12kV开关柜内部燃弧仿真及柜体强度优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
12kV高压开关柜广泛应用于城市供电和配电系统中,但由于设计、制造、安装和运行维护等方面存在的问题,事故率比较高。导致故障的原因也有很多,其中内部电弧故障是一种频发性的、灾难性的严重的故障,将会给设备及人身安全带来危害。对开关柜的内部燃弧进行试验及仿真分析,全面掌握内部电弧故障的发展过程,是预防和控制内部燃弧故障的有效途径。
     本文首先简要介绍了开关柜内部燃弧的基本理论,如燃弧的故障特性、作用机理等,从而确定了开关柜内部燃弧仿真计算的重要意义。并且,对比分析了开关柜的柜体结构,选择了KYN28-12(Z)作为本文所要进行计算的柜型。在试验站对此开关柜进行了内部燃弧试验,试验合格。
     其次,对开关柜内部燃弧进行仿真计算。在仿真的过程中,采用了GAMBIT前处理器建立三维的计算模型,运用FLUENT软件进行求解。在求解的过程中,分别改变气室泄压盖的长度、深度及电弧加载位置等参数进行了数值仿真。仿真结果表明:气室泄压盖的长度和深度对压力变化过程带来的影响比电弧的加载位置带来的影响大些。
     再次,在对开关柜内部燃弧进行仿真计算的基础上,运用第一强度理论对开关柜的柜体强度进行了校核计算。校核的结果是开关柜的柜体满足柜体强度的要求,能够承受开关柜内部燃弧时带来的巨大冲击力。
     最后,针对燃弧仿真过程中柜门局部受到很大冲击力的情况,对开关柜的柜门进行强度优化。改变开关柜柜门的形状,比较分析各种不同形状柜门在燃弧过程中受到的冲击力,使柜体受到的冲击力最小。将优化前后结果进行对比分析,得出优化结论。为开关柜的设计提供了理论基础。
12kV high voltage switchgear are widely used in urban power supply and distribution system, but due to the problem of design, manufacture, installation, operation and maintenance and other aspects, it has a relatively high accident rate, and there are lots of reasons leading to faults. The internal arcing fault is a frequent and a catastrophic fault, it will brought hazards to the equipment and personal safety. For the switchgear, have an internal arcing experiment and simulation analysis, completely grasp the development of the internal arcing fault is an effective way to prevent and control the internal arcing faults.
     In this research, the basic theory of the internal arcing in switchgear is briefly introduced, such as arc fault characteristics, mechanism and so on, which determine the significance of the internal arcing simulation calculation in the switchgear. The cabinet structure of the switchgear is analyzed comparatively, and KYN28-12 (Z) switchgear is selected as calculated cabinet type in this research. The internal arcing experiment in switchgear is carried out at the experiment station, and it passed.
     Secondly, internal arcing in switchgear is simulated. In the simulation process, using the GAMBIT pre-processor to establish three-dimensional computational model, and the model is solved by FLUENT software. In the solution process, the parameters are changed respectively, such as the length and depth of pressure relief cover, and the loading position of arc of the air chamber. Simulation results shows that the length and depth of air chamber affect pressure change process bigger than the arc loading position.
     And then, based on the simulation calculation of internal arcing in the switchgear, cabinet strength of the switchgear was checked by using the first strength theory. The results shows that the switchgear's cabinet can meet the requirements of the cabinet strength, and it can withstand the tremendous impact of internal arcing.
     Finally, in the simulation process local position of the door suffer impact severely, switchgear s door strength should be optimized. the shape of the switchgear's cabinet door is changed, in the arc process the doors with different shapes that suffer the impact by internal arcing are analyzed respectively, and make the impact force to the cabinet is smallest. The results before and after the optimization are comparative analyzed, the optimal conclusion. The research provides a theoretical basis for the switchgear design.
引文
[1]蓝会立,张认成.开关柜内部故障电弧探测法的研究现状及趋势.高电压技术,2008,34(4):496-499.
    [2]吴怀权,王韵,张青等.我国高压开关行业现状.中国高低压电器特刊,2006(8):21-24.
    [3]彭晓,黄绍平.国内外高压开关柜的技术发展.大众用电,2003(4):16-17.
    [4]张平.高压开关柜的发展与现状分析.中国科技信息,2007(24):89-92.
    [5]宁慧英.高压开关柜中三维电场的计算与分析:(硕十学位论文).沈阳:沈阳工业大学,2007.
    [6]G.Friberg, G.J.Pietsch. Calculation of pressure rise due to arcing faults. IEEE Transactions on Power Delivery,1999,4(14):365-370.
    [7]Lutz F, Pietsch G. Investigation on the pressure in the surroundings of a high current fault arc. Proc. of the 6th Int. Conf. on Gas Discharges and Their Applications, Part 1, Edingburgh,1980: 270-273.
    [8]Dasbach A, Pietsch G J. Calculation of pressure waves in substation buildings due to arcing faults. IEEE Transactions on Power Delivery,1990(5):1760-1765.
    [9]Marcgi M, Perdoncin F. Internal arc-proof switchgear:Arc modeling and active protection. CIRED'97, IEE Conference Publication No.438,1997:1.6.1-1.6.5.
    [10]Kurata T, Himi H, et al. A new concept 12kV and 24 kV distribution switchgear. Trends in Distribution Switchgear, IEE Conference Publication No.459,1998:22-27.
    [11]Friberg G, Pietsch G J, et al. On the description of pressure rise in the surroundings of high current arcs in metal-enclosed compartments with pressure relief. The 11th International Conference on Gas Discharges and Their Applications in Tokyo,1995:18-21.
    [12]Drescher G, Spack H, et al. Controlled pressure stress on switchgear rooms during internal arc faults. Trends in Distribution Switchgear, IEE Conference Publication No.459,1998:62-67.
    [13]黄锐,胡毅亭,马炳烈等.开关柜内部电弧故障产生力和热的计算模型.爆炸与冲击,2000,20(2):125-130.
    [14]蔡彬,陈德桂.中压开关柜中内部电弧故障的计算方法和防护措施.高压电器.2003,39(1):8-11.
    [15]Cai bin, Chen Degui, Li Zhipeng. Simulation and Experiments on Internal Arcing Faults in MV Metal-clad Switchgear. TRANSACTIONS OF CHINA ELETROTECH -NICAL SOCIETY,2004, 3(3):82-87.
    [16]李朝顺.开关柜内燃弧时等效强度校验计算.东北电力技术,2007(2):27-29.
    [17]王利,李剑辉.中压金属封闭开关设备内部故障电弧的预防和排除,电气制造,2007(3):76-79.
    [18]张晓芸.KYN28A型开关柜内部故障的电弧结构设计.机械研究与应用,2009:134-136.
    [19]Nirmal DEB, Patrick Bailly, Thierry Tricot抗内部电弧故障的开关设计.第四届输配电技术国际会议,长沙,2003:124-128.
    [20]熊泰昌.内部电弧故障试验情况下中压开关柜强度计算.高压电器,2002,38(4):42-44.
    [21]熊泰昌.高压开关柜防护内部电弧故障的结构强度计算与试验研究.上海电器技术,2002(3):124-128.
    [22]蔡彬,陈德桂,吴伟光等.开关柜耐受最大冲击载荷的冲击动力学研究.中国电机工程学报,2005,25(4):124-130.
    [23]樊建军,张景玉,李硕.电弧光保护在中低压开关柜和母线保护中的应用.内蒙古电力技术,2008(2):53-55.
    [24]徐宁.SF6充气柜在城市220kV变电所的应用.江苏电机.工程.2007,26(1):25-27.
    [25]钱家骊,袁大陆,杨丽华等.高压开关柜—结构计算运行发展.北京:中国电力出版社,2007.
    [26]赵伯楠,李鹏,付朝娃等.3.6kV-40.5kV交流金属封闭开关设备和控制设备.中国,GB3906-2006.2006.
    [27]周雪漪.计算水力学.北京:清华大学出版社,1995.
    [28]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001.
    [29]郭鸿志.传输过程数值模拟.北京:冶金工业出版社,1998.
    [30]王瑞金,张剀,王刚Fluent技术基础与应用实例.北京:清华大学出版社,2007.
    [31]赵琴,王靖FLUENT在暖通空调领域中的应用.制冷与空调,2003(1):15-18.
    [32]韩占忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [33]陶文铨.数值传热学.西安:西安交通大学出版社,2001.
    [34]Schlichting H. Boundary layer theory.8thed.New York:McGrawHill,1979.64-69.
    [35]Rohsenow WM,Hartnett J P, Ganic E N. Handbook of heat transfer Fundamentals.2nded.New York:McGraw-Hill,1985.
    [36]Patankar SV. Numerical heat transfer and fluid flow. New York:McGraw-Hill,1980.
    [37]付宁宁.热管在油浸式变压器中温度场分布的Fluent数值模拟:(硕十学位论文).河北:河北工业大学,2007.
    [38]杨杨.基于Fluent的地下水污染三维模拟计算:(硕士学位论文).吉林:吉林大学,2008.
    [39]Launder B E, Spalding D B. The numerical computation of turbulent flows. Computer Methods Applied Mechanics and Engineering,1974,3(2):269-289.
    [40]齐学义,冯俊豪,李纯良.三维湍流流动计算在混流式转轮水力设计中的应用.兰州理工大学学报,2006,32(5):48-52.
    [41]李春荣.对古典第一、二强度理论的探讨.河北农业技术师范学院学报.1989,3(2):54-57.
    [42]刘大斌,韩文坝,蔡冰清等.强度理论与实验现象.中国工程学.2007(12):44-52.
    [43]徐国政.高压断路器原理和应用.北京:清华大学出版社,2000.
    [44]刘晓明.高压SF6断路器电弧动态数学模型及喷口结构优化设计:(硕十学位论文).沈阳:沈阳工业大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700