化感作用对东海赤潮演替的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过2007年科学院创新项目KC2007-3航次现场调查和实验室微藻培养实验,研究了多胺对几种赤潮藻生长的影响,不同赤潮水体对几种赤潮藻生长的影响,硅藻赤潮消亡后海水几种溶解有机物的空间分布和时间变化及其与赤潮演替的关系,对实验室和现场观察到的现象进行了深入分析,得到了以下结论:
     较低浓度的多胺对东海原甲藻和塔玛亚历山大藻等甲藻的促进作用要高于对中肋骨条藻的促进作用。多胺可能在硅藻赤潮向甲藻赤潮的演替中起了一定推进作用。
     东海赤潮演替过程中典型的赤潮水体滤液对培养藻种生长的抑制或促进作用与现场演替过程相契合,化感物质是硅藻赤潮演替的影响因素之一。
     东海硅藻赤潮消亡后的海水有较强的类蛋白荧光,主要荧光峰是类酪氨酸B峰。在赤潮消亡主要海区FIB/FIs较大,这表明类蛋白溶解有机物主要是由赤潮藻破碎分解产生的类酪氨酸。S峰、A峰和C峰三者之间互相呈较好的正相关,且3者的荧光强度与盐度都呈显著的线性负相关,其分布均呈现出近岸高远岸低的特点,这表明江浙沿岸水的输入是其共同的重要来源。
     单糖、多糖、总糖和DOC与真光层生物活动密切相关。局部高值是之前赤潮高发的藻类产生的。
     B峰强度与叶绿素a之间存在一定的负相关,类酪氨酸可能在pico-flagellates暴发过程中作为营养源或生长刺激物。
Based on the survey of KC2007-3 and algae cultivation experiment, the effects of allelopathy on the succession of the Red-tide in the East China Sea in 2007 were studied. Effects of exogenous polyamines and red-tide seawater filtration on growth of Prorocentrum donghaiense, Alexandrium tamarense and Skeletonema costatum were studied, and the distributing and variation characteristics of dissolved organic during the Red Tide were also discussed.
     Putrescine, spermine and spermidine were added to cultivation of P. donghaiense, A. tamarense and S. costatum respectively. Low concentration polyamines promoted P. donghaiense, A. tamarense more than S. costatum, which indicated that polyamines might advance the succession from diatom bloom to dinoflagellate bloom.
     The effect of cultivation with the seawater filtration in different phases of the red-tide was consistent with the process of succession of the red-tide in the East China Sea, which suggested allelochemical in seawater might play a part role in the succession of the red-tide.
     High tyrosine-like intensity was observed in diatom red tide dispersion area. High FIB/FIS showed that diatom bloom produced much tyrosine-like matter during dispersion. Peak S, peak A and peak C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peak S, peak A and peak C with salinity, which suggested that Jiangsu-Zhejiang Coastal Water was the same source of them.
     MCHO, PCHO, TCHO and DOC seemed to have something to do with phytoplankton in the euphotic zone, but did not have remarkable correlation with Chla. High concentration carbohydrate and DOC might derive from the secretion or decomposition of the diatom bloom.
     The intensity of protein-like fluorescence matter had reverse trend to the density of pico-flagellates, which suggested that those matter might act as nutrient resource or stimulative to pico-flagallates.
引文
陈玫玫,2006,营养盐和他感作用对东海浮游植物的影响(硕士学位论文),p13
    胡晗华,石岩峻,丛威, 2005.通过氮浓度调节塔玛亚历山大藻毒素产量的初步研究.过程工程学报, 5 (4):438 ~440.
    刘洁生,谢瑾,杨维东等, 2006.营养盐限制条件下塔玛亚历山大藻对东海原甲藻的化感作用研究.热带亚热带植物学报, 14 (3) :207~212
    傅平青,刘丛强,吴丰昌等. 洱海沉积物孔隙水中溶解有机物质的三维荧光光谱特征. 第四纪研究, 2004, 24(6):695~700.
    高亚辉,荆红梅,黄德强等,2002,海洋微藻胞外产物研究进展,海洋科学,26(3):35~38
    韩秀荣,王修林等,2003, 东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究应用,生态学报, 14(7):1097~1101
    季乃云,赵卫红等,2006,胶州湾赤潮暴发水体中溶解有机物质荧光特征,环境科学,27(2):257~262
    彭喜春,杨维东等,2007,赤潮期间藻类的化感效应,海洋科学,31(2):84~88
    任保卫,赵卫红,王江涛,邹景忠等,2007,胶州湾围隔实验中溶解有机物三维荧光特征,环境科学,28(4):712~718
    任保卫, 赵卫红,王江涛等,光谱学与光谱分析, 2008,(待刊)
    孙霞,王保栋等, 2004,东海赤潮高发区营养盐时空分布特征及其控制要素,海洋科学,28( 8):28~32
    王悠, 俞志明, 宋秀贤等,2006.大型海藻与赤潮微藻以及赤潮微藻之间的相互作用研究.环境科学, 27 (2):274 ~280
    王颖,何生根,孙敏,2003,多胺代谢和种子萌发,2:53~56
    夏达英,王振先,夏荣环等,1997,水中荧光计及其在海洋现场探测中的应用.黄渤海海洋,1 5(2):64~69
    张启龙,王凡,2004,舟山渔场及其邻近海域水团的气候学分析,海洋与湖沼,35(1):48-54
    赵卫红,王江涛,崔鑫,季乃云,2006,海洋浮游植物生长过程中溶解有机物质的三维荧光光谱研究,高技术通讯,16(4):425~430
    Adolf JE,Krupatkina DN, Place AR et al.,2004.The allelopathic specificity of Karlodinium micrum toxins (Karlotoxins). In: 11th Int Conf Harmful Algal Blooms, Cape Town, S Africa, Abstracts, pp52
    Ahmed MS, Khan S, Arakawa O et al., 1995.Properties of hemagglutinins newly separated from toxic phytoplankton. Biochem Biophys Acta,1243:509~512
    Akin-Oriola GA, Lawton LA, 2006. Allelopathy in Oscillatoria agardhii: effect on monocultures of Microcystis aeruginosa, In:abstracts,12th International Conference on Harmful Algae, PO.11-01:121
    Andrew B,Ronald B.Carbohydrates in phytoplankton and fresh produced dissolved organic matter.Marine Chemistry,1998,63:131-144
    An M, Johnson I, Lovett J,1993.Mathematical modelling of allelopathy: biological response to allelochemicals and its interpretation. Journal of Chemical Ecology,19:2379~2388.
    An M, Johnson I, Lovett J,1996.Mathematical modelling of allelopathy: I. Phytotoxicity of plant residues during decomposition. Allelopathy Journal ,3:33~42.
    An M, 2005. The use of mathematical modelling in allelopathy. The Fourth World Congress on Allelopathy. http://www.regional.org.au/au/allelopathy/2005/1/3/2625_anm1.htm
    Armstrong R A, 2003. A hybrid spectral representation of phytoplankton growth and zooplankton response: The “control rod” model of plankton interaction. Deep Sea research,50:1895~2916
    Arzul G., Gentien P., Crassous M.P., 1994. A haemolytic test to assay toxins excreted by the marine dinoflagellate Gyrodinium cf. aureolum. Water Research, 28 : 961~965.
    Arzul G., Seguel M., Guzman L. et al., 1999. Comparison of allelopathic properties in three toxic Alexandrium species. Journal of Experimental Marine Biology and Ecology, 232: 285~295
    Altman TA et al., In P. N. Wareing (ed.)Plant Growth Substances,1982,P.485
    Barreiro A,Guisande C,Maneiro I et al.,2005,Relative importance of the different negative effects of the toxic haptophyte Prymnesium parvum on Rhodomonas salina and Brachionus plicatilis. Aquat Microb Ecol.,38:259~267
    Burdige D J, Berelson W M, Coale K H, et al. Fluxes of dissolved organic carbon from California continental margin sediments. Geochimiac et Cosmochimica Acta, 1999, 63:1507~1515
    Chan A.T., Andersen R.J., Leblanc M.J.et al.,1980. Algal plating as a tool for investigating allelopathy among marine microalgae. Marine Biol., 59: 7~13.
    Chattopadhyay J., 1996. Effect of toxic substances on a two-species competitive system. Ecol. Modell. ,84:287~291.
    Chen R F, Bada J L. The fluorescence of dissolved organic matter in seawater. Mar. Chem., 1992, 37:191~221
    Chen R F, Bissett P, Coble P, et a1., Chromophoric dissolved organic matter(CDOM)source characterization in the Louisiana Bight[J]. Mar Chem, 2004, 89:257~272
    Coble P G, Green S, Blough N V. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy[J].Nature, 1990, 348:432435.
    Coble P G. Characterization of marine and terrestrial DOM in the seawater using exciting-emission matrix spectroscopy[J]. Mar Chem,1996,51:325~346.
    Coble P G, Del Castillo C E, Bernard A. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep-Sea Res II,1998, 45:2195~2223.
    Conmy R N,Coblee P G,Chen R et al., Optical properties of colored dissolved organic matter in the Northern Gulf of Mexico[J]. Mar Chem, 2004, 89:127~144.
    Del Castillo C E, Coble P G. Seasonal variability of the colored dissolved organic matter during the 1994-95 NE and SW Monsoons in the Arabian Sea [J]. Deep-Sea Res II, 2000, 47:l 563~1579
    Determann S,Lobbes J M,Reuter R,et a1.Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria [J]. Mar. Chem., 1998, 62:137~156
    Donner G., Platt-Rohloff L., Brummer F.et al., 2000. A calcium dependent allelopathic effect of the dinoflagellate Coolia monotis on the chlorophyceae Dunaliella salina. In: Abstracts, 9th International Conference on Harmful Algal Blooms, 7~11.Hobart, Tasmania, Australia, p. 112. University of Tasmania, Hobart
    Dorsch, J.E., Bidleman, T.F., 1982. Natural organics as fluorescent tracers of river –sea mixing. Estuarine, Coastal Shelf. Sci. 15,701– 707.
    Elisabeth M., 2003. Allelopathy of Aquatic Autotrophs. Critical Reviews in Plant Sciences.22(3-4): 313-339
    Fistarol, G.O., Legrand, C., Graneli, E., 2003. Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar. Ecol. Prog. Ser. 255:115~125.
    Fistarol GO, Legrand C, Selander E et al.,2004a. Allelopathy in Alexandrium spp:effect on a natural plankton community and on algal monocultures. Aquat Microb Ecol.,35:45~56
    Fistarol GO, Legrand C, Rengefors K et al.,2004b. Temporary cyst formation in phytoplankton: a response to allelopathic competitors? Env Microbiol.,6:791~798
    Fistarol GO, Legrand C, Granéli E, 2005.Allelopathic effect on a nutrient-limited phytoplankton species. Aquat Microb Ecol.,41:153~161
    Fogg G E, Westlake D E., 1955 The importance of extracellular products of algae in freshwater. Mitteilungen der Internationale Vereinigung fur theoretische angewandte Limnologie, 12:219~232
    Gentien Patrick, 1998. Bloom dynamics and ecophysiology of the Gymnodinium mikimotoi complex. [A]D.M. Anderson, A.D. Cembella and G.M. Hallegraeff . Physiological Ecology of Harmful Algal Blooms. NATOASI Series, Springer-Verlag, Berlin. 155~173
    Gentien Patrick, 2006. Allelopathy in Karenia mikimotoi:a case study.[A] Abstracts, 12th International Conference on Harmful Algae,O.09-03:49
    Goldman J. C., Dennett M. R., Riley C. B.,1981.Test for allelopathic interactions between two marine microalgal species grown in intensive cultures. Current Microbiology, 6: 275~279
    Goslee SC, Peters DPC, Beck KG, 2001.Modeling invasive weeds in grasslands: the role of allelopathy in Acroptilon repens invasion. Ecological Modelling, 139, 31~45.
    Granéli Edna, Johansson N,2003. Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P- deficient conditions.Harmful Algae 2:135~145
    Granéli E., Hansen P.J., 2006. Allelopathy in harmful algae.[M] Granéli Edna, Turner J T.Ecology of Harmful Algae. Springer-Verlag Berlin Heidelberg.ISBN: 3-540-32209-4.189~201
    Guillard R.R.L., Hellebust J.A., 1971. Growth and the production of extracellular substances by two strains of Phaeocystis poucheti. Journal of Phycology,7: 330~338
    Hamana K and M. S (1985). "Further study on polyamine in primitive unicellular eukaryotic algae." J. Biochem. 97: 1311-1315.
    Hansen PJ, 1989. The red tide dinoflagellate Alexandrium tamarense: effects on behaviour and growth of a tintinnid ciliate. Mar Ecol Prog Ser.,53:105~116
    Hansen PJ, Cembella AD, Moestrup, 1992.The marine dinoflagellate Alexandrium ostenfeldii: paralytic shellfish toxin concentration, composition, and toxicity to a tintinnid ciliate. J Phycol.,28:597~603
    Hansen PJ, 2002. The role of pH and CO2 limitation in marine plankton: implications for species succession. Aquat Microb Ecol.,28:279~288
    Hayase K, Shinozuka N. Vertical distribution of fluorescent organic matter along with AOU and nutrients in the equatorial Central Pacific. Mar. Chem., 1995, 48:283~290.
    Haynes, Kenneth F, Jocelyn G. Millar.[Ed] 1998. Methods in chemical ecology. Volume 2. Bioassay methods. Chapman and Hall, New York. ISBN: 0-412-08041-9
    Honjo T., 1993. Overview on bloom dynamics and physiological ecology of Heterosigma akashiwo. In: Smayda T J, Shimizu Y (eds).Toxic Phytoplankton bloom in the sea Amsterdam; Elsevier Science Publishers,33~41
    Hwang, D.F. and Y.H. Lu 2000. Influence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. Toxicon 38: 1491-1503.
    Hwang, D. F., Y. H. Lu, et al. (2003). "Effects of exogenous polyamines on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum." Journal of the Food Hygienic Society of Japan 44(1): 49-53.
    Igarashi T., Satake. M. ,Yasumoto T., 1996. Prymnesin-2: a potent ichthyotoxic and hemolytic glycoside isolated from the red tide alga Prymnesium parvum. Journal of the American Chemical Society,118: 479~480.
    Igarashi K, Kashiwagi K,2000,Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Com. 271: 559–564.Jaeckisch N, Gl?ckner G, Vogel H, Cembella A. et al., 2006.Genomic characterization of the spirolide-producing dinoflagellate Alexandrium ostenfeldii with special emphasis on PKS genes., In: Abstracts, 12th International Conference on Harmful Algae .PO-02:199
    Inderjit, Dakshini KMM., 1994. Algal allelopathy. Botanical Reviews 60(2):182~196
    International Allelopathy Society,1996. Constitution. Drawn up during First World Congress on Allelopathy: A Science for the Future. Cadiz, Spain. http://www-ias.uca.es/bylaws.htm#CONSTI.
    Johansson N., Graneli E., 1999a. Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium patelliferum in semi-continuous cultures. Exp.Mar.Biol.Ecol, 239:243~258.
    Johansson N, Granéli E., 1999b. Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios. Mar Biol, 135:209~217
    Johansson N., 2000. Ecological implications of the production of toxic substances by fish killing phytoplankton species under variable N: P ratios. PhD thesis. Lund University, Lund, Sweden. pp107
    Juttner F,1999. Allelochemical control of natural photoautotrophic biofilms. [A] Keevil C.W., Godfree A., Holt D. et al., Biofilms in the aquatic environment. Royal Society of Chemistry, Cambridge.43~50.
    Juttner F., Todorova A.K., Walchni. et al., 2001. Nostocyclamide M: a cyanobacterial cyclic peptide with allelopathic activity from Nostoc 31. Phytochemistry,57: 613~619.
    Keating K.I. , 1978. Blue-green algal inhibition of diatom growth, transition from mesotrophic to eutrophic community structure.Science.,199:971~973
    Koei, H. and M. Shigeru (1982). "Widespread Occurrence of Norspermidine and Norspermine in Eukaryotic Algae " J. Biochem 91( 4 ): 1321-1328.
    Kr?ger N., R. Deutzmann, C. Bergsdorf and M. Sumper 2000. Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. USA 97:14133-14138.
    Koetje DS, Kononowicz H et al., 1993. Polyamine metabolism associated with growth and embryogenic potential of rice. J. Plant Physiol, 141: 215–221.
    Kotzabasis K, Senger H. Free, conjugated and bound polyamines during cell cycle in synchronized cultures of Scenedesmus obliquus. Zeitschrift für naturforschung. C. J. Biosc. 1994; 43: 181–185.
    Kubanek J, Prince EK, Hicks MK et al., 2005. Does the Florida red tide dinoflagellate use allelopathy to outcompete other phytoplankton? Limnol Oceanogr.,50:883~895
    Kubanek J, Prince EK, Myers T et al., 2006. Allelopathic interactions modulate brevetoxin production in the red tide dinoflagellate Karenia brevis, In: Abstracts, 12th International Conference on Harmful Algae O.09~02
    Lee C., and Jorgensen N.O.G., Biogeochemistry, 1995,29: 131~157
    Legrand C., Rengefors K., Fistarol G.O et al., 2003. Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia., 42: 406~419.
    Levino R L.,1964. Interrelationships of various Protococal algae and their bactericidal effect in joint cultivation. Microbiology, 33:120~126.
    Luedeking A, Kooistra W, Montresor M et al., 2006. A genomic approach towards a better understanding of domoic acid production in the marine diatom Pseudo-nitzschia multistriata . In: Abstracts, 12th International Conference on Harmful Algae .O.17 :69
    Lundholm N, Hansen PJ, Kotaki Y, 2005. Lack of allelopathy effects of the domoic acid producing marine diatom Pseudo-nitzschia multiseries.Mar Ecol Prog Ser.,288:21~33
    Lu Ya-Hui, H. D.-F. (2001). A HIGH-PERFORMANCE LIQUID CHROMATOGRAPHIC DETERMINATION FOR POLYAMINES IN THE PSP-PRODUCING ALGA ALEXANDRIUM MINUTUM. Canadian Technical Report of Fisheries and Aquatic Sciences No. 2386
    Lu, Y. H. and D. F. Hwang (2002). "Polyamine profile in the paralytic shellfish poison-producing alga Alexandrium minutum." Journal of Plankton Research 24(3): 275-279.
    Maestrini S Y., Bonin D J., 1981. Allelopathic relationships between phytoplankton species. In: Platt T. (Ed.), Physiological Bases of Phytoplankton Ecology. Can. Bull. Fish. Aquati. Sci.,, 210:323~ 338.
    Maestrini S.,M.Balode,C.Béchemin and I. Purina,1999.Nitrogenous organic substances as potential nitrogen sources, for summer phytoplankton in the Gulf of Riga, eastern Baltic Sea. Plankton Biol. Ecol. 46: 8-17.
    Mayer L M, Schik L L,Loder T C,Dissolved protein fluorescence in two Maine estuaries [J].Mar. Chem., 1999, 64: 171~179.
    Mopper K,Schultz C A.Fluorescence as a possible tool for studying the nature and water column distribution of DOC components [J].Mar. Chem., 1993,41:229~238
    Mukhopadhyay A., Chattopadhyay J., Tapaswi, P,1998. A delay differential equations model of plankton allelopathy. Math. Biosci.,149:167~189.
    Mukhopadhyay A., Tapaswi P., Chattopadhyay J.,2003. A space-time state-space model of phytoplankton allelopathy.Nonlinear Analysis: Real World Applications,4:437~456
    Mukhopadhyay B., Bhattacharyya R., 2005. A delay-diffusion model of marine plankton ecosystem exhibiting cyclic nature of blooms. J. Biol. Phy.,31 (1): 3~22.
    Myklestad S M., Release of extracellular products by phytoplankton with special emphasis on polysaccharides, 1995, Science of the total environment, 165: 155-164
    Myklestad, S. M., E. Skanoy, et al. 1997. A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater. Marine Chemistry,56(3-4): 279-286.
    Nelson N B, Carlson C A, Steinberg D K. Production of chromophoric dissolved organic matter by Sargasso Sea microbes. Mar. Chem., 2004, 89:273~287Molish H. , 1937. Der Einfluss einer Pflanze auf die andere:Allelopathie.Fisher G[ed],Verlag, Jena,106
    Nishibori, N., S. Fujihara, et al. (2006). "Changes in intracellular polyamine concentration during growth of Heterosigma akashiwo (Raphidophyceae)." Fisheries Science 72(2): 350-355.
    Nishibori, N. and S. Nishio (1997). "Occurrence of polyamines in the bloom forming toxic dinoflagellate Alexandrium tamarense." Fisheries Science 63(2): 319-320.
    Nishibori, N., A. Yuasa, et al. (2001). "Free polyamine concentrations in coastal seawater during phytoplankton bloom." Fisheries Science 67(1): 79-83.
    Petersen H T . Detemrination of an Isochrysis galbana algal bloom by L-tryptophan fluorescence.Mar Pollut Bull,1989,20(9):447—451
    Pratt R., 1940. Influence of the Size of the Inoculum on the Growth of Chlorella vulgaris in Freshly Prepared Culture Medium.American Journal of Botany., 27(1 ): 52~56
    Pratt D.M.,1966. Competition between Skeletonema costatum and Olithodiscus luteus in Naragansett Bay and in culture. Limnology and Oceanography,11: 447~455.
    Rice E L.,1974.Allelopathy. Academic Press, New York.
    Rice E L,1984. Allelopathy 2nd Ed,Orlando. Academic Press
    Rice E L,1986. In: Putnam A R.Tang C S (eds). The Scince of Allelopathy, John Wiley, Sons. New York, pp1.
    Rochelle-Newall E J, Fisher T R. Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Mar. Chem., 2002, 77:7~21
    Schmidt L E, Hansen P J., 2001.Allelopathy in the prymnesiophyte Chyrsochromulina polylepis : effect of cell concentration, growth phase and pH. Mar Ecol Prog Ser.,216:67~81
    Shilo M,1967. Formation and mode of action of algal toxin. Bacteriol Rev.,31:180~193
    Sierra M M D, Donard O F X, Lamotte M, et al. Fluorescence spectroscopy of coastal and marine waters. Mar. Chem., 1994, 47:127~144
    Skovgaard A, Hansen PJ, 2003. Food uptake in the harmful alga Prymnesium parvum mediated by excreted toxins. Limnol Oceanogr.,48:1161~1166
    Smayda, T. J. (2006). HARMFUL ALGAL BLOOM COMMUNITIES IN SCOTTISH COASTAL WATERS: RELATIONSHIP TO FISH FARMING AND REGIONAL COMPARISONS - A REVIEW.
    Solé J., Garc′ia-Ladona E., Ruardij P. et al.,2005. Modelling allelopathy among marine algae. Ecological Modelling, 183:373~384.
    Subba Rao D.V., PanY., Smith S.J.,1995. Allelopathy between Rhizosolenia alata (Brightwell) and the toxigenic Pseudonitzschia pungens f. multiseries (Hasle).[A] P. Lassus, G. Arzul, E. Erard, et al. Harmful marine algal blooms, Lavoisier, Intercept Ltd, Paris. pp681~686.
    Sugg LM, VanDolah FM.,1999. No evidence for an allelopathic role of okadaic acid among ciguatera-associated dinoflagellates. J Phycol.,35:93~103
    Suikkanen Sanna, Fistarol G.O., Granéli E., 2005. Effects of cyanobacterial allelochemicals on a natural plankton community. Marine Ecology Progress Series,287: 1~9.
    Suikkanen S., Engstr?m-?st J., Jokela J., et al., 2006. Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of nodularin. Journal of Plankton Research, 28 (6): 543~550.
    Tapaswi P., Mukhopadhyay A., 1999. Effects of environmental fluctuation on plankton allelopathy. J. Math. Biol.,39:39~58.
    Theiss C, Bohley P, Voigt J. Regulation by polyamine of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol. 2002; 128: 1470–1479.Tillmann U, John U, 2002. Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser.,230:47~58
    Tillmann U, 2003. Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum.Aquat Microb Ecol.,32:73~84
    Turner J.T., Tester P.A. 1997. Toxic marine phytoplankton, zooplankton grazers and pelagic food webs. Limnology and Oceanography, 42:1203~1214.
    Uchida T., Yamaguchi Y., Matsuyama Y.et al.,1995. The red-tide dinoflagellate Heterocapsa sp. kills Gyrodinium instriatum by cell contact. Marine Ecology Progress Series,118: 301~303.
    Uchida T, Toda S, Matsuyama Y et al., 1999. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikinotoi in laboratory culture. Journal of Experimental Marine Biology and Ecology,241:285~299.
    Uchida T, 2001.The role of cell contact in the life cycle of some dinoflagellate species. J Plankton Res,23:889~891
    Vance B D., 1965. Composition and succession of Cyanophycean water blooms. J. Phycol., 1:81~86.
    Weidenhamer JD, Hartnett DC, Romeo JT, 1989. Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. Journal of Applied Ecology, 26, 613~624.
    Windust AJ., Wright JLC., Mclachlan JL., 1996. The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-1, on the growth of microalgae. Marine Biology,126: 19~25
    Windust AJ, Quilliam MA, Wright JLC et al., 1997. Comparative toxicity of the diarrhetic shellfish poisons, okadaic acid, okadaic acid diol-ester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 35(11):1591~1603
    Wolfe G.V., 2000. The chemical defence ecology of marine unicellular plankton: constraints, mechanisms and impacts. Biological Bulletin,198: 225~244.
    Yasumoto T., Murata M,1990. Polyether toxins involved in seafood poisoning.[A] S. Hall, G. Strichartz, Marine toxins: origin, structure and molecular pharmacology. ACS Symposium Series. American Chemical Society, Washington, D.C.20~132.
    Yamashita Y,Tanoue E., Chemical characterization of protein-like fluorophores in DOM in relation to armatic amino acids[J].Mar. Chem., 2003, 82:255~271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700