计算机系统级热管理方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会信息化进程的加快,计算机技术的发展可谓一日千里。为了获得更快的计算速度和更大的存储容量,芯片的制作工艺不断改进,封装密度不断提高。尽管新技术对单个微器件功耗的降低起到了一定作用,但其已被集成度日益增加所导致的功耗上升完全抵消。因此,热障问题仍制约着当今计算机技术的发展。近年来,为弥补芯片级散热方案的不足,系统级热管理的思想逐步引起高度重视,由此引申出诸多问题亟待解决。本文以获取先进的热管理方案为目标,对应用于桌面计算机、笔记本电脑以及计算机集群的几种新型系统级热管理方法分别进行了理论或实验研究(或两者兼有),在如下几方面取得进展:
     1.高性能桌面计算机独立热流路径热管理方法的实验研究
     通过对传统的单一热流路径系统级风冷热管理方法进行数值模拟,分析了该方法在冷却能力和可用性(主要针对噪音)方面的局限。在实验组件的设计中,充分考虑了先前研究中存在的不足,完成了新方案的样机测试,对过程中出现的新问题提出了解决方案。最后通过与传统方案的对比,评估了新方案的先进性。
     2.笔记本电脑发热元件分离放置的数值模拟
     分别对笔记本电脑传统的系统级风冷方案和由本实验室前期提出的发热元件分离放置的方案进行了数值模拟。根据模拟的结果,具体分析了后者优于前者的原因所在,并提出了一些实用化解决方案,初步证明了该方案的可行性。
     3.嵌入机柜式热管理方案的可行性理论分析
     采用基于exergy损失的评估模型对作者专利中提出的嵌入机柜式系统级热管理方案进行了分析,重点研究了新方案在能量利用率方面的优越性。研究中,首先建立了部分数据中心的简化数值模型并进行了模拟,随后利用模拟结果进一步计算传统方案与新型方案各部分的exergy损失,最后定量分析了新方案的节能潜力,说明了其实用价值。
     4.嵌入机柜式热管理方案的实验研究
     组建了两种嵌入机柜式热管理方案的实验样机并采用模拟热源进行了实验测试。对实验过程中出现的新问题进行了理论分析,提出了解决和优化建议。分析了模型与样机间的差别,采用理论分析和数值模拟的方法对实验结果进行了修正,证明了该方案的可行性和实用性。
With progress of modern informationization, computer technology is witnessing an ever rapid development. In order to achieve a faster computing speed and larger storage capacity, both the chip manufacturing process and packaging density keeps improving. Although some emerging technologies did play a role in reducing the power consumption of a single micro-device, it often encounters trouble caused by the continuously increased power consumption due to dense integration in large-scale integrated circuits. Therefore, the latest computer technology is still restricted by the serious thermal barrier. In recent years, deviating from focusing on chip-level thermal management alone, system-level solution received an ever higher attention which raised a lot of problems for solving. Aiming to establish new techniques for the computer industry, theoretical or (and) experimental researches on several system-level thermal management methods were performed, which could work well in desktop computers, notebook computers and computer cluster, respectively. Results are as follows:
     1. Experimental study on thermal management method with independent heat flow path used in high-performance desktop computer
     Through the numerical simulation on traditional system-level air-cooled thermal management method with single heat flow path, the limitations on cooling capacity and availability (mainly noise) of such method were analyzed. During the process of components design, the flaws in previous research were fully discussed. Experiments on an actual computer were accomplished, and solutions for the raised problems were proposed. Advantages of the new method over traditional ones were also analyzed.
     2. Numerical simulation on notebook computer with separated heating elements
     The traditional system-level air-cooled method and method by separating heating elements from the main module proposed before by the present lab were simulated. According to simulation results, the reasons why the latter one was better than the former were discussed in detail, some solutions toward practical application were proposed as well, which provided the initial evidence of the feasibility of the new method.
     3. Theoretical analysis on the feasibility of rack embedded thermal management method
     Through introducing the exergy loss evaluation model, the rack embedded system-level thermal management method proposed by the author in the patent was analyzed, focusing on its superiority in energy utilization. A simplified numerical model for a partial data center was fabricated and simulated. The exergy losses in both the traditional and new methods were calculated based on the simulation results. Finally, the energy saving potential was quantificationally evaluated to illustrate the practical value of the new method.
     4. Experimental study on rack embedded thermal management method
     Two experimental prototypes of rack embedded thermal management method with simulated heat source were fabricated and tested. Some new problems emerged in the experiment were analyzed theoretically. Solutions and optimization approaches for these problems were proposed. Amendments on experimental results were conducted using theoretical analysis and numerical simulation because of the differences between prototype and actual computer. The results demonstrated the feasibility and practicality of the new method.
引文
[1] R.C. Chu, R.E. Simons, M.J. Ellsworth, R.R. Schmidt, V. Cozzolino. Review of cooling technologies for computer products. IEEE Trans. on Device and Materials Reliability, Vol. 4, No. 4, pp. 568-585, 2004.
    [2] G. P. Xu. Thermal modeling of multi-core processors. The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics System, ITHERM, pp. 96-100, 2006.
    [3]李腾,刘静.芯片冷却技术的最新研究进展及其评价.制冷学报, Vol.25, No.3, pp. 22-32, 2004.
    [4]李腾,刘静.芯片冷却技术中的微/纳米材料与结构的研究进展.微纳电子技术, No.8, pp.21-27, 2004.
    [5]杨士尧.系统科学导论.北京:农业出版社, 1986.
    [6]陈忠民.探索液浸式散热打造超静型电脑.电脑时空, No.12, pp.143-145, 2005.
    [7] Y. G. Lv, Y. X. Zhou, J. Liu. Experimental validation of a conceptual vapor-based air-conditioning system for the reduction of chip temperature through environmental cooling in a computer closet. Journal of Basic Science and Engineering, Vol. 15, No.4, pp. 531-546, 2007.
    [8]田民波.电子封装工程.北京:清华大学出版社, 2003.
    [9] http://www.beareyes.com.cn/2/lib/200210/10/20021010197.htm.
    [10] http://china.nikkeibp.co.jp/china/news/digi/200210/digi200210240111.html.
    [11] http://www.beareyes.com.cn/2/lib/200307/01/20030701122.htm.
    [12] R. Mongia, K. Masahiro, E. DiStefano, J. Barry, W. B. Chen, M. Izenson, F. Possamai, A.Zimmermann, M. Mochizuki. Small scale refrigeration system forelectronics cooling within a notebook computer. The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics System, ITHERM, pp. 751-758, 2006.
    [13] http://china.nikkeibp.co.jp/china/news/news/digi200709270125.html.
    [14] M. Mochizuki, Y. Saito, K. Goto, T. Nguyen, P. Ho, M. Malcolm, M. P. Morando. Hinged heat pipes for cooling notebook PCs. Proc. Semi-Therm, 13th Annu. IEEE, Semiconductor Thermal Measurement Management Symp., pp. 64-72, Jan., 1997.
    [15] T. Nguyen, M. Mochizuki, K. Mashiko, Y. Saito, I. Sauciuc, R. Boggs. Advanced cooling system using miniature heat in mobile PC. IEEE Transactions on Components and Technology, Vol. 23, No.1, pp. 86-90, March 2000.
    [16] http://www.it.com.cn/f/special/0511/21/201056.htm.
    [17] http://www.pconline.com.cn/notebook/divide/0505/617426_1.html
    [18]桂林,刘静.将电脑的发热元器件分离放置的组合式笔记本电脑.中国发明专利200410029459.0, 2005-09-21.
    [19]桂林,刘静,李腾.基于网络的多用户笔记本电脑系统.中国发明专利200410008991.4, 2005-09-28.
    [20] A. Minichiello, C. Belady. Thermal design methodolog for electronic system. The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics System, ITHERM, pp. 696-704, 2002.
    [21] The SC818 chassis series user guide. Super Micro Computer Inc., March 2006.
    [22] D. M. Desai, T. M. Bradicich, D. Champion, W. G. Holland, B. M. Kreuz. BladeCenter system overview. IBM J. Res. & Dev., Vol. 49, No. 6, pp. 809-821, November 2005.
    [23] X. P. Wu, M. Mochizuki, T. Nguyen, Y. Saito, V. Wuttijumnong, H. Ghisoiu, V. Kumthonkittikul, P. Sukkasaem, P. Nimitkiatklai, F. Kiyooka. Low profile-high performance vapor chamber heat sinks for cooling high-density blade servers. 23rd IEEE SEMI-THERM Symposium, pp. 174-178, 2007.
    [24] D. Watts, R. Davis, l. Kroutov. IBM BladeCenter products and technology. IBM Redbooks, August 2007.
    [25] M. J. Crippen, R. K. Alo, D. Champion, R. M. Clemo, C. M. Grosser, N. J. Gruendler, M. S. Mansuria, J. A. Matteson, M. S. Miller, B. A. Trumbo. BladeCenter packaging, power, and cooling. IBM J. Res. & Dev., Vol. 49, No. 6, pp. 887-904, 2005.
    [26] R. R. Schmidt, B. D. Notohardjono. High-end server low-temperature cooling. IBM J. Res. & Dev., Vol. 46, No. 6, pp. 739-751, 2002.
    [27] V. W. Antonetti, R. C. Chu, J. H. Seely. Thermal design for IBM system/360 model 91. The 8th International Electronic Circuit Packaging Symposium, San Francisco, CA, 1967.
    [28] R. Schmidt. Liquid cooling is back. Electronics Cooling, Vol.11, No.3, pp. 34-38, 2005.
    [29] A. Fujisaki, M. Suzuki, H. Yamamoto. Packaging technology for high performance CMOS server Fujitsu GS8900, IEEE Transactions on Advanced Packaging, Vol. 24, No. 4, pp. 464-469, 2001.
    [30] P. Singh, S. J. Ahladas, W. D. Becker, F. E. Bosco, J. P. Corrado, G. F. Goth, S. Iruvanti, M. A. Nobile, B. D. Notohardjono, J. H. Quick, E. J. Seminaro, K. M. Soohoo, C. Wu. A power, packaging, and cooling overview of the IBM eServer z900. IBM J. Res. & Dev., Vol. 46, No. 6, pp. 711-738, 2002.
    [31] G. F. Goth, D. J. Kearney, U. Meyer, D. W. Porter. Hybrid cooling with cycle steering in the IBM eServer z990. IBM J. Res. & Dev., Vol. 48, No. 3 / 4, pp. 409-423, 2004.
    [32] J. S. Kolodzey. Cray-1 computer technology. IEEE Trans. Compon., Hybrids, Manufact. Technol., Vol. CHMT-4, No.2, pp. 181-186, 1981.
    [33] R. D. Danielson. Cooling a superfast computer. Electronic Packaging & Production, pp. 44-45, 1988.
    [34] J. Zuo, R. Hoover, F. Phillips. Advanced thermal architecture for cooling of highpower electronics. IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 4, pp. 629-634, 2001.
    [35] H. Villa. Rittal liquid cooling series. Rittal GmbH & Co. KG, White Paper 04.
    [36] R. R. Schmidt, E. E. Cruz, M. K. Iyengar. Challenges of data center thermal management. IBM J. Res. & Dev., Vol. 49, No. 4/5, pp. 709-723, 2005.
    [37] C. Patel, C. Bash, C. Belady, L. Stahl, D. Sullivan, Computational fluid dynamics modeling of high compute density data centers to assure system inlet air specifications. Proceedings of IPACK '01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition, Vol. 2, Paper IPACK2001-15662, pp. 821-829, 2001.
    [38] R. E. Simons. Using a simple air recirulation model to explore computer rack cooling. Electronics Cooling, Vol. 13, No. 1, pp. 8-11, 2007.
    [39] R. Schmidt, R. Chu, M. Ellsworth, M. Iyengar, D. Porter, V. Kamath, B. Lehman. Maintaining datacom rack inlet air temperatures with water cooled heat exchanger. Proceedings of IPACK2005/ASME InterPACK '05, Vol. 2, Paper IPACK2005-73468, pp. 663-673, 2005.
    [40] IBM Systems and Technology Group. Keeping your data center cool: there is another way. IBM Corporation, March 2005.
    [41] Friedhelm LOH Group. Rittal liquid cooling package standard. Rittal GmbH & Co. KG, July 2006.
    [42] P. Coteus, H. R. Bickford, T. M. Cipolla, P. G. Crumley, A. Gara, S. A. Hall, G. V. Kopcsay, A. P. Lanzetta, L. S. Mok, R. Rand, R. Swetz, T. Takken, P. L. Rocca, C. Marroquin, P. R. Germann, M. J. Jeanson. Packaging the Blue Gene/L supercomputer. IBM J. Res. & Dev., Vol. 49, No. 2/3 pp. 213-248, 2005.
    [43] A. I. Yatskov. Red Storm/XT supercomputer cooling system design and optimzation. 23rd IEEE SEMI-THERM Symposium, pp. 30-36, 2007.
    [44]张旭.超级计算机热设计.电子机械工程, Vol.19, No.2, pp.9-14, 2003.
    [45]陈旭,李元山,毕人良.巨型计算机热设计技术现状及趋势.电子机械工程,Vol.19, No.1, pp.13-17, 2003.
    [46] R. E. Simons. Estimating the effect of intercoolers for computer rack cooling. Electronics Cooling, Vol. 13, No. 2, pp.8-13, 2007.
    [47] S. R. Laplante, N. Aubry, L. Rosa, Patrick, B. Aboumrad, D. Porter, C. Cavanaugh, J. Johnston. Liquid cooling of a high-density computer cluster. Electronics Cooling, Vol. 12, No. 4, pp. 12-19, 2006.
    [48] R. Schmidt. Hot spots in data centers. Electronics Cooling, Vol. 9, No. 3, pp. 16-23, 2003.
    [49]张栋,付桂翠.电子封装的简化热模型研究.电子器件, Vol.29, No.3, pp.672-675, 2006.
    [50]陶文铨,杨世铭.传热学.北京:高等教育出版社, 1998.
    [51]景思睿,张鸣远.流体力学.西安:西安交通大学出版社, 2001.
    [52] [美] D.S.斯坦伯格(著),傅军(译).电子设备冷却技术.北京:航空工业出版社, 1989.
    [53]谢德仁.电子设备热设计.南京:东南大学出版社, 1989.
    [54] [美] A. D.克劳斯, [美] A.巴科恩(著),赵惇殳,秦荻辉,王世萍(译).电子设备的热控制与分析.北京:国防工业出版社, 1992.
    [1] G. N. Ellison. Fan cooled enclosure analysis using a first order method. Electronics Cooling, Vol. 1, No. 2, pp. 16-19, 1995.
    [2] M. Ishizuka, S. Hayama, H. Iwasaki. Application of a semi-empirical approach to the thermal design of electronic equopment. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Vol. 1, pp. 23-26, 2000.
    [3] S. S. Kang. Application of flow network modeling and CFD to computer system design. The Seventh Intersociety Conference on Thermal andThermomechanical Phenomena in Electronic Systems, Vol. 1, pp. 82-89, 2000.
    [4] J. J. Yeh, B. E. Short, Jr.. Design of a coldplate using flow network modeling (FNM). Sixteenth IEEE SEMI-THERM Symposium, pp. 80-85, 2000.
    [5] A. Minichiello. Flow network modeling: a case study in expedient system prototyping. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Vol. 1, pp. 70-77, 2000.
    [6] T. Kowalski, A. Radmehr. Thermal analysis of an electronics enclosure: coupling flow network modeling (FNM) and computational fluid dynamics (CFD). Sixteenth IEEE SEMI-THERM Symposium, pp. 60-67, 2000.
    [7]许敏,张平. FNM结合CFD在电子设备热设计中的应用.计算机工程与科学, Vol.30, No.11, pp.134-136, 2008.
    [8] C. Belady, K. M. Kelkar, S. V. Patankar. Improving productivity in electronic packaging with flow network modeling. Electronics Cooling, Vol. 5, No. 1, pp. 15-17, 1999.
    [9] R. D. Blevins. Fluid Dynamics Handbook. Krieger Publishing Company, 1992.
    [10] I. E. Idelchik. Handbook of Hydraulic Resistance. Florida: CRC Press, 1994.
    [11] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. New York: Hemisphere, 1980.(中文译本:张政译,蒋章焰校.传热与流体流动的数值计算.北京:科学出版社, 1989.)
    [12]陶文铨.数值传热学(第2版).西安:西安交通大学出版社, 2001.
    [13] H. K. Versteeg, W. Malalasekra. An Introduction to Computational Fluid Dynamics-the Finite Volume Method. New York: Longman Scientific and Technical, 1995.
    [14] H. Schlichting. Boundary Layer Theory. 8th ed. New York: McGraw-Hill, 1979.
    [15] W. M. Rosenow, J. P. Hartnett, E. N. Ganic. Handbook of Heat Transfer Fundamentals. 2th ed. New York: McGraw-Hill, 1985.
    [16]陶文铨.计算传热学的近代进展.北京:科学出版社, 2000.
    [17]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社, 2004.
    [18]姚征,陈康民. CFD通用软件综述.上海理工大学学报, Vol. 24, No. 2, pp. 137-144, 2002.
    [19] Flotherm version 7.2 (trial). Flomerics Ltd., 81 Bridge Road, Hampton Court, Surrey, KT8 9HH, England, 2008.
    [20] FlothermTM Introduction Manual. Flomerics Ltd., 81 Bridge Road, Hampton Court, Surrey, KT8 9HH, England, 2008.
    [21] A. J. Shah. Exergy-Based Analysis of Computer Thermal Management Systems. Ph.D. Thesis, University of California, Berkeley, 2005.
    [22]沈维道,蒋智敏,童钧耕.工程热力学(第三版).北京:高等教育出版社, 2001.
    [23]赵冠春,钱立伦. Exergy分析及其应用.北京:高等教育出版社, 1984.
    [1]曙光天潮PHPC100个人高性能计算机. (http://www.dawning.com.cn/Product/Show.aspx?id=141&name=PHPC100)
    [2] NVIDIA Tesla个人超级计算机.(http://cn.nvidia.com/object/personal_supercomputing_cn.html)
    [3] http://www.intel.com/cd/products/services/apac/zho/server/processors/344456. htm
    [4] Intel Corportion. Intel Core i7 processor extreme edition and Intel Core i7 processor. Datasheet, Vol.1, document# 320834-001, 2008.
    [5] http://publish.it168.com/2009/0216/20090216060101.shtml
    [6] http://www.expreview.com/cebit2009/in/2009-03-05/1236221199d11745.html
    [7] Advanced Micro Devices, Inc. Flotherm thermal model of the socket AM2 processor in the 90-nm and 65-nm process user's guide. 2006.
    [8] Advanced Micro Devices, Inc. AMD AthlonTM 64 and AMD OpteronTMprocessors thermal design guide. 2003.
    [9] http://www.delta.com.tw/product/cp/dcfans/dcfans_product.asp?pcid=1&ptid=1
    [10] J. W. Peeples. Vapor compression cooling for high performance applications. Electronics Cooling, Vol. 7, No. 3, pp. 12-19, 2001.
    [11] P. Singh, S. J. Ahladas, W. D. Becker, F. E. Bosco, J. P. Corrado, G. F. Goth, S. Iruvanti, M. A. Nobile, B. D. Notohardjono, J. H. Quick, E. J. Seminaro, K. M. Soohoo, C. Wu. A Power, packaging, and cooling overview of the IBM eServer z900. IBM J. Res. & Dev., Vol. 45, No. 6, pp. 711-738, 2002.
    [12] R. R. Schmidt, B. D. Notohardjono. High-end server low-temperature cooling. IBM J. Res. & Dev., Vol. 45, No. 6, pp. 739-751, 2002.
    [13] G. F. Goth, D. J. Kearney, U. Meyer, D. W. Porter. Hybrid cooling with cycle steering in the IBM eServer z990. IBM J. Res. & Dev., Vol. 48, No. 3/4, pp. 409-423, 2004.
    [14] Y. G. Lv, Y. X. Zhou, J. Liu. Experimental validation of a conceptual vapor-based air-conditioning system for the reduction of chip temperature through environmental cooling in a computer closet. Journal of Basic Science and Engineering, Vol. 15, No. 4, pp. 531-546, 2007.
    [15] W. Rao, Y. X. Zhou, J. Liu, Z. S. Deng, K. Q. Ma, S. H. Xiang. Vapor-compression-refrigerator enabled thermal management of high performance computer. International Congress of Refrigeration, Beijing, China, 2007.
    [1]桂林,刘静.将电脑的发热元器件分离放置的组合式笔记本电脑.中国发明专利200410029459.0, 2005-09-21.
    [2] http://www.expreview.com/cebit2009/in/2009-03-05/1236221199d11745.html
    [3] FlothermTM Introduction Manual. Flomerics Ltd., 81 Bridge Road, HamptonCourt, Surrey, KT8 9HH, England, 2008.
    [4] FlothermTM Introductory Course. Flomerics Ltd., 81 Bridge Road, Hampton Court, Surrey, KT8 9HH, England, 2008.
    [5] FlothermTM Advanced User Course. Flomerics Ltd., 81 Bridge Road, Hampton Court, Surrey, KT8 9HH, England, 2008.
    [6] T. Kordyban. Estimating the influence of PCB and component thermal conductivity on component temperatures in natural convection. International FLOTHERM Users Conference, 1994.
    [7] T. Kordyban. Some tricks of the trade of a FLOTHERM user. International FLOTHERM Users Conference, 1997.
    [8] Intel Corportion. Intel? CoreTM 2 mobile processor for Intel? Centrino? duo mobile processor technology. Datasheet, document# 314078-004, 2007.
    [9] H. Y. Zhang, D. Pinjala, O. K. Navas, M. K. Iyer, P. K. Chan, X. P. Liu, H. Hayashi, J. B. Han. Development of thermal solutions for high performance laptop computers. The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics System, ITHERM, pp. 433-440, 2002.
    [10]李伟荣,谢英俊.热仿真技术在笔记本电脑测试中的应用探讨.电子机械工程, Vol. 20, No. 5, pp. 5-7, 2004.
    [11]李波,李科群,俞丹海. Flotherm软件在电子设备热设计中的应用.电子机械工程, Vol. 24, No. 3, pp. 11-13, 2008.
    [12]田民波.电子封装工程.北京:清华大学出版社, 2003.
    [1]计世资讯(CCW Research). 2007-2008年中国第三方数据中心市场研究年度报告.(http://www.ccwresearch.com.cn/store/report_content.asp?columnId=1524&view=)
    [2]中国互联网络信息中心(CNNIC).第22次中国互联网络发展状况统计报告(http://www.cnnic.cn/index/0E/00/11/index.htm?1953961637=4003144643)
    [3] ASHRAE. Datacom equipment power trends and cooling applications. Special Publication, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, 2005.
    [4] C. D. Patel, C. E. Bash, R. Sharma, A. Beitelmal, C. G. Malone. Smart chip, system and data center enabled flexible cooling resources. Proceedings of the IEEE Semiconductor Thermal Management and Measurement Symposium (SEMITHERM), San Jose, CA, pp. 78-85, 2005.
    [5] R. R. Schmidt, E. E. Cruz, M. K. Iyengar. Challenges of data center thermal management. IBM J. Res. & Dev., Vol. 49, No. 4/5, pp. 709-723 , 2005.
    [6] J. Spitaels. Dynamic Power Variations in Data Centers and Network Rooms. APC White Paper #43, Revision 2, 2005.
    [7] D. Garday, D. Costello. Air-cooled high-performance data centers: case studies and best methods. Intel Corporation White Paper, 2006.
    [8] DataCool brochure. DataCool the new thinking in environmental control, the power to cool the most extreme environments. Emerson Energy Systems, Richardson, Texas 75085.
    [9] C. D. Patel, C. E. Bash, C. Belady. Computational fluid dynamics modeling of high compute density data centers to assure system inlet air specifications. Proceedings of IPACK01-International Electronics Packaging Technical Conference and Exhibition, Kauai, Hawaii, Pater IPACK2001-15622, 2001.
    [10] P. K. Pharma, C. E. Bash, C. D. Patel, R. J. Friedrich, J. S. Chase. Balance of power: dynamic thermal management for internet data centers. Hewlett Packard Laboratories, Palo Alto, CA, Technical Report HPL-2003-5, 2003.
    [11] C. E. Bash, C. D. Patel, P. K. Pharma. Dymamic thermal management of air cooled data centers. The Tenth Intersociety Conference on Thermal andThermomechanical Phenomena in Electronics System, ITHERM, San Diego, CA, pp. 445-452, 2006.
    [12] C. D. Patel, P. K. Pharma, C. E. Bash, A. Beitelmal, R. Friedrich. Smart cooling of data centers. Proceedings of IPACK03-International Electronics Packaging Technical Conference and Exhibition, Maui, Hawaii, Pater IPACK2003-35059, 2003.
    [13] IBM Systems and Technology Group. Keeping your data center cool: there is another way. IBM Corporation, 2005.
    [14] Friedhelm LOH Group. Rittal liquid cooling package standard. Rittal GmbH & Co. KG, July 2006.
    [15]刘安全.一种节能空调设备及制冷方法.中国发明专利200710121943.X, 2008-02-06.
    [16]陈学勤.应用自然冷却技术的冷水机组.中国发明专利200710175584.6, 2008-02-20.
    [17]陈云水,朱洪波.一种机房空调机组.中国发明专利200710175601.6, 2008-02-20.
    [18] J. Clidaras, W. D. Stiver, W. Hamburgen. Water-based data center. United States Patent 20080209234, 2008-08-28.
    [19] M. Norota, H. Hayama, M. Enai, M Kishita. Research on efficiency of air conditioning system for data center. Proceedings of the IEICE/IEEE International Telecommunications Energy Conference (INTELEC), Yokohama, Japan, pp. 147-151, 2003.
    [20] R. K. Sharma, C. E. Bash, C. D. Patel. Dimensionless parameters for evaluation of thermal design and performance of large scale data centers. Proceedings of the American Institute of Aeronautics and Astronautics (AIAA), St. Louis, MO, Paper AIAA-2002-3091, 2002.
    [21] C. E. Bash, C. D. Patel, R. K. Sharma. Efficient thermal management of data centers-immediate and long-term research needs. Intl. J. Heat, Ventilating,Air-Conditioning and Refrigeration Research, Vol. 9, No. 2, pp. 137-152, 2003.
    [22] A. J. Shah, V. P. Carey, C. E. Bash, C. D. Patel. Exergy Analysis of Data Center Thermal Management Systems. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Washington, DC, Paper IMECE2003-42527, 2003.
    [23]赵冠春,钱立伦. Exergy分析及其应用.北京:高等教育出版社, 1984.
    [24] A. J. Shah. Exergy-based analysis of computer thermal management systems. Ph.D. Thesis, University of California, Berkeley, 2005.
    [25] C. D. Patel. A vision of energy aware computing from chips to data centers. The International Symposium on Micro-Mechanical Engineering, Paper ISMME2003-K15, 2003.
    [26] A. J. Shah, V. P. Carey, C. E. Bash, C. D. Patel. Development and experimental validation of an exergy-based computational tool for data center thermal management. Proceedings of HT-FED04-International Heat Transfer/Fluids Engineering Summer Conference, Charlotte, NC, Paper HT-FED2004-56528, 2004.
    [27] S. McAllister, V. P. Carey, A. Shah, C. Bash, C. Patel. Strategies for effective use of exergy-based modeling of data center thermal management systems. Microelectronics Journal, Vol. 39, No. 7, pp. 1023-1029, 2008.
    [28] R. Schmidt. Liquid cooling is back. Electronics Cooling, Vol. 11, No. 3, pp. 34-38, 2005.
    [1] A. J. Shah. Exergy-Based Analysis of Computer Thermal Management Systems. Ph.D. Thesis, University of California, Berkeley, 2005.
    [2] http://www.intel.com/cn/business/index.htm?iid=gg_work-cn+home_business
    [3] http://www.amd.com.cn/CHCN/index.asp.htm
    [4] http://www.avc.com.tw/china/products/intel%20cooler.htm
    [5]吴业正.小型制冷装置设计指导.北京:机械工业出版社, 1998.
    [6] Advanced Micro Devices, Inc.. AMD AthlonTM 64 and AMD OpteronTM processors thermal design guide. 2003, pp. 37-39.
    [7] G. N. Ellison. Maximum thermal spreading resistance for rectangular sources and plates with nonunity aspect ratios. IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 2, pp. 439 -454, 2003.
    [8] S. Lee, S. Song, V. Au, K. P. Moran. Constriction/spreading resistance model for electronic packaging. Proceedings of ASME/JSME Thermal Engineering Conference, Vol. 4, 1995.
    [9] http://www.intel.com/design/Xeon/tmcmodels/5000Sequence_Package_ Thermal.htm
    [10] http://www.avc.com.tw/china/products/DC-FAN-telecom.htm
    [11]彦启森,石文星,田长青.空气调节用制冷技术(第三版).北京:中国建筑工业出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700