地质样品中铁、铜物相分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取自然界常见的几种不同化合物类型的铁和铜的单矿物进行浸取实验,得到了不同物化条件下铁和铜矿物的浸取率,从中选择了不同体系的最佳浸取条件,并通过大量实验获得了稳定可靠的浸取率常数;建立了以浸取实验为基础的物相浸取总量数学模型,并验证了数学模型的可靠性;确定了讨论了多目标约束遗传算法(MGA)参数的最佳值;将多目标约束遗传算法用于小西南岔金铜矿中铁和铜的物相分析,并与国家物相分析标准样对比,验证了方法的准确度(|RE|<13.8%)和精密度(各相平均RSD<7%)。研究结果表明,通过多目标约束遗传算法用于地质样品的物相分析,解决了传统选择性溶解的串相问题。从而建立了一种简便、快速、准确的地质样品物相分析的方法。最后用Visual C++语言开发了实用物相分析系统。还应说明,本物相分析方法适用于区分矿物大类。
There are two properties of all elements in nature, which are quantity andquality. The property of quantity of an element shows that how many amounts of theelement there is, generally speaking, it is called the abundance of the element. Theanother one depicts that what kind existent state the element could be. Ingeochemical samples, the different existent state of the element indicates thedifference of the behavior for the element in the course of the geochemical action.This difference provides scientific basis for study the pattern of the elementdistribution and evolution in the geochemical system. With the development of thescience and technology, only to know the total content of unknown elements cannotmeet the practical demands distantly. Furthermore, we must know the different modeof occurrence and distribution of the elements. So it is very important to study onphase analysis of elements in geological exploration, mineral deposit evaluation,beneficiation process, minerals comprehensive utilization and environmentalconservation.
    At present, the main method used in chemical phase analysis is to determine theelement content of different phases after a selective dissolution for the geologicalsamples. There is a large error because of the inevitable crossing phase in the courseof dissolution. The relative error is allowed to be 50% probably in phase analysis.On top of this, the procedure of chemical extraction is cockamamie, time taking andexigent technically. GA is independent of the calibration model and prior knowledgeabout the system, and it is a high efficient global optimization method. It has been
    used to calculate equilibrium constant of complex in analytical chemistry, to selectoptimal reaction condition and to determine multi-component simultaneously.There is no report about that GA was applied to phase analysis till to now. In order to improve these defects, Multi-objective Restriction GeneticAlgorithms (MGA) is introduced to determine five phases of iron in geologicalsamples simultaneously (1,2,, and ) and four phases ofcopper (,,1 and 2). In this article, a new method of phaseanalysis of geological samples will be developed, which is simple, quick, accurate,but also practical. Below are the achievements of this method. 1. Optimal extracting conditions for five phases of iron with six infusions andfour phases of copper with five infusions have been found. After a series ofexperiments, for example, concentration of solvent, extracting time, temperature,proportion of solid to liquid, different weight of sample, artificial mixed single phasesample and experiment repeatedly, the extracting ratio constants for all phases indifferent infusions are gained, which is steady and reliable.
    In above mathematical model, Pij and Ti are known, but Xj is phase concentrationthat we want to know. Furthermore, this model is fit for GA for optimization, bywhich we can work out Xj. Thus, the solution of question can be gotten. 3. In GA, The binary sub-string of a certain length will replace each phasecontent respectively. These binary sub-strings will be connected to a longer binarystring named an individual. There is a certain coordinate relation between a binarysub-string and the content of a phase. By the multi-objective restriction function, wecan judge whether the individual is better or worse, which supplies the evidence for“survival of the fittest”. Therefore, the phase analysis is converted into the problemof multi-target restriction optimization by MGA. The multi-objective restrictionfunction is founded as follows:
    Here, Tobs,i is the total dissolved content of sample in i solvent by experiment. Tcal,i isthe calculating sum of all dissolved phases by MGA. When the differences betweenTobs,i and Tcal,i are all small enough, the individual is the best solution of the question. 4. The initial hunting range can be narrowed gradually, which makes thecalculating result more accurate, and which is favor for hunting efficiency. Theobjective function was improved. The multi-objective is composed of euclideandistance and F-test function, and it is effective for optimization. The effects of GAparameters on calculation speed and result are discussed, such as, initial valueranges, population size, space division, mating probability, mutation probability andobjective function, Initial value ranges is unnecessary to have prior knowledge forsystem, and initial ranges are easy to be decided. The optimal population size is 16,with the list going on, space division 212, mating probability 0.8, and mutationprobability 0.02. 5. The accurate solution can be gotten when gaussian elimination is used tosolve the linear equation group of phase analysis. The accurate solution is comparedwith the calculating result by MGA. It is found that the later is better than the formergreatly, due to the fact that accurate solution by gaussian elimination is zero error.But zero error is ideal situation and it is difficult to reach in practice. So all we can
引文
[1]戚长谋,郝立波,甘树才,关于元素丰度问题,长春科技大学学报,2000,30(4):336-337
    [2]龚美菱,《相态分析与地质找矿》,北京:地质出版社:1994
    [3]全国矿产储量委员会《地质矿产实验质量管理暂行办法》储发(1988)第168
    [4]龚美菱,《化学物相分析研究论文集》,陕西:陕西科学技术出版社,1996
    [5]阮鸿兴,化学物相分析过程中有关溶剂选择的研究,云南冶金,1994,1,56-57
    [6]阮鸿兴,化学物相分析过程中有关溶剂选择的研究(续),云南冶金,1994,2,58-62
    [7]化学物相分析在矿床评价和元素赋存状态研究中的应用,江苏地质,1998,22(3):146
    [8]Deaton B C.,Balsam W L.J. Sediment.Petrol.,1991,64(4):628
    [9]Tessier A et al. , 1979 . Sequential Extraction Procedure for the Speciationof Particulate Trace Metals . Anal . Chem . , 51 : 884
    [10]第七届全国化学物相分析学术年会会议内容简介,岩矿测试,1997,16(3):233-234
    [11] 冶金分析情报网,冶金分析,(2),31,(1982)
    [12] 唐肖玖等,冶金分析,(2),9,1982
    [13] 龚美菱,冶金分析与测试(冶金分析分册),4(6),1,1984
    [14] 蒋月瑾,冶金分析(2),14,1982
    [15]凌进中,理化检验,20(4),53,1984
    [16] 孙沂,理化检验,19(2),1983
    [17] 柴良梅等,氧化铜粉中铜的化学物相分析,冶金分析,1994,14(5):26
    [18] H.F steger. Talanta,1976,23(2):81
    [19] 阮鸿兴,曹瑞云,毛炳乾等,黄铁矿型铜矿石中铜的物相分析,化学物相分析研究论文集,144-147
    [20] 阮鸿兴,曹瑞云,毛炳乾等,含自然铜铁帽型铜矿石中铜的物相分析,化学物相分析研究论文集,148-151
    [21]王跃震,阮鸿兴,矽卡岩型铜矿床中铜的物相分析,化学物相分析研究论文集, 152-154
    [22] 北京矿冶研究院,化学物相分析,冶金工业出版社,1979:102
    [23] 郭居缓等,某铜矿化学物相分析方法,冶金分析,1989,9(6):36
    [24] 朱月英,铜矿石中辉铜矿、斑铜矿和黄铜矿的分别测定,冶金分析,1982,(4):19
    [25] 李卫东等,某铜矿化学物相分析方法研究,冶金分析,1997,17(3):32
    [26] 张惠斌,铜矿石中自由氧化铜和结合氧化铜的测定,化学物相分析研究论文集,135-140
    [27] 吴三保,硫化铜矿中氧化铜测定的新方法,分析试验室,1992,11(3):28
    [28] 杨华根,四川拉拉山铜矿中辉铜矿、黄铁矿和黄铜矿的分离,分析试验室,1987,6(9):27
    [29] Holland J H. Adaptation in natural and artificial systems. The University of MichiganPress, 1975
    [30]Davis L. Handbook of genetic algorithms. New York, Van Noestrand Reinbold,1991
    [31]John H. Holland, SCIENTIFIC AMERICAN, July, 1992, 44-50
    [32]Goldberg D E. Computer-aided popeline operation using genetic algorithms and rule learming, Part I: Genetic algorithm in pipeline optimization. Engineering with Computer,1987, 3(1):35-45
    [33]Goldberg D E. Computer-aided popeline operation using genetic algorithms and rule learming, Part II: Rule learning control of a pipeline under normal and abnormal conditions.Engineering with Computer, 1987, 3(1):47-58
    [34]Matwin S, Szapiro T, Haigh K. Genetic algorithms approach to a negotiation Support system. IEEE Trans on System, Man and Cybernetics, 1991, 21(1): 102-114
    [35]Stoffa Paul,Sen Mrinal K. Nonlinear Multiparameter Optimization Using Genetic Algorithms:Inversion of Plane-wave Seismograms. Geophysics,1991 ,56 (11 ):1794-1810
    [36]Grefenstette John J. Optimization of Control Parameters for Genetic Algorithms. IEEE Trans Syst Man and Cybernetics,1986 ,16 (1 ):122-128
    [37]Lucasius C B,Kateman G. Chemom.Intell.Lab.sys.,1993,19:1
    [38]Hibbert D B. Chemom.Intell.sys,1993,19:277
    [39]Denning P J. American Scientist,1992,80:12-14
    [40] Bagley. J D. The Behavior of Adaptive Systems Which Employ Genetic and Correlation Algorithms, Dissertation Abstracts International. 1967.28(12)
    [41]Brindle. A. Genetic Algorithms for Function Optimization. Doctoral Dissertation, San Mateo, CA:Morgan Kaufmann.1993
    [42]Wright. A H. Genetic Algorithms for Real Parameter Optimization in Foundations of Genetic Algorithms. Rawlins, G.J.E. Ed. San Mateo. CA:Morgan kaufmann.1991,205-218
    [43]Michalewicz. Z et al. Genetic Algorithms and Optimal Control Problems. Proc.29th. IEEE conf Dicision and Control. 1990, 1664-1666
    [44]Michalewicz. Z et al. A modified Genetic algorithm for Optimal Control Problems.Computers Math. Applic. 1992, 23(12):83-94
    [45]Koza. J R. Hierarchical Genetic Algorithms Operation on Populations of Computer Programs. Proc. Of 11th Int’l Joint Conf. On Artificial Intelligence, 1989
    [46]Vose. M D. Generalizing the Notion of Schema in Genetic Algorithms. Artificial Intelligence, 1991,50:385-396
    [47]刘勇,康立山,陈毓屏,非数值并行算法—遗传算法,北京:科学出版社,1997,85,123
    [48]刘健勤,人工生命理论及其应用,北京:冶金工业出版社,1997,38
    [49]Goldberg. D E. Genetic Algorithms in Search. Optimization and Machine Learning.Reading. MA; Addison Wesley. 1989
    [50]Fitzpatrick J M. Proceeding of IEEE Southeast Conference 1987,460-464
    [51]Axelrod R. Genetic Algorithms and Simulated Annealing。London,1987,32-41
    [52]Denning P J. Genetic algorithms。American Scientists,1992,80:12-14
    [53]Kristinsson K.IEEE Trans Syst Man Cybern,1992,22:1033-1046
    [54]Goldberg D E. Genetic and evolutionary algorithms come of age. Comm ACM 1994; 37(3): 113~119
    [55]Grefenstette J J(Editor). Proceedings of the First International Conference on Genetic Algorithms, Law renceErlbaum Associates, Hillsdale, N J, 1985
    [56]俞汝勤,化学计量学导论,长沙:湖南教育出版社,1990
    [57]许禄,化学计量学方法,北京:科学出版社,1995
    [58]梁逸曾,俞汝勤,化学计量学在我国的发展,化学通报,1999(1)),14-19
    [59]柯以侃等,分析试验室,1988,7(8),5
    [60]王洪艳,王多禧,模糊聚类-因子分析法解析稀土配合物吸收峰的研究,高等学校化学学报,1995,16(8),1195
    [61]王洪艳,王多禧,树脂相-因子分析光度法同时测定金、钯的研究,冶金分析,1995,15(6),1 (96 年CA 摘引)
    [62] 王洪艳,稳健偏最小二乘光度法测定地质样品中贵金属的研究,分析化学,1996,24(10),1162 (97 年CA 摘引)
    [63]陈淑桂,偏最小二乘回归光度法测定轻稀土的研究,岩矿测试,1994 年,3(4),429
    [64]陈淑桂,阳离子交换树脂分离-偏最小二乘光度法测定地质样品中Au、Pt、Pd、Rh,分析化学,1996 年,24(9) ( 98 年SCI 载引)
    [65] 王英华, 模糊聚类偏最小二乘光度法同时测定锇和钌, 分析化学,1998,26(10),1317-123
    [66]王洪艳,王多禧,离子交换树脂-偏最小二乘回归法同时测定痕量金、铂、钯的研究,分析化学,1995,23(6),655
    [67]咸容禹,遗传分析光度法同时测定地质样品中十五种稀土元素长春地质学院硕士论文1996,12
    [68]杨兵、王洪艳等,遗传算法用于多组分同时测定,长春科技大学学报,29(2),1999,193-196
    [69] 杨兵、王洪艳,遗传-因子分析光度法用于地质样品中十五个稀土元素同时测定,分析实验室,31 (2),2002,209~210。
    [70]Tong-hua Li,Lucasius C B,Katema G. Anal.Chim.Acta,1992,268:123
    [71]李通化,张众杰,朱仲良等,用数值遗传算法计算配合物的稳定常数,高等学校化学学报,16(3),354, 1995
    [72]刘嘉、邓勃,遗传算法模拟计算Pd2+-FA-SO4 体系的化学形态分布,高等学校化学2-学报,1997,18(10),1597-1601
    [73]刘嘉、邓勃,铅和富里酸化学形态模拟计算方法的比较,分析化学,1997,25(5),543-547
    [74] 蔡煜东,分析化学中非线性多元函数拟合的遗传算法, 分析化学,1995,23(7):790 -792
    [75]Wienke D,Lucasius C B,Kateman G. Anal. Chim. Acta,1992 ,26 :21
    [76]Fogel D B. Biol. Cybern.,1988,60:139
    [77]张培新,张奇志,吴黎明,隋智通.金属学报,1995,31 (6 ) :B284
    [78] 李兵,蒋慰孙.华东理工大学学报,1 995,21 (3 ) :33 9
    [79]Hanagandi V,Ploehn H,Nikolaou M. Chem. Eng. Sci. ,1 996 ,51 (7) :1 0 71
    [80]Hartnett M K,Bos M,van der L inden W E,Diamond D. Anal. Chim. Acta,1995,3 1 6 :347
    [81]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In:Proc of International Conference on Genetic Algorithms and Their Applications. 1985, 93-100
    [82]Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design. StructuralOptimization, 1992, 5(4): 99-107
    [83] Fonseca C M and Fleming P J . Genetic algorithms for multiobjective optimization :Formulation , discussion and generalization. In Genetic Algorithms: Proc Fifth Int Conf ,CA :MorganKaufmann ,1993 ,416-423
    [84] Cheng F Y,Li Dan. Multiobjective Optimization Design with Pareto Genetic Algorithm.Journal of Structural Engineering,1997,123(9):1252-1261
    [85] Crossley W A,Cook A M,Fanjoy D W. Using the Two-Branch Tournament Genetic Algorithm for Multiobjective Design. AIAA Journal,1999,37(2 ):261-267
    [86] Shih C J,L ai T K. Fuzzy Weighting Optimization with Several Objective Functions in Structural Design. Computers & Structures,1994,52 (5):917-924
    [87]童彤等.遗传算法在透平叶栅多目标优化设计中的应用.中国电机工程学报,1999,19(6 )
    [88]缪希仁,张培铭.多目标动态优化高级遗传算法及其在智能电磁电器设计中的应用研究.电工技术学报, 1999, 14(4)
    [89] Brogan William L. Algorithm for Ranked Assignments with Applications to Multiobjectm Tracking. Journal of Guidance, 1989, 12 (3)
    [90]方红远,邓玉梅,董增川,多目标水资源系统运行决策优化的遗传算法,水利学报,2001,9:22-27
    [91]陈顺怀,陈永忠,冯恩德等,多目标最优化的遗传算法,武汉交通科技大学学报,1999,23(5):553-555
    [92]吴新余,马敏肖,遗传算法在多目标规划中的应用,南京邮电学院学报,1996,16(2):22-25
    [93] Ben Tal, Aharon, Characterization of pareto and lexicographic optimal solutions[A]. In:Multiple Criteria Decision Making Theory and Application (G. FandelandT. Gal, Eds. ).Lecture Notes in Economics and Mathematical Systems. Springer-Verlag. Berlin,1980,177:1-11
    [94] 朱学军,王安麟,张惠侨.用Pareto 遗传算法实现机械/结构系统的多目标优化设计[J].机械科学与技术,1 998,1 1 (增刊) :51-53
    [95] Varad, Rajan. Scalar Correlation Algorithm: Application and Results. Second National Symposium on Sensor Fusion, 1989
    [96] 马岚等,多目标遗传算法及其在自动控制系统设计中的应用,系统工程与电子技术,1997,9:71-76
    [97]朱学军,陈彤,薛量等,多个体参与交叉的Pareto 多目标遗传算法,电子学报,2001,29(1):106-109
    [99]朱学军,王安麟,张惠侨,Pareto 多目标遗传算法及其在机械健壮设计中的应用,机械设计与研究,2000,1,10-12
    [100]王广雄,何雨奋,多目标遗传算法和伺服设计中的寻优问题,电机与控制学报, 1997,1(3):139-142
    [101]岑仲迪, 基于遗传算法的多目标规划的求解, 浙江万里学院学报,2001,14(2): 1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700