硅基光电子材料和稀磁材料的计算设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,硅是当今微电子技术的首选材料,而且硅微电子工艺也已经发展的很成熟。然而,由于体材料硅是一种间接带隙半导体,其跃迁过程必须要借助于声子的参与,因此不能成为有效的光发射体。近来的研究表明采用硅基纳米结构有可能得到具有直接带隙的硅基材料,可是当前的固体电子理论对一个给定的晶体结构,只有在计算它的电子结构后才能断定其是否具有直接带隙。如何通过已有的物理学原理和可行的微加工技术设计具有直接带隙特性的硅基新材料并使其成为有效的光发射体就成为一项极具挑战性的工作。
     长期以来,人们都知道固体的能带结构与其对称性是密切相关的。通过对大量半导体的能带结构与对称性关系的分析,我们发现Oh点群对称的材料几乎全是间接带隙材料;化合物半导体主要有两种对称性,Td和C6v,具有Td对称性的闪锌结构材料大部分为直接带隙,小部分为间接带隙;而对称性更低的C6v六角对称材料则几乎全是直接带隙材料。因此,我们相信通过降低晶体的对称性可以作为设计具有直接带隙硅基材料的一个经验性原则。要降低硅晶体的对称性通常有两种较简便的方法:一种是通过原子的替位,也即在硅晶中用其他的原子替代硅原子;另一种称为插入层生长,将插入的原子周期性的整层生长在硅晶上。在本文中,考虑了插入原子的电负性差效应和芯态效应,我们分别用上述两种方法设计了两类硅基超晶格材料,得到了几种具有直接带隙结构的硅基材料。
     另一方面,人们一直对发展将电、磁集为一体的稀磁半导体抱有浓厚的兴趣。最近有实验报道,在锗上获得了居里温度达到285K的铁磁性稀磁材料MnxGe1-x。而后的理论计算表明在硅上也可能获得接近室温下的Mn掺杂硅基稀磁半导体材料MnxSi1-x。研究人员试图用长程铁磁性与短程反铁磁性的竞争,平均场理论,RKKY理论等对它们的铁磁性进行解释,可是,对于它们为什么表现出铁磁性的机理还有待进一步的探索。我们尝试通过改变掺入的过渡金属原子的种类和掺入时的位置两种途径来分析硅、锗稀磁材料中磁性的变化特点,并利用RKKY理论对相应稀磁半导体的居里温度作了预测。
     本论文可分为两部分。第一部分介绍了研究工作所涉及的基本理论和第一原理方法。首先介绍了密度泛函理论,包括密度泛函理论的基本思想、Hobenberg-Kohn定理、Kohn-Sham方程、交换关联近似和GW修正等。接着介绍了本研究工作中所采用的具体电子结构计算方法,即平面波展开的第一性原理赝势法。并对基于平面波赝势法的VASP程序包的特点作了介绍。第二部分共有三章,分别介绍我们的研究工作和结果。
     在第三章中,我们采用插入层生长的方法,分别在Si(001)面周期性的插入单层VI族、V族和III-V族原子。同时考虑到Si(001)表面不同的重构方式,即(2×1)和(2×2)两种结构,分别进行了第一性原理计算。经过计算,我们得到了两种在Г点具有直接带隙的超晶格Se/Si5/VI/Si5/Se和Se/Si6/VI/Si6/Se(VI=O,S,Se),而且研究表明(2×2)结构的Se/Si5/VI/Si5/Se超晶格比(2×1)结构的超晶格Se/Si6/VI/Si6/Se具有更好的能带特性。而在第四章中,我们用原子替位的方法在Si(001)面上设计了一种新的超晶格Si1-yXy/Si(X=C,Ge,Sn,Ti,Zr; y=0.125,0.25,0.5),计算表明超晶格Si1-ySny/S(iy=0.125)和Si1-yGey/Si(y=0.125,0.25)具有直接带隙结构。对上面两类超晶格能带结构的分析,使我们认识到降低晶体的对称性能有效改变晶体的能带结构,而选择芯态较大且与硅的电负性差小的插层原子能有助于硅基超晶格的能带结构向直接带隙转变。
     在第五章中,尝试在硅和锗中分别掺入V、Cr、Mn、Fe、Co、Ni,讨论了它们对硅,锗稀磁半导体的影响。认为掺入Cr、Mn、Fe原子容易获得较大的磁矩,而且掺Mn的铁磁性最明显。而后讨论了在硅,锗不同的格点上掺入Cr、Mn、Fe的稀磁性质。研究表明,Cr掺杂的稀磁材料大多表现为反铁磁性;Mn掺杂的硅基材料铁磁性满足长程铁磁性与短程反铁磁性竞争理论,而锗基Mn掺杂稀磁材料的铁磁性更适合用RKKY模型解释;Fe掺杂的稀磁材料的铁磁性与Fe的浓度密切相关,随着Fe浓度的增加,铁磁性也增强,而且增大Fe掺杂稀磁半导体的晶格常数,也会有助于其向铁磁性的转变。
As well known, silicon is the dominant material for microelectronics and the fabrication technology is quite mature. However, due to its indirect band-gap, the light emission can occur only when accompanied with an emission of phonons and it has been considered unsuitable as bulk material for optoelectronic applications. Using Si-based nanostructures, this problem can be solved partly as has been recently reported. In conventional electronic structure theory of solids, about the band-gap type, direct gap or indirect-gap under a given crystal structure, the answer is always provided after the electronic structure calculations. As a result, a great challenge to experimenters and theorists is that how to make or design an efficient Si-based light emission material using an advanced technology and physics principles.
     As one known, the band structure of solid depends on the crystal symmetry, this is a fact known for a long time. Based on a statistical analysis for the band gap type and crystal symmetry, we find that all of the semiconductors with Oh point group symmetry have an indirect gap property, whereas those of C6v symmetry have a direct gap, and the semiconductors with Td symmetry are laid between them. The results indicate clearly that the symmetry reduction (i.e., decreasing a group order) will be advantageous to develop a direct band-gap semiconductor. In order to reduce symmetry, there are two conventional methods can be provided to selection: one is the atomic substitute method, i.e., substitute other atoms for silicons in Si lattice. Another method is so-called the intercalation growth, in which the intercalation atoms are located on a same crystal plane in silicon lattice. With the consideration of the size of core states and the electro-negativity difference between the component atoms in solids, we design several kinds of Si-based superlattices (SLs). The results show that some of them are direct band-gap semiconductors.
     On the other hand, diluted magnetic semiconductors (DMSs) have stimulated a great deal interest because of their potential application in the spintronics, in which the electron spin becomes another degree of freedom in addition to the usual charge degree of freedom. Ferromagnetism (FM) in the MnxGe1-x compound has been reported and the Curie temperature is up to 285K. Moreover, a recent calculation where both MnxGe1-x and MnxSi1-x were studied declared that it were possible to make room-temperature FM MnxSi1-x. However, the origin of the FM in IV semiconductors is still a matter of debate, and several different mechanisms, such as the competition between a long-range FM interaction and a short-range AFM interaction, mean field theory, Ruderman-Kittel-Kasuya-Yoshida (RKKY), have been proposed. In the dissertation, a similar study is extended to the different transition metals (TM). Comparison between these DMSs allows us to investigate variations of magnetic properties with a change of dopants and their site locations. The Curie temperature is also predicted by RKKY theory.
     This dissertation consists of two parts. The first part presents the calculation methods and its theoretical basis. We firstly introduce the density functional theory (DFT), including Hobenberg-Kohn theorem, Kohn-Sham equations, the approximations for exchange and correlations and GW approximation. And then, we describe the details of computational methods used in our work, i.e., the ab initio pseudopotential methods with the plane wave basis expansion of the wavefunction. We also present the major characters of the Vienna ab initio Simulation Packages (VASP). The second part which divided into three chapters presents the main results of the present dissertation.
     In the third chapter, ab initio pseudoptential method has been employed to investigate the electronic properties of Si-based SLs designed by the intercalation growth method, which consisted of one monolayer inserted atoms, such as group-VI, group-V or group III and V atoms, along the Si(001) direction periodically. The different surface reconstruction models, (i.e., (2x1) and (2x2)), were also discussed. The results show that the SLs Se/Si5/VI/Si5/Se and Se/Si6/VI/Si6/Se (VI=O,S,Se) have a direct band-gap atГpoint. Furthermore, the band structure of Se/Si5/VI/Si5/Se with a (2x2) surface structure is better than that of Se/Si6/VI/Si6/Se with a (2x1) structure. In the fourth chapter, we presented computational design of SLs Si1-yXy/Si (X=C,Ge,Sn,Ti,Zr; y=0.125,0.25,0.5) using the atomic substitute method. Our calculations reveal that the SLs Si1-ySny/Si (y=0.125) and Si1-yGey/Si (y=0.125,0.25) are theГ-point direct band-gap semiconductors. Based on the analysis of those SLs mentioned above, we draw some conclusions that the symmetry reduction, accompanied with a bigger core states of inserted atoms and less electronegativity difference between the component atoms, will be advantageous to develop a direct band-gap semiconductor.
     In the fifth chapter, the magnetic properties of TM-doped Si or Ge (TM=V,Cr,Mn,Fe,Co, Ni) has been studied. It is believed that the magnetic properties on Cr-, Mn- and Fe-doped DMSs is better, especially for Mn. Furthermore, we investigated the variations of magnetic properties on Cr-, Mn- and Fe-doped DMSs respectively, with a change of their site locations. The main results can be described as below. For the Cr-doped DMSs, the AFM order is energetically more favored than the FM order. For the Mn-doped Si DMSs can be explained by the competition between a long-range FM interaction and a short-range AFM interaction, and for the Mn-doped Ge DMSs are more like a RKKY FM semiconductors. For the Fe-doped DMSs, we found the higher Fe concentrations and larger lattice constants will enhance the ferromagnetism.
引文
[1] A. F. Wright and J. S. Nelson. Consistent structural properties for AlN, GaN, and InN [J]. Phys. Rev. B, 1995, 51: 7866-7869
    [2] N. E. Christensenl and I. Gorczyca. Optical and structural properties of III-V nitrides under pressure [J]. Phys. Rev. B, 1994, 50: 4397-4415
    [3] A. Rubio, J. L. Corkill and M. L. Cohen. Quasiparticle band structures of short-period superlattices and ordered alloys of AlN and GaN [J]. Phys. Rev. B, 1994, 49: 1952-1956
    [4] G. A. Wolff, I. Adams and J. W. Mellichamp. Electroluminescence of AlN [J]. Phys. Rev., 1959, 114: 1262-1264
    [5] S. Cho, S. Choi, S. C. Hong, Y. Kim, J. B. Ketterson, B. J. Kim, Y. C. Kim and J. H. Jung. Ferromagnet -ism in Mn-doped Ge [J]. Phys. Rev. B, 2002, 66: 033303-033306
    [6] L. Magaud, J. Y. Veuillen, D. Lollman, T. A. N. Tan, D. A. Papaconstantopoulous and M. J. Mehl. Electronic structure of ErSi2 and YSi2 [J]. Phys. Rev. B, 1992, 46: 1299-1304
    [7] L. Stauffer, C. Pirri, P. Wetzel, A. Mharchi, P. Paki, D. Bolmont, G. Gewinner and C. Minot. Bulk electronic structure of AlB2-type erbium disilicide with and without Si vacancies [J]. Phys. Rev. B, 1992, 46: 13201-13206
    [8] L. T. Canham, K. G. Barraclough and D. J. Robbins. 1.3-μm light-emitting diode from silicon electron irradiated at its damage threshold [J]. Appl. Phys. Lett., 1987, 51: 1509-1511
    [9] A. Ballestad, B. J. Ruck, J. H. Schmid, M. Adamcyk, E. Nodwell, C. Nicoll and T. Tiedje. Surface morphology of GaAs during molecular beam epitaxy growth: Comparison of experimental data with simulations based on continuum growth equations [J]. Phys. Rev. B, 2002, 65: 205302-205318
    [10] P. Kratzer and M. Scheffler. Reaction-Limited Island Nucleation in Molecular Beam Epitaxy of Compound Semiconductors [J]. Phys. Rev. Lett., 2002, 88: 036102-036105
    [11] H. Kroemer. Polar-on-nonpolar epitaxy [J]. J. Cryst. Growth, 1987, 81: 193-204
    [12] L. T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl. Phys. Lett., 1990, 57: 1046-1048
    [13] G. D. Sanders and Y. C. Chang. Theory of optical properties of quantum wires in porous silicon [J]. Phys. Rev. B, 1992, 45: 9202-9213
    [14] V. Lehmann and U. G?sele. Porous silicon formation: A quantum wire effect [J]. Appl. Phys. Lett., 1991, 58: 856-858
    [15] G. Allan, C. Delerue and M. Lannoo. Theory of optical properties of polysilanes: Comparison with porous silicon [J]. Phys. Rev. B, 1993, 48: 7951-7959
    [16] Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi and H. Mimura. Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites [J]. Phys. Rev. B, 1993, 48: 2827-2830
    [17] M. Araki, H. Koyama and N. Koshida. Controlled electroluminescence spectra of porous silicon diodes with a vertical optical cavity [J]. Appl. Phys. Lett., 1996, 69: 2956-2958
    [18] D. H. Feng, Z. Z. Xu, T. Q. Jia, X. X. Li and S. Q. Gong. Quantum size effects on exciton states in indirect-gap quantum dots [J]. Phys. Rev. B, 2003, 68: 035334-035341
    [19] B. A. Glavin and K. W. Kim. Spin relaxation of two-dimensional holes in strained asymmetric SiGe quantum wells [J]. Phys. Rev. B, 2005, 71: 035321-035326
    [20] M. Virgilio and G. Grosso. Optical transitions between valley split subbands in biased Si quantum wells [J]. Phys. Rev. B, 2007, 75: 235428-235434
    [21] T. P. Pearsall, J. Bevk, L. C. Feldman, J. M. Bonar, J. P. Mannaerts and A. Ourmazd. Structurally induced optical transitions in Ge-Si superlattices [J]. Phys. Rev. Lett., 1987, 58: 729-732
    [22] S. Froyen, D. M. Wood and A. Zunger. Structural and electronic properties of epitaxial thin-layer SinGen superlattices [J]. Phys. Rev. B, 1988, 37: 6893-6907
    [23] W. L. Walson, P. F. Szajowski and L. E. Brus. Quantum confinement in size-selected surface-oxidised silicon nanocrystals [J]. Sciencs, 1993, 262: 1242-1244
    [24] E. Luppi, F. Iori, R. Magri, O. Pulci, S. Ossicini, E. Degoli and V. Olevano. Excitons in silicon nano- crystallites: The nature of luminescence [J]. Phys. Rev. B, 2007, 75: 033303-033307
    [25] Y. Kanemitsu, S. Okamoto, M. Otobe and S. Oda. Photoluminescence mechanism in surface-oxidized silicon nanocrystals [J]. Phys. Rev. B, 1997, 55: R7375-R7378
    [26] H. W. Xi, Y. M. Shi and K. Z. Gao. Static, periodic, and chaotic magnetization behavior induced by spin-transfer torque in magnetic nanopillars [J]. Phys. Rev. B, 2005, 71: 144418-144422
    [27] A. G. Nassiopoulos, S. Grigoropoulos and S. Papadimitriou. Electroluminescent device based on silicon nanopillars [J]. Appl. Phys. Lett., 1996, 69: 2267-2269
    [28] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo. Optical gain in silicon nanocrystals [J]. Nature, 2000, 408: 440-444
    [29] Q. Zhang, A. Filios, C. Lofgren and R. Tsu. Ultra-stable visible electroluminescence from crystalline -Si/O superlattice [J]. Physica E, 2000, 8: 365-368
    [30] P. H. Zhang, V. H. Crespi, E. Chang, S. G. Louie and M. L. Cohen. Computational design of direct bandgap semiconductors that lattice-match silicon [J]. Nature, 2001, 409: 69-71
    [31] W. L. Ng, M. A. Louren?o, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood. An efficient room-temperature silicon-based light-emitting diode [J]. Nature, 2001, 410: 192-194
    [32] F. W. Smith. Magnetization of a dilute magnetic alloy with magnetic interactions: ZnMn [J]. Phys. Rev. B, 1974, 10: 2980-2986
    [33] L. M. Sandratskii. Exchange interactions in (ZnMn)Se: LDA and LDA+U calculations [J]. Phys. Rev. B, 2003, 68: 224432-22443
    [34] H. Albrecht, E. F. Wassermann, F. T. Hedgcock and P. Monod. Heisenberg, XY, and Ising Spin-Glass Behavior in Hexagonal Metallic Systems [J]. Phys. Rev. Lett., 1982, 48: 819-822
    [35] H. Munekata, H. Ohno, S. V. Molnar, A. Segm?ller, L. L. Chang and L. Esaki. Diluted magnetic III-V semiconductors [J]. Phys. Rev. Lett., 1989, 63: 1849-1852
    [36] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto and Y. Iye. (Ga,Mn)As: A new dilut -ed magnetic semiconductor based on GaAs [J]. Appl. Phys. Lett., 1996, 69: 363-369
    [37] K. C. Ku, S. J. Potashnik, R. F. Wang, S. H. Chun, P. S. Schiffer, N. Samarth, M. J. Seong, A. Mascar -enhas, E. J. Halperin, R. C. Myers, A. C. Gossard and D. D. Awschalom. Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn]As epilayers [J]. Appl. Phys. Lett., 2003, 82: 2302-2304
    [38] T. Story, R. R. Galazka, R. B. Frankel and P. A. Wolff. Carrier-concentration–induced ferromagnetismin PbSnMnTe [J]. Phys. Rev. Lett., 1986, 56: 777-779
    [39] Y. Z. Zeng and M. C. Huang. Electronic and magnetic properties of 3d transion-metal-doped III-V magnetic semiconductor [J]. Chin. Phys. Lett., 2004, 21: 1632-1634; First principle study of chalcopyrite semiconductor base DMS [J]. J. Xiamen University, 2005, 44: 172-175
    [40] Y. D. Park, A. Wilson, A. T. Hanbicki. J. E. Mattson, T. Ambrose, G. Spanos and B. T. Jonker. Magneto -resistance of Mn:Ge ferromagnetic nanoclusters in a diluted magnetic semiconductor matrix [J]. Appl. Phys. Lett., 2001, 78: 2739-2741
    [41] A. Stroppa, S. Picozzi, A. Continenza and A. J. Freeman. Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors [J]. Phys. Rev. B, 2003, 68: 155203-155212
    [42] Y. J. Zhao, T. S. Shishidou and A. J. Freeman. Ruderman-Kittel-Kasuya-Yosida–like ferromagnetism in MnxGe1-x [J]. Phys. Rev. Lett., 2003, 90: 047204-047207
    [43] H. M. Weng and J. M. Dong. First-principles investigation of transition-metal-doped group-IV semiconductors: RxY1–x (R = Cr,Mn,Fe, Y = Si,Ge) [J]. Phys. Rev. B, 2005, 71: 035201-035208
    [44] N. E. Aouad, B. Laaboudi, M. Kerouad, M. Saber, F. Dujardin and B. Stebe. Magnetic properties of the site-diluted spin-1 Ising superlattice [J]. Phys. Rev. B, 2001, 63: 054436-065545
    [45] M. C. Huang, J. L. Zhang, H. P. Li and Z. Z. Zhu. A computational design of Si-based direct band-gap materials [J]. Int. J. Mod. Phys B, 2002, 16: 4279-4284
    [46] M. C. Huang. An ab inito computational design of Si-based optoelectronic materials [J]. J. Xiamen Un- -iversity, 2005, 44: 874-882; Recent development in semiconductor quantum structures and design of Si- -based optoelectronic materials [J]. J. Xiamen University, 2001, 40: 242-250
    [1] 谢希德, 陆栋. 固体能带理论 [M]. 上海:复旦大学出版社, 1998
    [2] P. Hohenberg and W. Kohn. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136: B864-B871
    [3] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133-A1138
    [4] D. M. Ceplerley and B. J. Alder. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett., 1980, 45: 566-569
    [5] J. P. Perdew and A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B, 1981, 23: 5048-5079
    [6] M. G. Mann and K. A. Brückner. Correlation energy of an electron gas at high density [J]. Phys. Rev., 1957, 106: 364-368
    [7] U. V. Barth and L. Hedin. A local exchange-correlation potential for the spin polarized case. I [J]. J. Phys.:Condens. Matter., 1972, 5: 1629-1642
    [8] S. K. Ma. and K. A. Brueckner. Correlation energy of an electron gas with a slowly varying high density [J]. Phys. Rev., 1968, 165: 18-31
    [9] D. C. Langreth. and M. .J. Mehl. Easily implementable nonlocal exchange correlation energy functional [J]. Phys. Rev. Lett., 1981, 47: 446-450; Beyond the local-density approximation in calculations of ground-state electronic properties [J]. Phys. Rev. B, 1983, 28: 1809-1834
    [10] J. P. Perdew. Accurate density functional for the energy: real-space cutoff of the gradient expansion for the exchange hole [J]. Phys. Rev. Lett., 1985, 55: 1665-1668
    [11] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45: 13244-13249
    [12] C. Lee, W. Yang and R. C. Parr. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37: 785-789
    [13] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior [J] Phys. Rev. A, 1988, 38: 3098-3100
    [14] J. P. Perdew, K. Burke and M. Ernzerhof. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865-3868
    [15] K. M. Ho, C. Els?sser, C. T. Chan and M. F?hnle. First-principles pseudopotential calculations for hydrogen in 4d transition metals. I. mixed-basis method for total energies and forces [J]. J. Phys.:Condens. Matter., 1992, 4:5189-5206
    [16] E. H. Lieb, and S. Oxford. Improved lower-bound on the indirect coulomb energy [J]. Int. J. Quantum Chem., 1981, 19: 427-439
    [17] M. S. Hybertsen and S. G. Louie. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies [J]. Phys. Rev. B, 1986, 34: 5390-5413
    [18] R. W. Godby, M. Schluter and L. J. Sham. Self-energy operators and exchange-correlation potentials in semiconductors [J]. Phys. Rev. B, 1988, 37: 10159- 0175
    [19] M. S. Hybertsen and S. G. Louie. Electron correlation in semiconductor and insulators:band gaps and quasiparticle engeries [J]. Phys. Rev. B, 1986, 34: 5390-5413
    [20] S. B. Zhang, D. Tomanek, M. L. Cohen, S. G. Louie and M. S. Hybertsen. Evaluation of quasiparticle energies for semiconductors without inversion symmetry [J]. Phys. Rev. B, 1989, 40: 3162-3169
    [21] J. A. Nielsen. Experimental Test of Renormalization Group Theory on the Uniaxial, Dipolar Coupled Ferromagnet LiTbF4 [J]. Phys. Rev. Lett., 1976, 37: 1161-1164
    [22] H. Akai. Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor (In, Mn)As [J]. Phys. Rev. Lett., 1998, 81: 3002-3005
    [23] J. Inoue, S. Nonoyama and H. Itoh. Double resonance mechanism of ferromagnetism and magnetotran- -sport in (Ga-Mn)As [J]. Phys. Rev. Lett., 2000, 85: 4610-4613
    [24] F. Matsukura, H. Ohno, A. Shen and Y. Sugawara. Transport properties and origin of ferromagnetism in (Ga,Mn)As [J]. Phys. Rev. B, 1998, 57: R2037-R2040
    [25] C. Zener. Interaction between the d-shells in the Transition Metal [J]. Phys. Rev., 1951, 82: 403-405
    [26] P. W. Anderson and H. Hasegawa. Considerations on Double Exchange [J]. Phys. Rev., 1955, 100: 675-681
    [27] A. Wilamowski, A. Mycielski, W. Jantsch and G. Hendorfer. Spin dynamics in the mixed-valence compound HgSe:Fe [J]. Phys. Rev. B, 1988, 38: 3621-3624
    [28] K. Sato and H. K. Material design for transparent ferromagnets with ZnO-based magnetic semiconduc- -tors [J]. Jpn. J. Appl. Phys., 2000, 39: L555-L558
    [29] G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa and K. Sato. Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1-xMnxGeP2 [J]. Jpn. J. Appl. Phys., 2000, 39: L949-L951
    [30] P. Kacman. Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures [J]. Semicond. Sci. Technol., 2001, 16: R25-R39
    [31] G. Bastard and C. Lewiner. Indirect-exchange interactions in zero-gap semiconductors [J]. Phys. Rev. B, 1979, 20: 4256-4267
    [32] M. A. Rudermann and C. Kittel. Indirect exchange coupling of nuclear magnetic moments by conduction electrons [J]. Phys. Rev., 1954, 96: 99-102
    [33] Y. J. Zhao, T. Shishidou and A. J. Freeman. Ruderman-Kittel-Kasuya-Yosida–like Ferromagnetism in MnxGe1-x [J]. Phys. Rev. Lett., 2003, 90: 047204-047206
    [34] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J]. Science, 2000, 287: 1019-1022
    [35] S. G. Louie, S. Froyen and M. L. Cohen, Nonlinear ionic pseudopotentials in spin-density-functional calculations [J]. Phys. Rev. B, 1982, 26: 1738-1742
    [36] W. C. Topp and J. J. Hopfiel. Chemically motivated pseudopotential for sodium [J]. Phys. Rev. B, 1973, 7: 1295-1303
    [37] D. R. Hamann, M. Schlüter and C. Chiang. Norm-conserving pseudopotentials [J]. Phys. Rev. Lett., 1979, 43: 1494-1497
    [38] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B, 1990, 41: 7892-7895
    [39] G. Kresse and J. Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements [J]. J. Phys.: Condens. Matter., 1994, 6: 8245-8257
    [40] G. Kresse and D. Joubert. Form ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev B, 1999, 59:1758-1775
    [41] G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54: 11169-11186
    [42] J. C. Slater. An augmented plane wave method for the periodic potential problem [J].Phys. Rev., 1953, 92:603-607
    [43] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64: 1045-1097
    [44] R. P. Feynman. Forces in molecules [J]. Phys. Rev., 1939, 56: 340-343
    [45] M. T. Yin and M. L. Cohen. Theory of lattice-dynamical properties of solids: application to Si and Ge [J]. Phys. Rev. B, 1982, 26: 3259-3272
    [46] K. M. Ho, C. L. Fu and B. N. Harmon. Microscopic analysis of interatomic forces in transition metals with lattice distortions [J]. Phys. Rev. B, 1983, 28: 6687-6694
    [47] P. E. Bl?chl. Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50: 17953-17979
    [48] P. Pulay. Covergence acceleration of iterative sequences. the case of scf iteration[J].Chem. Phys. Lett., 1980, 73: 393-398
    [49] H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations [J]. Phys. Rev. B, 1976, 13: 5188-5192
    [50] O. Jepsen and O. K. Andersen. The electronic structure of hcp Ytterbium [J]. Solid. State. Commun., 1971, 9: 1763-1767
    [51] P. E. Bl?chl, O. Jepsen and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev. B, 1994, 49: 16223-16233
    [52] C. L. Fu and K. M. Ho. First-principles calculation of the equilibrium ground-state properties of transition metals: applications to Nb and Mo [J]. Phys. Rev. B, 1983, 28: 5480-5486
    [53] M. Methfessel and A. T. Paxton. High-precision sampling for Brillouin-zone integration in metals [J]. Phys. Rev. B, 1989, 40: 3616-3621
    [1] M. C. Huang, J. L. Zhang, H. P. Li and Z. Z. Zhu. A computational design of Si-based direct band-gap materials [J]. Int. J. Mod. Phys B, 2002, 16: 4279-4284
    [2] M. C. Huang. An ab inito computational design of Si-based optoelectronic materials [J]. J. Xiamen University, 2005, 44: 874-883
    [3] Y. Enta, S. Suzuki and S. Kono. Angle-resolved-photoemission study of the electronic structure of the Si(001)c(4×2) surface [J]. Phys. Rev. Lett., 1990, 65: 2704-2707
    [4] R. A. Wolkow. Direct observation of an increase in buckled dimers on Si(001) at low temperature [J]. Phys. Rev. Lett., 1992, 68: 2636-2639
    [5] H. Tochihara, T. Amakusa and M. Lwatsuki. Low-temperature scanning-tunneling-microscopy observa- -tions of the Si(001) surface with a low surface-defect density [J]. Phys. Rev. B, 1994, 50: 12262-12265
    [6] Y. Kondo, T. Amakusa, M. Iwatsuki and H. Tokumoto. Phase transition of the Si(001) surface below 100 K [J]. Surf. Sci., 2000, 453: L318-322
    [7] Z. Z. Zhu, N. Shima and M. Tsukada. Electronic states of Si(100) reconstructed surfaces [J]. Phys. Rev. B, 1989, 40: 11868-11879
    [8] K. C. Low and C. K. Ong. Electronic structure of the Si(100) c(4×2) and p(2×2) surfaces [J]. Phys. Rev. B, 1994, 50: 5352-5357
    [9] A. I. Shkrebtii, R. D. Felice, C. M. Bertoi and R. D. Sole. Ab initio study of structure and dynamics of the Si(100) surface [J]. Phys. Rev. B, 1995, 51: 11201-11204
    [10] J. Fritsch and P. Pavone. Ab initio calculation of the structure, electronic states, and the phonon dispersion of the Si(100) surface [J]. Surf. Sci., 1995, 344: 159-173
    [11] M. J. Cardillo and G. E. Becker. Diffraction of He Atoms at a Si(100) surface [J]. Phys. Rev. Lett., 1978, 40: 1148-1151; Diffraction of He at the reconstructed Si (100) surface. Phys. Rev. B, 1980, 21: 1497-1510
    [12] S. J. White and D. P. Woodruff. The surface structure of Si(100) surfaces using averaged LEED .II. The (2×1) clean surface structure [J]. Surf. Sci., 1977, 64: 131-140
    [13] G. Gewinner, J. C. Peruchetti, A. Jaegle and A. Kalt. Photoemission study of the chromium(111) surface interacting with oxygen [J]. Surf. Sci., 1978, 78: 439-458
    [14] W. Monch, P. Koke and S. Krueger. On the electronic structure of clean 2×1 reconstructed silicon (001) surfaces [J]. J. Vac. Sci. Technol., 1981, 19: 313-318
    [15] J. J. Lander and J. Morrison. Low-Energy electron diffraction study of silicon surface structures [J]. J. Chem. Phys., 1962, 37: 729-746
    [16] F. Jona, H. D. Shih, D. W. Jepsen and P. M Marcus. On the structure of reconstructed Si(001)2×1 and Ge(001)2×1 surfaces [J]. J. Phys. C: Solid State Phys., 1979, 12: L455-L461
    [17] F. Jona, H. D. Shih, A. Ignatiev, and D. W. Jepsen and P. M. Marcus. Probable atomic structure of reconstructed Si(001)2×1 surfaces determined by low-energy electron diffraction [J]. J. Phys. C: Solid State Phys., 1977, 10: L67-72
    [18] R. Seiwatz. Possible structures for clean, annealed surfaces of germanium and silicon [J]. Surf. Sci., 1964, 2: 473-483
    [19] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B, 1993, 47: R558-561
    [20] G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54: 11169-11186
    [21] P. E. Bl?chl Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50: 17953-17979
    [22] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45: 13244-13249
    [23] H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations [J]. Phys .Rev. B, 1976, 13: 5188-5192
    [24] P. H. Zhang, V. H. Crespi, E. Chang, et al. Computational design of direct-bandgap semiconductors that lattice-match silicon [J]. Nature, 2001, 409: 69-71
    [25] D. W. Jenkins and D. D. John. Electronic properties of metastable GexSn1-x alloys [J]. Phys. Rev. B, 1987, 36: 7994-8000
    [26] H. Gang and H. A. Atwater. Interband transitions in SnxGe1-x alloys [J]. Phys. Rev. Lett., 1997, 79: 1937-1940
    [27] K. S. Min and H. A. Atwater. Ultrathin pseudomorphic Sn/Si and SnxSi1-x /Si heterostructures [J]. Appl. Phys. Lett., 1998, 72: 1884-1886
    [28] A. Benzair and H. Aourag. Energetic and electronic structure of the hypothetical cubic zincblende- like semiconductors GeC and SnC [J]. Phys. Stat. Sol. (b), 2002, 231: 411-422
    [29] M. ?akmak, G. P. Srivastava, S. Ellialt?o?lu and K. ?olako?lu. Ab initio study of the adsorption and desorption of Se on the Si(001) surface [J]. Surf. Sci., 2002, 507: 29-33
    [30] Y. Q. Cai, L. T. Zhang, Q. F. Zeng, L. F. Cheng and Y. D. Xu. First-principles study of vibrational and dielectric properties of β-Si3N4 [J]. Phys. Rev. B, 2006, 74: 174301-174307
    [31] H. L. He, T. Sekine, T. Kobayashi and H. Hirosaki. Shock-induced phase transition of β-Si3 N4 to c- Si 3N 4 [J]. Phys. Rev. B, 2000, 62: 11412-11417
    [32] G. L. Zhao and M. E. Bachlechner. Electronic structure and charge transfer in α- and β-Si 3N 4 and at the Si(111)/Si3 N 4 (001) interface [J]. Phys. Rev. B, 1998, 58: 1887-1895
    [33] X. S. Wang, G. J .Zhai, J. S. Yang and N. Cue. Crystalline Si3 N4 thin films on Si(111) and the 4×4 recon -struction on Si 3N 4 (0001) [J]. Phys. Rev. B, 1999, 60: R2146-R2149
    [34] J. Chen L. Z. Ouyang, P. Rulis, A. Misra and W. Y. Ching. Complex nonlinear deformation of nano- meter intergranular glassy films in β-Si3N4 [J]. Phys. Rev. Lett., 2005, 95: 256103-256106
    [35] J. C. Idrobo, H. Iddir and Serdar???t, A. Zegler, N. D. Browning and R. O. Ritchie. Ab initio structural energetics of β-Si3N4 surfaces [J]. Phys. Rev. B, 2005, 72: 241301-241304
    [36] G. S. Painter, P. F. Becher, W. A. Shelton, R. L. Satet and M. J. Hoffmann. First-principles study of rare -earth effects on grain growth and microstructure in β-Si3N4 ceramics [J]. Phys. Rev. B, 2004, 70: 144108-144111
    [37] A. J. G. Adeva. Band structure of photonic crystals with the symmetry of a pyrochlore lattice [J]. Phys. Rev. B, 2006, 73: 073107-073110
    [38] D. Errandonea, A. Segura, F. J. Manjon, A. Chevy, E. Machado, G Tobias, P. Ordejon and E. Canadell. Crystal symmetry and pressure effects on the valence band structure of γ-InSe and -GaSe: Transport mea- surements and electronic structure calculations [J]. Phys. Rev. B, 2005, 71: 125206-125216
    [39] Q. M. Ma, K. L. Wang and J. N. Schulman. Band structure and symmetry analysis of coherently gro- wn Si1-xGex alloys on oriented substrates [J]. Phys. Rev. B, 1993, 47: 001936-001954
    [40] H. Bacry, L. Michel and J. Zak. Symmery and analyticity of energy bands in solids [J]. Phys. Rev. Lett, 1988, 61: 1005-1008
    [41] J. R. Patel, P. E. Freeland, M. S. Hybertsen, D. C. Jacobson and J. A. Golovchenko. Location of atoms in the first monolayer of GaAs on Si [J]. Phys. Rev. Lett., 1987, 59: 2180-2183
    [42] J. E. Northrup, R. D. Bringans, R. I. G. Uhrberg, M. A. Olmstead and R. Z. Bachrach. Electronic and Atomic Structure of GaAs Epitaxial Overlays on Si(111) [J]. Phys. Rev. Lett., 1988, 61: 2957-2960
    [43] H. M. Tütüncü, G. P. Srivastave and J. S. Tse. Structural, electronic, and dynamical properties ofSi(110) capped with a monolayer of GaAs [J]. Phys. Rev. B, 2002, 66: 195305-195312
    [44] J. A. Rodríguez and N. Takeuchi. First-principles calculations of the adsorption of a single monolayer of GaAs on Si(110) [J]. Phys. Rev. B, 2001, 64: 205315-215321
    [45] M. Saito and Y. Miyamoto. Atomic and electronic structures of the N substitutional impurity in Si [J]. Phys. Rev. B, 1997, 56: 9193-9196
    [46] Y. Zhang, A. Mascarenhas and L. W. Wang. Systematic approach to distinguishing a perturbed host state from an impurity state in a supercell calculation for a doped semiconductor: Using GaP:N as an exam- -ple [J]. Phys. Rev. B, 2006, 74: 041201-041204
    [47] J. D. Wiley and M. Didomenico. Lattice Mobility of Holes in III-V Compounds [J]. Phys. Rev. B, 1970, 2: 427-433
    [48] J. Wu, K. M. Yu, W. Walukiewicz, G. He, E. E. Haller, D. E. Mars and D. R. Chamberlin. Mutual passi- vation effects in Si-doped diluted Iny G a 1-yA s 1-xN x alloys [J]. Phys. Rev. B, 2003, 68: 195202-195211
    [49] T. Inushima, M. Hiqashiwaki and T. Matsui. Optical properties of Si-doped InN grown on sapphire(0001) [J]. Phys. Rev. B, 2003, 68: 235204-235210
    [50] M. D. Jackon, J. M. C. Thornton, D. Lewis, A. Robinson, M. Fahy, A. Aviary and P. Weightman. Unoc- cupied states in the band gap of -doped Si in GaAs probed by Auger resonance spectroscopy [J]. Phys. Rev. B, 2005, 71: 075313-075319
    [51] W. G. Aulbur, M. St?dele and A. G?rling. Exact-exchange-based quasiparticle calculations [J]. Phys. Rev. Phys. Rev. B, 2000, 62: 7121-7132
    [52] R. Asahi, W. Mannstadt and A. J. Freeman. Screened-exchange LDA methods for films and super- lattices with applications to the Si(100)2×1 surface and InAs/InSb superlattices [J]. Phys. Rev. B, 2000, 62: 2552-2561
    [53] I. N. Remediakis and E. Kaxiras. Band-structure calculations for semiconductors within generalized -density-functional theory [J]. Phys. Rev. B, 1999, 59: 5536-5543
    [54] E. L. Shirley. Many-body effects on bandwidths in ionic, noble gas, and molecular solids [J]. Phys. Rev B, 1998, 58: 9579-9583
    [55] M. Rohlfing, P. Kruger and J. Pollmann. Efficient scheme for GW quasiparticle band-structure calcu- lations with applications to bulk Si and to the Si(001)-(2×1) surface [J]. Phys. Rev. B, 1995, 52: 1905-1917
    [1] S. S. Iyer and Y. H. Xie. Light emission from silicon [J]. Science, 1993, 260: 40-46
    [2] D. Leong, M. Harry and K. J. Reeson. A silicon/iron disilicide light-emitting diode operating at 1.5 μm [J]. Nature, 1997, 387: 686-688
    [3] A. A. Prokofiev, I. N. Yassievich, H. Vrielinck and T. Gregorkiewicz. Theoretical modeling of thermally activated luminescence quenching processes in Si:Er [J]. Phys. Rev. B, 2005, 72: 045214-045223
    [4] F. D. Acapito, S. Mobilio, S. Scalese, A. Terrasi, G. Franzo and F. Priolo. Structure of Er-O complexes in crystalline Si [J]. Phys. Rev. B, 2004, 69: 153310-153314
    [5] L. T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl. Phys. Lett., 1990, 57: 1046-1048
    [6] A. G. Cullis and L. T. Canham. Visible light emission due to quantum size effects in highly porus crys- -talline silicon [J]. Nature, 1991, 353: 335-338
    [7] K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet. Silicon-based light emitting devices integrated into microelectronic circuits [J]. Nature, 1996, 384: 338-340
    [8] D. H. Feng, Z. Z. Xu, T. Q. Jia, X. X. Li and S. Q. Gong. Quantum size effects on exciton states in indir- -ect-gap quantum dots [J]. Phys. Rev. B, 2003, 68: 035334-035341
    [9] B. A. Glavin and K. W. Kim. Spin relaxation of two-dimensional holes in strained asymmetric SiGe qua- -ntum wells [J]. Phys. Rev. B, 2005, 71: 035321-035326
    [10] M. Virgilio and G. Grosso. Optical transitions between valley split subbands in biased Si quantum wells [J]. Phys. Rev. B, 2007, 75: 235428-235434
    [11] W. L. Walson, P. F. Szajowski and L. E. Brus. Quantum confinement in size-selected surface-oxidised silicon nanocrystals [J]. Sciencs, 1993, 262: 1242-1244
    [12] Z. H. Lu, D. J. Lockwood and J. M. Baribeau. Quantum confinement and light emission in SiO2/Si su- -perlattice [J]. Nature, 1995, 378: 258-260
    [13] A. Stesmans, B. Nouwen and V. V. Afanasev. Structural degradation of thermal SiO2 on Si by high- -temperature annealing: defect generation [J]. Phys. Rev. B, 2002, 66: 045307-045324
    [14] F. J. Albert, N. C. Emley, E. B. Myers, D. C. Ralph and R. A. Buhrman. Quantitative Study of Magn- -etization Reversal by Spin-Polarized Current in Magnetic Multilayer Nanopillars [J]. Phys. Rev. Lett., 2002, 89: 226802-226805
    [15] H. W. Xi, Y. M. Shi and K. Z. Gao. Static, periodic, and chaotic magnetization behavior induced by spin-transfer torque in magnetic nanopillars [J]. Phys. Rev. B, 2005, 71: 144418-144422
    [16] A. G. Nassiopoulos, S. Grigoropoulos and S. Papadimitriou. Electroluminescent device based on silicon nanopillars [J]. Appl. Phys. Lett., 1996, 69: 2267-2269
    [17] T. P. Pearsall, J. Bevk, L. C. Feldman, J. M. Bonar, J. P. Mannaerts and A. Ourmazd. Structurally induced optical transitions in Ge-Si superlattices [J]. Phys. Rev. Lett., 1987, 58: 729-732
    [18] S. Froyen, D. M. Wood and A. Zunger. Structural and electronic properties of epitaxial thin-layer SinGen superlattices [J]. Phys. Rev. B, 1988, 37: 6893-6907
    [19] P. Venezuela, G. M. Dalpian, A. J. R. da Silva and A. Fazzio. Ab initio determination of the atomistic structure of SixGe1-x alloy [J]. Phys. Rev. B, 2001, 64: 193202-193205
    [20] U. Schmid, N. E. Christensen, M. Alouani and M. Cardona. Electronic and optical properties of strained Ge/Si superlattices [J]. Phys. Rev. B, 1991, 43: 14597-14614
    [21] F. Cerdeira, A. Pinczuk and J. C. Bean. Observation of confined electronic states in GexSi1-x/Si strained-layer superlattices [J]. Phys. Rev. B, 1985, 31: 1202-1204
    [22] C. Tserbak, H. M. Polatoglou and G. Theodorou. unified approach to the electronic structure of strained Si/Ge superlattices [J]. Phys. Rev. B, 1993, 47: 7104-7124
    [23] M. Willatzen, L. C. L. Y. Voon, P. V. Santos, M. Cardona, D. Munzar and N. E. Christensen. Theoretical study of band-edge states in Sn1Gen strained-layer superlattices [J]. Phys. Rev. B, 1995, 52: 5070-5081
    [24] D. Munzar and N. E. Christensen. Electronic structure of Sn/Ge superlattices [J]. Phys. Rev. B, 1994, 49: 11238-11247
    [25] D. H. Rich, T. Miller, A. Samsavar, H. F. Lin and T.-C. Chiang. Adsorption and growth of Sn on Si(100) from synchrotron photoemission studies [J]. Phys. Rev. B, 1988, 37: 10221-10228
    [26] M. E. Dávila, J. Avila, M. C. Asensio and G. L. Lay. Giant effect of electron and hole donation on Sn/Ge(111) and Sn/Si(111) surfaces [J]. Phys. Rev. B, 2004, 70: 241308-241311
    [27] A. Charrier, R. Pérez, F. Thibaudau, J. M. Debever, J. Ortega, F. Flores and J. M. Themlin. Contrasted electronic properties of Sn-adatom-based (sqrt[3]×sqrt[3])R30° reconstructions on Si(111) [J]. Phys. Rev. B, 2001, 64: 115407-115416
    [28] J. Lobo, A. Tejeda, A. Mugarza, and E. G. Michel. Electronic structure of Sn/Si(111)-(sqrt[3] ×sqrt[3])R30° as a function of Sn coverage [J]. Phys. Rev. B, 2003, 68: 235332-235338
    [29] P. H. Zhang, V. H. Crespi, E. Chang, S. G. Louie and M. L. Cohen. Computational design of direct bandgap semiconductors that lattice-match silicon [J]. Nature, 2001, 409: 69-71
    [30] A. P. Horsfield and N. W. Ashcroft. Ordered silicon-tin structrures on a silicon (111) substrate [J]. J. Phys. Condens. Matter, 1992, 4: 7333-7340
    [31] K. A. Johnson and N. W. Ashcroft. Electronic structure of ordered silicon alloys: direct-gap systems [J]. Phys. Rev. B, 1996, 54: 14480-14487
    [32] M. C. Huang, J. L. Zhang, H. P. Li and Z. Z. Zhu. A computational design of Si-based direct band-gap materials [J]. Int. J. Mod. Phys B, 2002, 16: 4279-4284
    [33] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B, 1993, 47: R558-R561
    [34] G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54: 11169-11186
    [35] P. E. Bl?chl Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50: 17953-17979
    [36] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45: 13244-13249
    [37] H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations [J]. Phys .Rev. B, 1976, 13: 5188-5192
    [38] X. Luo, S. B. Zhang and S. H. Wei. Chemical design of direct-gap light-emitting silicon [J]. Phys. Rev. Lett., 2002, 89: 076802-076806
    [39] J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory and R. T. Lynch. Pseudomorphic growth of GexSi1–x on silicon by molecular beam epitaxy [J]. Appl. Phys. Lett., 1984, 44: 102-104
    [40] F. Cerdeira, A. Pinczuk, J. C. Bean, B. Batlogg and B. A. Wilson. Raman scattering from GexSi1–x/Si strained-layer superlattices [J]. Appl. Phys. Lett., 1984, 45: 1138-1140
    [41] A. T. Fiory, J. C. Bean, L. C. Feldman, and I. K. Robinson. Commensurate and incommensurate structures in molecular beam epitaxially grown GexSi1–xfilms on Si(100) [J]. J. Appl. Phys., 1984, 56: 1227-1229
    [1] J. K. Furdyna. Diluted magnetic semiconductors [J]. J. Appl. Phys., 1988, 64: R29-R64
    [2] X. G. He and M. C. Huang. Spin polarised band structure for the semimagnetic semiconductor Zn0.5Mn0.5Se [J]. J. Phys. Conden. Matter., 1989, 1: 5371-5380
    [3] D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszynski. S. Kolesnik, T. Dietl, B. Barbara and D. Dufeu. Carrier-induced ferromagnetism in p-Zn1-xMnxTe [J]. Phys. Rev. B, 2001, 63: 085201-085214
    [4] H. Munekata, H. Ohno, S. V. Molnar, A. Segmuller, L. L. Chang and L. Esaki. Diluted magnetic III-V semiconductors [J]. Phys. Rev. Lett., 1989, 63: 1849-1852
    [5] H. Ohno, A. Shen, F. matsukuar, A. Oiwa, A. Endo, S. Katsumoto and Y. Iye. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs [J]. Appl. Phys. Lett., 1996, 69: 363-365
    [6] H. Ohno. Making nonmagnetic semiconductors ferromagnetic [J]. Science, 1998, 281: 951-956
    [7] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J]. Science, 2000, 287: 1019-1022
    [8] K. Ueda, H. Tabata and T. Kawai. Magnetic and electric properties of transition-metal-doped ZnO films [J]. Appl. Phys. Lett., 2001, 79: 988-990
    [9] M. L. Reed, N. A. E. Masry, H. H. Stadelmaier, M. K. Ritums, J. Reed, C. A. Parker, J. C. Roberts and S. M. Bedair. Room temperature ferromagnetic properties of (Ga, Mn)N [J]. Appl. Phys. Lett., 2001, 79: 3473-3475
    [10] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide [J]. Science, 2001, 291: 854-856
    [11] G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa and K. Sato. Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1-xMnxGeP2 [J]. Jpn. J. Appl. Phys., 2000, 39: L949-L951
    [12] S. Choi, G. B. Cha, S. C. Hong, S. Cho, Y. Kim, J. B. Ketterson, S. Y. Jeong and G. C. Yi. Room temperature ferromagnetism in chalcopyrite Mn-doped ZnSnAs2 single crystals [J]. Solid State Commun., 2002, 122: 165-167
    [13] S. Cho, S. Choi, G. B. Cha, S. C. Hong, Y. Kim, Y. J. Zhao, A. J. Freeman, J. B. Ketterson, B. J. Kim, Y. C. Kim and B. C. Choi. Room-temperature ferromagnetism in (Zn1-xMnx)GeP2 semiconductors [J]. Phys. Rev. Lett., 2002, 88: 257203-257207
    [14] Y. D. Park, A. T. Hanbicki. S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A.Wilson, G. Spanos and B. T. Jonker. A group-IV ferromagnetic Semiconductor: MnxGe1 x [J]. Science, 2002, 295: 651-654
    [15] S. Cho, S. Choi, S. C. Hong, Y. Kim, J. B. Ketterson, B. J. Kim, Y. C. Kim and J. H. Jung. Ferromagnetism in Mn-doped Ge [J]. Phys. Rev. B, 2002, 66: 033303-033306
    [16] F. Casanova, S. D. Brion, A. Labarta and X. Batlle. Coexistence of short-range ferromagnetic and anti- -ferromagnetic correlations in Ge-rich Gd5(SixGe1-x)4 alloys [J]. J. Phys. D: Appl. Phys., 2005, 38: 3343-3347
    [17] H. M. Kim, N. M. Kim, C. S. Park, S. U. Yuldashev, T. W. Kang and K. S. Chung. Growth of ferroma- -gnetic semiconducting Si:Mn film by vacuum evaportation method [J]. Chem. Mater, 2003, 15: 3964-3965
    [18] S. Choi, S. C. Hong, S. Cho, Y. Kim, J. B. Ketterson, C. U. Jung, K. Rhie, B. J. Kim and Y. C. Kim. Ferromagnetic properties in Cr, Fe-doped Ge single crystals [J]. J. Appl. Phys., 2003, 93: 7670-7672
    [19] G. Kioseoglou, A. T. Hanbicki, C. H. Li, S. C. Erwin, R. Goswami and B. T. Jonker. Epitaxial growth of the diluted magnetic semiconductors CryGe1-y and CryMnxGe1-x-y [J]. Appl. Phys. Lett., 2004, 84: 1725-1727
    [20] A. T. R. D. Silva, A. Fazzio and A. Antonelli. Stabilization of substitutional Mn in silicon-based semi- -conductors [J]. Phys. Rev. B, 2004, 70: 193205-193209
    [21] A. Stroppa, S. Picozzi, A. Continenza and A. J. Freeman. Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors [J]. Phys. Rev. B, 2003, 68: 155203-155212
    [22] N. E. Aouad, B. Laaboudi, M. Kerouad, M. Saber, F. Dujardin and B. Stebe. Magnetic properties of the site-diluted spin-1 Ising superlattice [J]. Phys. Rev. B, 2001, 63: 054436-065545
    [23] Y. J. Zhao, T. S. Shishidou and A. J. Freeman. Ruderman-Kittel-Kasuya-Yosida–like ferromagnetism in MnxGe1-x [J]. Phys. Rev. Lett., 2003, 90: 047204-047207
    [24] H. M. Weng and J. M. Dong. First-principles investigation of transition-metal-doped group-IV semiconductors: RxY1–x (R = Cr,Mn,Fe, Y = Si,Ge) [J]. Phys. Rev. B, 2005, 71: 035201-035208
    [25] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B, 1993, 47: R558-R561
    [26] G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54: 11169-11186
    [27] P. E. Bl?chl Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50: 17953-17979
    [28] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45: 13244-13249
    [29] H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations [J]. Phys .Rev. B, 1976, 13: 5188-5192
    [30] H. K. Yoshida. Spin-polarized electronic structure of interstitial 3d transiton atom impurities in silicon [J]. Int. J. Mod. Phys. B, 1987, 1: 1207-1247
    [31] S. Choi, S. C. Hong, S. Cho, Y. Kim, J. B. Ketterson, C. U. Jung, K. Rhie, B. J. Kim and Y. C. Kim. Ferromagnetic properties in Cr, Fe-doped Ge single crystals [J]. J. Appl. Phys., 2003, 93: 7670-7672; Ferro- -magnetism in Cr-doped Ge [J]. J. Appl. Phys., 2002, 81: 3606-3608
    [32] G. Kioseoglou, A. T. Hanbicki, C. H. Li, S. C. Erwin, R. Goswami and B. T. Jonker. Epitaxial growth of the diluted magnetic semiconductors CryGe1–y and CryMnxGe1–x–y [J]. Appl. Phys. Lett., 2004, 84: 1725- 1727
    [33] S. C. Erwin and C. S. Hellberg. Predicted absence of ferromagnetism in manganese-doped diamond [J]. Phys. Rev. B, 2003, 68: 245206-245210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700