoothness of the Besov space and construct a smooth discriminant function in time domain.The optimal sequence has the smallest functional value,so a new adaptive sequencing algorithm is proposed.When applying it to the image compression and denoising,the good results are obtained.
     (2)The other is the digital ridgelet transform based on true ridge fuction.Compare with the finite ridgelet transform,it eliminates the "wrap around" and consists a frame. Thus it can't provide the most sparer representations of the image.A global dual frame (GDF)representation for the digital ridgelet reconstruction algorithm is discussed,then a novel concept of the local dual frame(LDF)is presented.Based on the properties of LDF,we propose a new digital ridgelet reconstruction algorithm.The method reduces the redundancy in the digital ridgelet reconstruction while keeping the characteristics of low compute cost.When applying it to the image compression and denoising,the good results are obtained.
     (3)For an anisotropic image,wavelets lose their effects on singularity detection because discontinuities across edges are spatially distributed.Based on the idea of the curvelet,a new digital curvelet reconstruction algorithm is proposed.Our algorithm provides sparser representations and keeps low computational complexity.When applying it to the image denoising,much better results than the original algorithm are obtained.
     (4)This paper introduces a new class of fractional-order anisotropic diffusion equations for noise removal.These equations are Euler-Lagrange equations of a cost functional which is an increasing function of the absolute value of the fractional derivative of the image intensity function,so the proposed equations can be seen as generalizations of second-order and fourth-order anisotropic diffusion equations.We use the discrete Fourier transform(DFT)to implement the numerical algorithm and give an iterative scheme in the frequency domain.It is one important aspect of the algorithm that it considers the input image as a periodic image.To overcome this problem,we use a folded algorithm by extending the image symmetrically about its borders.And finally,we list various numerical results on denoising real images. Experiments show that the proposed fractional-order anisotropic diffusion equations yield good visual effects and better signal-to-noise ratio.
     (5)Recent years,decomposing an image into cartoon component(bounded variation component)and oscillating component(texture component)is an important problem in the field of image processing.The cartoon component of an image is modeled by a bounded variation(BV)function;the corresponding incorporation of BV penalty terms in the variational functional leads to solve PDE equations.Daubechies replaced the BV penalty term by a Besov term and wrote the problem in a wavelet framework. Following this idea,we propose a new image decomposition algorithm based on the digital curvelet transform.By designing a digital curvelet transform algorithm and a scale-dependent thresholding rule,elegant and numerically efficient schemes are obtained.We can see that this approach is very robust to additive noise and can keep the image edges stable.
引文
[1]Do M N and Vetterli M.The finite ridgelet transform for image representation.IEEE Trans on Image Processing,2003,12(1):16-28.
    [2]Candes E J.Harmonic analysis of neural networks.Applied and Computational Harmonic Analysis,1999,6(2):197-218.
    [3]Donoho D L.Orthonormal ridgelet and linear singularities.SIAM Journal on Mathematical Analysis,2000,31(5):1062-1099.
    [4]Candes E J.Ridgelets:Theory and applications.USA:Department of Statistics,Stanford University,1998.
    [5]HOU Biao,JIAO Li-Cheng,LIU Fang.Image denoising based on ridgelet.2002 6th International Conference on Signal Proceedings.Beijing,China,2002,780-783.
    [6]Matus F and Flusser J.Image representations via a finite Radon transform.IEEE Trans on Pattern Analysis and Machine Intelligence,1993,15(10):996-1006.
    [7]Kelly B T and Madisetti V K.The fast discrete Radon transform.IEEE Trans on Image Processing,1993,2(3):382-400.
    [8]Devore R A.Nonlinear approximation.Acta Numerica,1998,7:51-150.
    [9]Mallat S.A wavelet tour of signal processing.Boston:Academic Press,1998.
    [10]David L.Donoho and Ana Georgina Flesia:Digital Ridgelet Transform based on True Ridge Functions.http://www.stat.Stanford.edu/donoho/Report.
    [11]David.L.Donoho:Orthonormal Ridgelet And Linear Singularities.SIAM J.MATH.ANAL.Vol 31,No.5,pp,1062-1099.
    [12]A.Averbuch,.R.Coifman,D.L.Donoho,M.Israeli,J.Walden:Fast Slant Stack:A notion of Radon Transform for Data in a Cartesian Grid which is Rapidly Computible,Algebraically Exact,Geometrically Faithful and Invertible.http://www.stat.Stanford.edu/donoho/Report.
    [13]Stephan Mallat:信号处理的小波导引.杨力华等译。北京:机械工业出版社,2003。
    [14]冯象初,甘小冰,宋国乡:数值泛函与小波分析。西安电子科技大学出版社,1997。
    [15]Beylkin G.Discrete Radon Tansform.IEEE Tans ASSP,1987:35(1):162-172.
    [16]P.Auscher,G.Weiss and M.V.Wickerhauser:Local sine and cosine bases of Coifman and Meryer and the construction of smooth wavelets.Wavelets:A tutorial in Theory and Applications Academic Press:Boston,237-256.
    [17]K.Grochenig.Acceleration of frame algorithm.IEEE Trans.Signal Proc.,41(12):3331-3340,Decenber 1993.
    [18]J.L.Stack,E.J.Candes,D.L.Donoho:The Curvelet transform for image denoising [J].IEEE Trans.Image Proc,2002,11(6):670-684.
    [19]P.Perona and J.Malik,"Scale-space and edge detection using anisotropic diffusion," IEEE Trans.Pattern Analysis and Machine Intelligence,Vol.12,No.7,pp.629-639,1990.
    [20]F.Catte,P.L.Lions,J.M.Morel,and T.Coil,"Image selective smoothing and edge detection by nonlinear diffusion," SIAM J.Numer.Anal.,Vol.29,No.1,pp.182-193,1992.
    [21]R.A.Carmona and Sifen Zhong,"Adaptive smoothing respecting feature directions," IEEE Trans.Image Processing,Vol.7,No.3,pp.353-358,1998.
    [22]Suk- Ho Lee and Jin Keun Seo,"Noise removal with Gauss curvature-driven diffusion," IEEE Trans.Image Processing,Vol.14,No.7,pp.904-909,2005.
    [23]K.Chen,"Adaptive smoothing via contextual and local discontinuities," IEEE Trans.Pattern Analysis and Machine Intelligence,Vol.27,No.10,pp.1552-1567,2005.
    [24] J. Monteil and A. Beghdadi, "A new interpretation and improvement of the nonlinear anisotropic diffusion for image enhancement," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 21, pp. 940-946,1999.
    
    [25] D. Barash, "A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 24, pp. 844-847,2002.
    
    [26] Arthur Chun-Chieh Shih, Hong Yuan Mark Liao, Chun-Shien Lu, "A new iterated two-band diffusion equation: Theory and its application," IEEE Trans. Image Processing, Vol. 12, No. 4, pp. 466-476,2003.
    
    [27] L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D, Vol. 60, pp. 259-268,1992.
    
    [28] A. Chambolle and P. L. Lions, "Image recovery via total variation minimization and related problems," Numer. Math., Vol 76, No. 2, pp. 167-188,1997.
    
    [29] P. Blomgren, P. Mulet, T. F. Chan, and C. K. Wong, "Total variation image restoration: numerical methods and extensions, Proceedings ICTP, Vol. 3, pp. 384-387, 1997.
    
    [30] T. F. Chan, S. Esedoglu, and F. E. Park, "A fourth order dual method for staircase reduction in texture extraction and image restoration problems," http ://basilo .kaist. ac.kr/preprint/uclam/cam05 -28 .pdf.
    
    [31] T. F. Chan, A. Marquina, and P. Mulet, "High-order total variation-based image restoration," SIAM J. Sci. Comput., Vol. 22, No. 2, pp. 503-516,2000.
    
    [32] M. Lysaker and X. C. Tai, "Iterative image restoration combining total variation minimization and a second-order functional," International Journal of Computer Vision, Vol. 66, No. 1, pp. 5-18,2006.
    
    [33] Yu-Li You and M. Kaveh, "Fourth-order partial differential equations for noise removal," IEEE Trans. Image Processing, Vol. 9, No. 10, pp. 1723-1730,2000.
    
    [34] M. Lysaker, S. Osher, and Xue-Cheng Tai, "Noise removal using smoothed normals and surface fitting," IEEE Trans. Image Processing, Vol. 13, No. 10, pp. 1345-1357, 2004.
    
    [35] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher, "Geometric surface processing via normal maps," ACM Trans. Graph, Vol. 22, No. 4, pp. 1012-1033,2003.
    
    [36] M. Lysaker, A. Lundervold, and Xue-Cheng Tai, "Noise removal using Fourth-order partial differential equation with applications to medical magnetic resonance images in space and time," IEEE Trans. Image Processing, Vol. 12, No. 12, pp. 1579-1590,2003.
    
    [37] E. cuesta and J. F. Codes, "Image processing by means of a linear integro-differential equation," The Third LASTED International Conference on Visualization, Imaging, and Image Processing, Vol. 1, pp. 438-442,2003.
    
    [38] R. Duits, M. Felsberg, L. Florack and B. Platel, "a scale spaces on a bounded domain", 4~(th) International Conference, Scale Spaces, pp. 494-510, 2003.
    
    [39] S. Didas, B. Burgeth, A. Imiya and J. Weickert, "Regularity and scale-space properties of fractional high order linear filtering," Scale Spaces and PDE Methods in Computer Vision, pp. 13-25, 2005.
    
    [40] B. Ross, "A brief history and exposition of the fundamental theory of fractional calculus," Lecture Notes in Math, New York: Springer-Verlag, Vol. 457, pp. 40-130, 1975.
    
    [41] S. Chu Liu and S. Chang, "Dimension estimation of discrete-time fractional Brownian Motion with applications to image texture classification," IEEE Trans. Image Processing, Vol. 6, No. 8, pp. 1176-1184, 1997.
    
    [42] B. Ninness, "Estimation of 1/f noise," IEEE Trans. Information theory, Vol. 44, No. 1, pp. 32-46,1998.
    
    [43] N. Engheta, "On the role of fractional calculus in electromagnetic theory," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, pp. 35-46,1997.
    
    [44] M. unser, T. Blu, "Fractional splines and wavelets," SIAM Review, Vol. 42, No. 1, pp.43-67, 2000.
    
    [45] M. unser, "Splines, a perfect fit for signal and image processing," IEEE Signal Processing Magazine, Vol. 16, No. 6, pp. 22-38,1999.
    
    [46] S. Osher, A. Sole, and E. Fatemi, "Image decomposition and restoration using total variation minimization and the H~(-1) norm," Multiscale Model. Simul., Vol. 1, No. 3, pp. 349-370,2003.
    
    [47] S. Roudenko, "Noise and texture detection in image processing," http://math.asu.edu/~svetlana/LANL-Imaging.pdf.
    
    [48] L. Lieu and L. A. Vese, "Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces," http://www.math.ucdavis.edu/~llieu/ams_meetingl009_slides.pdf.
    
    [49] R. A. Adams, "Sobolev Spaces," Volume 65 of Pure and Applied Mathematics, Series of Monographs and Textbooks, Academic Press, Inc., New York, San Francisco, London, 1975.
    
    [50] P. Mrazek, "Selection of Optimal stopping time for nonlinear diffusion filtering," International Journal of Computer Vision, Vol. 52, No. 2/3, pp. 189-203,2003.
    
    [51] T. F. Chan and J. H. Shen, "PDE models for image inpaintings and applications", CISST '01 International conference, Vol. 1, pp. 30-36,2001.
    
    [52] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, "Image inpainting", Proceedings of SIGGRAPH 2000, New Orleans, pp. 23-28,2000.
    
    [53] Y. Meyer, "Oscillating patterns in image processing and nonlinear evolution equations," University Lecture Series, Vol. 22, Amer. Math. Soc, Providence, 2001.
    
    [54] Vese L A, Osher S J. Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing, 2003,19(1/3): 553-572.
    
    [55] Aujol J F, Chambolle A. Dual norms and image decomposition models. International Journal of Computer Vision, 2005, 63(1): 85-104.
    
    [56] Levine S E. An adaptive variational model for image decomposition. http: //ddma.lanl.gov/public/speaker/2005-03-21713h30.shtml.
    
    [57] Chan T F, Esedoglu S, Frederick E P. Image decomposition combining staircase reduction and texture extraction, http: //www.math.ucla.edu/applied/cam/.
    
    [58] Daubechies I, Teschke G. Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising. Applied and Computational Harmonic Analysis, 2005,19(1): 1-16.
    
    [59] Candes E J, Donoho D L. Curvelets—A Surprising effective nonadaptive representation for objects with edges. Curve and Surface Fitting, Nashville: Vanderbilt University Press, 1999.
    
    [60] Donoho D L, Duncan M R. Digital curvelet transform: Strategy, implementation and experiments. Proc. SPIE, Wavelet Application VII. Orlando, USA, 2000, 4056, 12-29.
    
    [61] Strack J L, Elad M, Donoho D L. Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Processing, 2005, 14(10): 1570-1582.
    
    [62] BAI Jian, FENG Xiang-Chu. Digital ridgelet reconstruction based on local dual frame. Science in China Series F: Information Science, 2005,48(6): 782-794.
    
    [63] Candes E J, Demanet L, Donoho D L, Ying L. Fast discrete curvelet transforms. http://www.acm.caltech.edu/~demanet/papers/FDCT.pdf.
    [64]李朝晖主编,数字图像处理及应用。北京:机械工业出版社,2004。
    [65]章毓晋,图像处理和分析。北京:清华大学出版社,1999。
    [66]阮秋琦著,数学图像处理学。电子工业出版社,2001。
    [67]Mumford D.and Shah J.Optimal approximation by piecewise smooth functions and associated variational problems.Comm.Pure.Appl.Math.1989,42(5):577-685.
    [68]Daubechies I.Ten Lectures on Wavelets.CBMS Conference Series in Applied Mathematics,SIAM,Philadelphia,1992.
    [69]李建平。小波分析与信号处理-理论、应用及软件实现。重庆:重庆出版社,1997。
    [70]秦前清,杨宗凯。实用小波分析。西安:西安电子科技大学出版社,1998。
    [71]张贤达,保铮。非平稳信号分析与处理。北京:国防工业出版社,1998。
    [72]崔锦泰(著),程正兴(译)。小波分析导论。西安:西安交通大学出版社,1995。
    [73]Meyer Y.Wavelets-Algorithms and Application.SIAM,1993.
    [74]Mallat S.A theory for multiresolution signal decomposition:the wavelet representation.IEEE Trans.PAMI,11(7):674-693,1989.
    [75]Mallat S.Multiresolution approximations and wavelet orthonormal bases of L~2(R).Trans.Amer.Math.Soc.,9(315):69-87,1989.
    [76]Mallat S.Multi-frequency channel decomposition of images and wavelet.IEEE Trans.ASSP.,12(37):2091-2110,1989.
    [77]Chui C K.An introduction to wavelets.Academic Press,Inc.,1992.
    [78]Coifman R R and Wickerhauser M V.Entropy based algorithms for best basis selection.IEEE Trans.Information Theory,38(2):713-718,1992.
    [79]Donoho D L.Interpolating wavelet transform.Technical Report,Dept.of Statistics Stanford Univ.,1992.
    [80]Dubuc S.Interpolating through an interative scheme.J.Math.Anal.And Appl.,114:185-204,1986.
    [81]Cohen A.,Daubechies I and Vial P.Wavelets on the interval and fast wavelet transform.Appl.Comp.Harm.Anal.,1:54-80,1993.
    [82]Sweldens W.The lifting scheme:A construction of second generation wavelets.SIAM J.Math.Anal.,29(2):511-546,1997.
    [83]Monoscale ridgeletsfor the representation of images with edges.Technical report,Department of Statistics,Standford University,1999.
    [84]Candes E J,Donoho D1.Curvelets.Technical report,Department of Statistics,Stanford University,1999.
    [85]赵瑞珍。 小波理论及其在图像、信号处理中的算法研究。[西安电子科技大学博士学位论文],2001,6。
    [86]姜东焕,冯象初,宋国乡。依赖Besov权的平移不变小波阈值方法,工程数学学报,23(3):443-449,2006。
    [87]冯象初,姜东焕,宋国乡。基于变分和小波变换的图像放大算法。计算机学报,已录用。
    [88]Romeny B.ter Harr,Ed.,Geometry-driven diffusion in computer vision.Boston,MA:Kluwer,1994.
    [89]Weickert J.Anisotropic diffusion in image processing.Stuttgart,Germany:Teubner-Verlag,1998.
    [90]Marr D,Hildreth E.Theory of Edge detection.Proc.Roy.Soc.London Ser.B,187-217,1980.
    [91]Witkin A P.Scale-Space Filtering.In processing of IJCAI,Karlsruhe,1019-1021,1983.
    [92]Canny J.Computational approach to dege detection.IEEE Trans.PAMI,8(6):679-698,1986.
    [93]Alvarez L,Lions P L,Morel J M.Image selective smoothing and edge detection by nonlinear diffusion Ⅱ.SIAM J.Numerical Analysis,29(3):845-866,1992.
    [94]Malladi R,Sethian J and Vemuri B C.A fast level set based algorithm for topology-independent shape modeling.J.Mathematical image and Vision,6:269-289,1996.
    [95]Bose P,Chen Y.Incorporation of time-delay regularization into curvature-based diffusion.
    [96]Kimia B,Tenenbaum A,Zucker S W.Toward a computational theory of shape:An overview.Lecture notes in Computer Science,427:402-407,1990.
    [97]Malladi R,Sethian J A.Image processing,flows under min/max curvature and mean curvature.Graphical Models and Image Processing,58(2):127-141,1996.
    [98]Malladi R,Sethian J A and Vemuri B C.Shape modeling with front propagation.IEEE Trans.PAMI,14(8):826-833,1992.
    [99]Osher S,Sethian J.Fronts propagating with curvature dependent speed,algorithms based on the Hamilton-Jacobi formulation.J.Comp.Physics,79:12-49,1988.
    [100]Vogel C R,Oman M E.Iterative methods for total variation denoising.SIAM J.Sci.Stat.Comput.,17:227-238,1996.
    [101]Strong D,Chan F T.Relation of regularization parameter and scale in total variation based image denoising.UCLA Math.Dept.CAM report,67-96,1996.
    [102]shah J.A common framework for curve evolution,segmentation and anisotropic diffusion.IEEE Conf.On Computer Vision and Pattern Recognition,June,1996.
    [103]Osher S,Rudin I L.Feature-oriented image enhancement using shock filtering.SIAM J.Numerical Analysis,27(4):919-940,1990.
    [104]Chen Yunmei,Vemuri B C,Wang L.Image denoising and segmentation via nonlinear diffusion.Computers and Mathematics with Applications,39:131,2000.
    [105]D H Hubel and T N Wiesel.Receptive fields,binucular interaction and fuctional architecture in the cat's visual cortex.Journal of Physiology,160:106-154,1962.
    [106]B A Olshausen and D J Field.Emergence of simple-cell receptive field properties by learning a sparse code for nature image.Nature,381:607-609,1996.
    [107]Donoho D L and Ana Georgina Flesia.Can recent innovations in harmonical analysis 'explain' key findings in nature image statistics.Network:Computation in Neural System,12(3):371-393,2001.
    [108]Pennec E L and Mallat S.Image compression with geometrical wavelets.In Proc.of ICP 2000.Vancouver,Canada,September,661-664,2000.
    [109]Pennec E L and Mallat S.Sparse geometric image representation with Bandelets.http://www.Crnap.polyttechnique.fr/~mallat/papers,2003.
    [110]Pennec E L and Mallat S.Nonlinear image approximation with Bandelets.CMAP Ecole Polytechnique,2003.
    [111]Candes E J.Harmonic analysis of neural network.Applied and Computational Harmonic Analysis,6:197-218,1999.
    [112]焦李成,侯彪,刘芳。脊函数网络逼近:进展与展望。工程数学学报,19(1):21-36,2002。
    [113]Candes E J.On the representation of multilated sobolev functions.SIAM J.Math.Anal.,33:2495-2509,1999.
    [114]M N Do and M vetterli.Contourlets.J Stoeckler,G V Welland.Beyond wavelets.Academic Press,2002.
    [115] P J Burt and E H Adelson. The Laplacian pyramids as a compact image code. IEEE Trans. Comunacation, 31(4): 532-540, 1983.
    
    [116] M N Do and M Vetterli. Frame Pyramids. IEEE Trans. Signal processing, 51(9): 2329-2342, 2003.
    
    [117] Y lu and M N Do. CRISP-Contourlet: A critically sampled directional multiresolution image representation. Proc. SPIE Conf on Wavelets X. San Diego, Aug. 2003.
    
    [118] Goodman T N T and Lee S L. Wavelets of multiplicity. Trans. Amer. Math. Soc,342(1): 307-324,1994.
    
    [119] Starck J L, Murtagh F, Candes E J and Donoho DL. Gray and color image contrast enhancement by the curvelet transform. IEEE Trans. Image Processing, 12(6): 706-717, 2003.
    
    [120] Alvarez L., Guichard F and Lions P L. Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis. 123(3): 199-257, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700