电子商务推荐系统中协同过滤瓶颈问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着Internet和电子商务的迅猛发展,人类已经进入信息社会时代。我国的电子商务市场发展潜力巨大,同时保持了持续高速增长势头。人们通过访问电子商务网站,可以享受足不出户选购商品的快乐和方便。但是,电子商务网站提供的大量商品对用户造成了“信息超载”,导致电子商务网站面临这样一个严峻的问题:如何在用户浏览网站时将适合该用户的商品推荐到他/她面前,克服信息超载带来的不利影响,从而促成更多的交易以增加企业销售额?
     电子商务推荐系统(E-commerce recommender systems)就是解决信息超载问题的一种方案、一种实现电子商务网站“一对一营销”战略的技术,可作为网站客户关系管理的有益组成部分,已经在许多大型网站得到应用。协同过滤是目前电子商务推荐系统中广泛使用的、最成功的推荐算法,但还存在诸如稀疏性(sparsity)、冷启动(cold-start)、可扩展性(scalability)等制约其进一步发展的瓶颈问题。因此,需要对上述协同过滤瓶颈问题展开进一步研究。本文的主要研究内容如下:
     (1)对协同过滤的国内外研究现状进行了全面的梳理和综述,在此基础上对协同过滤瓶颈问题进行了提炼。
     (2)针对基于项目评分预测的协同过滤推荐算法在缓解稀疏性问题上的不足,即目标用户最近邻搜寻不够准确和存在不必要计算耗费,首先提出了非目标用户类型区分理论,从而将用户评分项并集中的非目标用户区分为无推荐能力和有推荐能力两种类型。对于无推荐能力用户,不再计算其与目标用户的相似性以提高算法效率和改善推荐实时性;对于有推荐能力用户,则在其与目标用户存在共同评分项类时,提出了领域最近邻理论对用户评分项并集中的未评分项进行评分预测,从而使最近邻搜寻更加准确。为了防止用户评分数据的极端稀疏现象可能导致领域最近邻的用户相似性过低,进一步提出了一种基于Rough集理论的用户评分项并集未评分值填补方法,该方法能有效实现用户评分项并集的完备化,从而将其应用于评分矩阵的未评分值估算以缓解稀疏性,实现了对领域最近邻理论的有效补充。
     (3)针对冷启动中的新用户问题,提出了一种冷启动消除方法。首先,提出了用户访问项序理论,通过Web日志来获取用户访问项序,并定义了n序访问解析逻辑,将用户访问项序分解为用户访问子序集,并设计了用户访问项序的相似性计算方法来搜寻新用户的最近邻集合,进而提出了一种改进的最频繁项提取算法IMIEA来对最近邻集合的用户访问项序进行处理,得到面向新用户的top-N推荐;基于最近邻用户与新用户的用户访问项序集合,建立了用户访问项序的Markov链模型,实现了对新用户的商品导航推荐。
     (4)针对可扩展性问题,提出了一种适应用户兴趣变化的协同过滤增量更新机制,能够以较小的系统计算量在用户提交新评分后实时更新相应项目与其它项目之间的相似性数据,从而消除了传统方法在每次进行推荐计算时无法避免的扫描全体项目空间的计算耗费,有效改善了可扩展性;同时,由于这种增量更新机制保证了在推荐运算中能够使用到最新的用户评分数据,因此使得推荐服务可以适应用户兴趣偏好的动态变化,从而弥补了传统的离线计算项目相似性方法难以反映用户兴趣漂移的不足。
     (5)在本文提出的上述理论和方法基础上,设计并实现了一个电子商务协同过滤原型系统ECRec(E-Commerce Recommender system),该系统具有良好的可移植性、可维护性及开放式架构(open architecture)特征。
With the rapid development of Internet and E-commerce, human society has been step into information era. The development potential of Chinese E-commerce is enormous, and it keeps a continuously high-speed increasing. People can enjoy the happiness and convenience of purchasing products via E-commerce websites at home. However, the tremendous products category, which supplied by E-commerce websites, brings“information overload”to users. Hence, E-commerce websites faces a serious problem: how to recommend appropriate products for browsing users to overcome the detrimental effects of information overload and promote more transactions for boosting the sales of websites?
     E-commerce recommender systems are one scheme to settle information overload, and one technique to realize“one-to-one”strategy of E-commerce websites. It has been applied in many large-scale websites by being treated as a helpful part of customer relationship management for the websites. Collaborative filtering is the most successful and widely used recommendation algorithm in E-commerce recommender systems currently. However, there exist some bottleneck problems in collaborative filtering, such as sparsity, cold-start and scalability. These bottleneck problems limit the development of collaborative filtering, hence we should deeply study on the problems.
     The main research works of this paper are as follows:
     (1) On the basis of a comprehensive overview on the research of collaborative filtering at home and abroad, a summary on the bottleneck problems of collaborative filtering is given.
     (2) To address the drawbacks of item-rating-prediction collaborative filtering algorithm in alleviating sparsity, namely that the searching of nearest neighbor is not accurate enough and there exist some unnecessary computing cost in the algorithm, the non-target users differentiating theory is proposed at first, thus the non-target users in the union of user rating items are classified into two types types, one without recommending ability and the other with recommending ability. For the former users, the user similarity is not computed for improving real-time recommendation; for the latter users, , the domain nearest neighbor theory is proposed and used to predict missing values in the union of user rating items when the users have common intersections of rating item classes with target user. To avoid the possibility that the extreme sparse user ratings could make the user similarity of domain nearest neighbor too low, a rating prediction method based on rough set theory is proposed to estimate missing values in the union of user rating items. This method can realize the completing of the union of user rating items effectively, so it can be used in the evaluating of the missing values in rating matrix for alleviating sparsity. It is an effective complementation for the domain nearest neighbor theory.
     (3) To solve the“new user problem”in cold-start problem, a cold-start eliminating method for new user is proposed. Firstly, the user-access-item sequence theory is proposed. The items access by user can be obtained via web logs. Secondly, an“n-sequence access analytic logic”is proposed to decompose user’s access item sequence to user access sub-sequence set. Thirdly, a similarity measure for user access item sequence is proposed to search a new user’s nearest neighborhood. Fourthly, an improved most-frequent item recommendation extracting algorithm is proposed to process the user-access-item sequence of nearest neighborhood to obtain the top-N recommendation for the new user. On the basis of the user-access-item sequence set between the new user and her/his nearest neighborhood, a Markov chain model is proposed to realize the products navigation recommendation for the new user.
     (4) To solve the scalability problem, an incremental updating mechanism of item similarity which suits for online applications is proposed. After the submitting of one new rating by active user, recommender system will finish the real-time updating of item similarity among target item and other items. Hence, the scalability is efficiently improved by eliminating the unavoidable computing cost of conventional method to scan total item space; simultaneously, due to the proposed incremental updating mechanism promises that the newest ratings can be used in recommendation computing, then user interest changes can be integrated in the recommendation service, thus the drawback that traditional off-line computing of item similarity hard to reflect user interest changes is remedied.
     (5) On the basis of the above proposed theories and methods, an E-commerce recommender prototype system, called ECRec, is designed and realized with better portability, maintainability and the characteristics of open architecture.
引文
[1]中国互联网络信息中心.第23次中国互联网络发展状况统计报告[EB/OL]. http://www.cnnic.cn/index/ 0E/00/11/, 2009-01-13.
    [2]新华网.去年中国电子商务交易额突破2万亿元[EB/OL]. http://news.xinhuanet.com/fortune/2008-11/ 07/content_10322618.htm, 2008-11-07.
    [3] A Borchers, J Herlocker, J Konstan, et al. Ganging up on information overload[J]. Computer, 1998, 31(4): 106-108.
    [4] J B Schafer, J A Konstan, J Riedl. Recommender systems in e-commerce[C]. In: Proceedings of the 1st ACM Conference on Electronic Commerce. New York: ACM Press, 1999. 158-166.
    [5] J B Schafer, J A Konstan, J Riedl. E-commerce recommendation applications[J]. Data Mining and Knowledge Discovery, 2001, 5(1-2): 115-153.
    [6] A Demiriz. Enhancing product recommender systems on sparse binary data[J]. Data Mining and Knowledge Discovery, 2004, 9(2): 147-170.
    [7] P J Denning. Electronic Junk[J]. Communications of the ACM, 1982, 25(3): 163-165.
    [8] B J Pine. Mass customization[M]. Boston: Harvard Business School Press, 1993.
    [9] J Herlocker, J A Konstan, A Borchers, et al. An algorithmic framework for performing collaborative filtering[C]. In: Proceediings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieve. New York: ACM Press, 1999. 230-237.
    [10] G Linden, B Smith, J York. Amazon.com recommendations: item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1): 76-80.
    [11] A Das, M Datar, A Garg. Google news personalization: scalable online collaborative filtering[C]. In: Proceedings of the 16th International Conference on World Wide Web. New York: ACM Press, 2007. 271-280.
    [12] Google Inc. Google Q3 2006 Earnings Call[EB/OL]. http://seekingalpha.com/article/18858-google-q3- 2006-earnings-call-transcript, 2006-10-19.
    [13] D Decoste, D Gleich, T Kasturi, et al. Recommender systems research at Yahoo! Research labs[C]. In: Proceediings of the Beyond Personalization 2005 Workshop on the Next Stage of Recommender Systems Research, in conjunction with the 2005 International Conference on Intelligence User Interfaces (IUI 2005). 2005. 91-92.
    [14] S-T Park, D M Pennock. Applying collaborative filtering techniques to movie search for better ranking and browsing[C]. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2007. 550-559.
    [15]余力.电子商务个性化推荐若干问题研究[D].北京:北京航空航天大学, 2004.
    [16] D M Pennock, E Horvitz. Analysis of the axiomatic foundations of collaborative filtering[C]. In: Proceedings of the AAAI Workshop on Artificial Intelligence for Electronic Commerce. Menlo Park, CA: AAAI Press, 1999. 27-32.
    [17] D M Pennock, E Horvitz, C L Giles. Social choice theory and recommender systems: analysis of the axiomatic foundations of collaborative filtering[C]. In: Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence. Menlo Park, CA: AAAI Press, 2000. 729-734.
    [18] R R Yager. Fuzzy logic methods in recommender systems[J]. Fuzzy Sets and Systems, 2003, 136(2): 133-149.
    [19] J Iijima, S Ho. Common structure and properties of filtering systems[J]. Electronic Commerce Research and Applications, 2007, 6(2): 139-145.
    [20] G Karypis. Evaluation of item-based top-n recommendation algorithms[C]. In: Proceedings of the 10th International Conference on Information and Knowledge Management. New York: ACM Press, 2001: 247-254.
    [21] B M Sarwar. Sparsity, scalability, and distribution in recommender systems[D]. Minneapolis, MN: University of Minnesota, 2001.
    [22] M Deshpande, G Karypis. Item-based top-n recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177.
    [23]余力,刘鲁,罗掌华.我国电子商务推荐策略的比较分析[J].系统工程理论与实践, 2004, (8): 96-101.
    [24] V Robu, H L Poutré. Learning the structure of utility graphs used in multi-issue negotiation through collaborative filtering[C]. In: Proceediings of the 8th International Pacific Rim Workshop on Multi-Agent Systems (PRIMA’2005). Springer-Verlag, 2005.
    [25] G Greco, S Greco, E Zumpano. Collaborative filtering supporting web site navigation[J]. AI Communications, 2004, 17(3): 155-166.
    [26] R Torres, S M McNee, M Abel, et al. Enhancing Digital Libraries with TechLens[C]. In: Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04). New York: ACM Press, 2004. 228-236.
    [27] M-H Hsu. A personalized English learning recommender system for ESL students[J]. Expert Systems with Applications, 2008, 34(1): 683-688.
    [28] B Sarwar, G Karypis, J Konstan, et al. Item-based collaborative filtering recommendation algorithms[C]. In: Proceediings of the 10th International Conference on World Wide Web. New York: ACM Press, 2001. 285-295.
    [29] B Sarwar, G Karypis, J Konstan, et al. Analysis of recommendation algorithms for E-commerce[C]. In: Proceedings of the 2nd ACM Conference on Electronic Commerce. New York: ACM Press, 2000. 158-167.
    [30]曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报, 2002, 13(10): 1952-1961.
    [31] M Claypool, P Le, M Waseda, et al. Implicit interest indicators[C]. In: Proceedings of the 6th International Conference on Intelligent User Interfaces. New York: ACM Press, 2001. 33-40.
    [32] P Resnick, N Iacovou, M Suchak, et al. Grouplens: an open architecture for collaborative filtering of netnews[C]. In: Proceediings of the 1994 ACM on Computer Supported Cooperative Work. New York: ACM Press, 1994. 175-186.
    [33] J A Konstan, B N Miller, D Maltz, et al. GroupLens: applying collaborative filtering to Usenet news[J]. Communications of the ACM, 1997, 40(3): 77-87.
    [34] G Adomavicius, A Tuzhilin. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
    [35] D M Nichols. Implicit rating and filtering[C]. In: Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering. Sophia Antipolis, France: ERCIM, 1997. 31-36.
    [36] D W Oard, J Kim. Implicit feedback for recommender systems[C]. In: Proceedings of the AAAI Workshop on Recommender Systems. Menlo Park, CA: AAAI Press, 1998. 80-82.
    [37] C Shahabi, Y-S Chen. An adaptive recommendation system without explicit acquisition of user relevance feedback[J]. Distributed and Parallel Database, 2003, 14(2): 173-192.
    [38] M Papagelis, D Plexousakis, I Rousidis, et al. Qualitative analysis of user-based and item-based prediction algorithms for recommendation systems[C]. In: Proceedings of the 3rd Hellenic Data Management Symposium. 2004. 81-90.
    [39] J Han, M Kamber. Data Mining: concepts and techniques[M]. Second Edition. San Francisco: Morgan Kaufmann Publishers, 2005.
    [40] R Agrawal, R Srikant. Fast algorithms for mining association rules[C]. In: Proceedings of the 20th International Conference on Very Large Databases. San Francisco: Morgan Kaufmann Publishers, 1994. 487-499.
    [41] J S Park, M-S Chen, P S Yu. An effective hash-based algorithm for mining association rules[C]. In: Proceedings of the 1995 ACM SIGMOD Conference on Management of Data. New York: ACM Press, 1995. 175-186.
    [42] J Han, J Pei, Y Yin. Mining frequent patterns without candidate generation[R]. Simon Fraser University, Tech Rep: CMPT99-12, 1999.
    [43] R C Agarwal, C C Aggarwal, V V V Prasad. A tree projection algorithm for generation of frequent itemsets[J]. Journal Parallel and Distributed Computing, 2001, 61(3): 350-371.
    [44] R J Mooney, L Roy. Content-based book recommending using learning for text categorization[C]. In: Proceedings of the 5th ACM Conference on Digital Libraries. New York: ACM Press, 2000: 195-204.
    [45] K D Bollacker, S Lawrence, C L Giles. Discovering relevant scientific literature on the web[J]. IEEE Intelligence Systems, 2000, 15(2): 42-47.
    [46] L Chen, K Sycara. WebMate: a personal agent for browsing and searching[C]. In: Proceedings of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 132-139.
    [47] U Shardanand. Social information filtering for music recommendation[R]. MIT Media Laboratory, Tech Rep: TR-94-04, 1994.
    [48] U Shardanand, P Maes. Social information filtering: algorithms for automating“word of mouth”[C]. In: Proceedings of the 1995 ACM SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 1995. 210-217.
    [49] C Shahabi, F Banaei-Kashani, Y-S Chen, et al. Yoda: an accurate and scalable web-based recommendation system[C]. In: Proceedingseedings of the 6th International Conference on Cooperative Information Systems. London: Springer-Verlag, 2001. 418-432.
    [50] J Herlocker, J A Konstan, J Riedl. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms[J]. Information Retrieval, 2002, 5(4): 287-310.
    [51] D Maltz, K Ehrlich. Pointing the way: active collaborative filtering[C]. In: Proceediings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 1995. 202-209.
    [52] M Balabanovi?, Y Shoham. Fab: content-based, collaborative recommendation[J]. Communications of the ACM, 1997, 40(3): 66-72.
    [53] D Goldberg, D Nichols, B M Oki, et al. Using collaborative filtering to weave an information Tapestry[J]. Communication of the ACM, 1992, 35(12): 61-70.
    [54] P Resnick, H R Varian. Recommender systems[J]. Communications of the ACM, 1997, 40(3): 56-58.
    [55]陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报, 2007, 18(7): 1685-1694.
    [56] H Guo, T Kreifelts, A Voss. SOaP: social filtering through social agents[C]. In: Proceedings of the ECRIM Workshop of the 5th DELOS Workshop on Filtering and Collaborative Filtering. 1997.
    [57] C Basu, H Hirsh, W Cohen. Recommendation as classification: using social and content-based information in recommendation[C]. In: Proceediings of the 15th National Conference on Artificial intelligence/Innovative Applications of Artificial Intelligence. Menlo Park, CA: AAAI Press, 1998. 714-720.
    [58] D Billsus, M J Pazzani. Learning collaborative information filters[C]. In: Proceediings of the 15th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1998. 46-54.
    [59] R Alton-Scheidl, J Ekhall, O V Geloven, et al. SELECT: social and collaborative filtering of web documents and news[C]. In: Proceedings of the 5th ERCIM Workshop on User Interfaces for All: User-Tailored Information Environments. 1999. 23-37.
    [60] T Hofmann, J Puzieha. Latent class models for collaborative filtering[C]. In: Proceediings of the 16th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1999. 688-693.
    [61] B M Sarwar, G Karypis, J Konstan, et al. Recommender systems for large-scale e-commerce: scalableneighborhood formation using clustering[C]. In: Proceedings of the 5th International Conference on Computer and Information Technology. 2002.
    [62]余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统, 2004, 10(10): 1306-1313.
    [63] D B Terry. A tour through Tapestry[C]. In: Proceedings of the Conference on Organizational Computing Systems. New York: ACM Press, 1993. 21-30.
    [64] D A Maltz. Distributing information for collaborative filtering on Usenet net news[R]. Massachusetts Institute of Technology, Tech Rep: MIT/LCS/TR-603, 1994.
    [65] B N Miller, J T Riedl, J A Konstan. Experience with GroupLens: making Usenet useful again[C]. In: Proceedings of the USENIX 1997 Annual Technical Conference. Berkeley, CA: USENIX, 1997. 219-231.
    [66]孙小华.协同过滤系统的稀疏性与冷启动问题研究[D].杭州:浙江大学, 2005.
    [67] J Rucker, M J Polanco. SiteSeer: personalized navigation for the web[J]. Communications of the ACM, 1997, 40(3): 73-75.
    [68] L Terveen, W Hill, B Amento, et al. PHOAKS: a system for sharing recommendations[J]. Communications of the ACM, 1997, 40(3): 59-62.
    [69] H Kautz, B Selman, M Shah. Referral Web: combining social networks and collaborative filtering[J]. Communications of the ACM, 1997, 40(3): 63-65.
    [70] D M Pennock, E Horvitz, S Lawrence, et al. Collaborative filtering by personality diagnosis: a hybrid memory-and model-based approach[C]. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 2000: 473-480.
    [71] N Glance, D Arregui, M Dardenne. Knowledge Pump: supporting the flow and use of knowledge[M]. In: U Borghoff, R Pareschi, eds. Information Technology for Knowledge Management. New York: Springer-Verlag, 1998. 35-45
    [72] W Hill, L Stead, M Rosenstein, et al. Recommending and evaluating choices in a virtual community of use[C]. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
    [73] A Voss, T Kreifelts. SOaP: social agents providing people with useful information[C]. In: Proceedings of the International ACM SIGGROUP Conference on Supporting Group Work: the Integration Challenge. New York: ACM Press, 1997. 291-298.
    [74] M Claypool, A Gokhale, T Miranda. Combining content-based and collaborative filters in an online newspaper[C]. In: Proceedings of the ACM SIGIR Workshop on Recommender Systems. 1999.
    [75] A Kohrs, B Merialdo. Creating user-adapted websites by the use of collaborative filtering[J]. Interacting with Computers, 2001, 13(6): 695-716.
    [76] C Hayes, P Cunningham. Smart radio—community based music radio[J]. Knowledge-Based Systems, 2001, 14(3-4): 197-201.
    [77] C Hayes, P Cunningham. Context boosting collaborative recommendations[J]. Knowledge-Based Systems,2004, 17(2-4): 131-138.
    [78] D B Hauver, J C French. Flycasting: using collaborative filtering to generate a playlist for online radio[C]. In: Proceedings of the 1st International Conference on Web Delivering of Music (WEDELMUSIC’01). Washington, DC: IEEE Computer Society Press, 2001. 123-130.
    [79] R Burke. Hybrid recommender systems: survey and experiments[J]. User Modeling and User-Adapted Interaction, 2002, 12(4): 331-370.
    [80] M Anderson, M Ball, H Boley, et al. RACOFI: a rule-applying collaborative filtering system[C]. In: Proceedings of the IEEE/WIC COLA’03. 2003. 53-72.
    [81] J Salter, N Antonopoulos. CinemaScreen recommender agent: combining collaborative and content-based filtering[J]. IEEE Intelligent Systems, 2006, 21(1): 35-41.
    [82] K Goldberg, T Roeder, D Gupta, et al. Eigentaste: a constant time collaborative filtering algorithm[J]. Information Retrieval, 2001, 4(2): 133-151.
    [83] T Nathanson, E Bitton, K Goldberg. Eigentaste 5.0: constant-time adaptability in a recommender system using item clustering[C]. In: Proceedings of the 2007 ACM conference on Recommender systems. New York: ACM Press, 2007. 149-152.
    [84] J Cho, K Kwon, Y Park. Collaborative filtering using dual information sources[J]. IEEE Intelligent systems, 2007, 22(3). 30-38.
    [85] Q Li, S H Myaeng, B M Kim. A probabilistic music recommender considering user opinions and audio features[J]. Information Processing and Management, 2007, 43(2): 473-487.
    [86] D Bridge, J Kelleher. Experiments in sparsity reduction: using clustering in collaborative recommenders[C]. In: Proceediings of the 13th Irish International Conference on Artificial Intelligence and Cognitive Science. London: Springer-Verlag, 2002. 144-149.
    [87] J Kelleher, D Bridge. Rectree centroid: an accurate, scalable collaborative recommender[C]. In: Proceediings of the 14th Irish Conference on Artificial Intelligence and Cognitive Science. 2003. 89-94.
    [88] S-T Park, D Pennock, O Madani, et al. Na?ve filterbots for robust cold-start recommendations[C]. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2006. 699-705.
    [89] E Vozalis, K G Margaritis. Analysis of recommender systems’algorithms[C]. In: Proceedings of the 6th Hellenic European Research Conference on Computer Mathematics and its Applications (HERCMA-2003). 2003.
    [90] Z Huang, H Chen, D Zeng. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering[J]. ACM Transaction on Information Systems, 2004, 22(1): 116-142.
    [91] N Good, J B Schafer, J A Konstan, et al. Combining collaborative filtering with personal agents for better recommendations[C]. In: Proceediings of the 16th National Conference on Artificial Intelligence and the 11th Innovative Applications of Artificial Intelligence Conference. Menlo Park, CA: AAAI Press, 1999:439-446.
    [92] B M Sarwar, J A Konstan, A Borchers, et al. Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system[C]. In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work. New York: ACM Press, 1998. 345-354.
    [93]吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报, 2006, 25(1): 55-62.
    [94] J S Breese, D Heckerman, C Kadie. Empirical analysis of predictive algorithms for collaborative filtering[R]. Microsoft Research, Tech Rep: MSR-TR-98-12, 1998.
    [95] R Jin, J Y Chai, L Si. An automatic weighting scheme for collaborative filtering[C]: In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2004. 337-344.
    [96] J Wang, A P Vries, M J T Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2006. 501-508.
    [97] L Si, R Jin. Unified filtering by combining collaborative filtering and content-based filtering via mixture model and exponential model[C]. In: Proceedings of the 13th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2004. 156-157.
    [98]张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展, 2006, 43(4): 667-672.
    [99]周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展, 2004, 41(10): 1842-1847.
    [100] C Zeng, C-X Xing, L-Z Zhou. Similarity measure and instance selection for collaborative filtering[C]. In: Proceedings of the 12th International Conference on World Wide Web. New York: ACM Press, 2003. 652-658.
    [101] C Zeng, C-X Xing, L-Z Zhou, et al. Similarity measure and instance selection for collaborative filtering[J]. International Journal of Electronic Commerce, 2004, 8(4): 115-129.
    [102] J D M Rennie, N Srebro. Fast maximum margin matrix factorization for collaborative prediction[C]. In: Proceedings of the 22nd International Conference on Machine Learning. New York: ACM Press, 2005. 713-719.
    [103] D DeCoste. Collaborative prediction using ensembles of maximum margin matrix factorizations[C]. In: Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006. 249-256.
    [104] M Wu. Collaborative prediction via ensembles of matrix factorizations[C]. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD Cup and Workshop 2007). 2007. 43-47.
    [105] S Zhang, W Wang, J Ford, et al. Learning from incomplete ratings using non-negative matrixfactorization[C]. In: Proceedings of the 6th SIAM Conference on Data Mining. 2006. 549-553.
    [106] B M Sarwar, J A Konstan, A Borchers, et al. Applying knowledge from KDD to recommender systems[R]. University of Minnesota, Tech Rep: 99-013, 1999.
    [107] B M Sarwar, G Karypis, J A Konstan, et al. Application of dimensionality reduction in recommender system—a case study[R]. University of Minnesota, Tech Rep: TR 00-043, 2000.
    [108] S Deerwester, S T Dumais, G W Furnas, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6): 391-407.
    [109] B Sarwar, G Karypis, J Konstan, et al. Incremental SVD-based algorithms for highly scaleable recommender systems[C]. In: Proceedings of the 5th International Conference on Computer and Information Technology, 2002.
    [110]赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展, 2002, 39(8): 986-991.
    [111] M G Vozalis, K G Margaritis. Using SVD and demographic data for the enhancement of generalized collaborative filtering[J]. Information Sciences, 2007, 177(15): 3017-3037.
    [112] D Kim, B-J Yum. Collaborative filtering based on iterative principal component analysis[J]. Expert Systems with Applications, 2005, 28: 823-830.
    [113] K Honda, H Ichihashi. Component-wise robust linear fuzzy clustering for collaborative filtering[J]. International Journal of Approximate Reasoning, 2004, 37(2): 127-144.
    [114] K Honda, I Hidetomo, A Notsu. A sequential learning algorithm for collaborative filtering with linear fuzzy clustering[C]. In: Proceedings of the 2006 IEEE International Conference on Systems, Man, and Cybernetics, 2006. 1056– 1061.
    [115]王自强,冯博琴.个性化推荐系统中遗漏值处理方法的研究[J].西安交通大学学报, 2004, 38(8): 808-810.
    [116] M Papagelis, D Plexousakis, T Kutsuras. Alleviating the sparsity problem of collaborative filtering using trust inferences[C]. In: Proceediings of the iTrust 2005, LNCS3477. Berlin: Springer-Verlag, 2005. 224-239.
    [117] C C Aggarwal. On the effects of dimensionality reduction on high dimensional similarity search[C]. In: Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM Press, 2001. 256-266.
    [118]邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报, 2003, 14(9): 1621-1628.
    [119]邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统, 2004, 25(9): 1665-1670.
    [120] C C Aggarwal, J L Wolf, K-L Wu, et al. Horting hatches an egg: a new graph-theoretic approach to collaborative filtering[C]. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 1999. 201-212.
    [121]邓爱林.电子商务推荐系统关键技术研究[D].上海:复旦大学, 2003.
    [122] A M Rashid, I Albert, D Cosley, et al. Getting to know you: learning new user preferences in recommender systems[C]. In: Proceedings of the 7th International Conference on Intelligence User Interfaces. New York: ACM Press, 2002. 127-134.
    [123] A Kohrs, B Merialdo. Improving collaborative filtering for new-users by smart object selection[C]. In: Proceedings of International Conference on Media Features. 2001.
    [124] K Yu, A Schwaighofer, V Tresp, et al. Probabilistic memory-based collaborative filtering[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(1): 56-69.
    [125] A M Rashid, S K Lam, G Karypis, et al. ClustKNN: a highly scalable hybrid model- & memory-based CF algorithm[C]. In: Proceedings of the WebKDD 2006: KDD Workshop on Web Mining and Web Usage Analysis, in conjunction with the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006) . 2006.
    [126] L H Ungar, D P Foster. Clustering methods for collaborative filtering[C]. In: Proceedings of the Workshop on Recommendation Systems at the 15th National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 1998: 112-125.
    [127] F Zhang, H Chang. A collaborative filtering algorithm employing genetic clustering to ameliorate the scalability issue[C]. In: Proceedings of the IEEE International Conference on e-Business Engineering (ICEBE’06). Washington, DC: IEEE Computer Society Press, 2006. 331-338.
    [128]李涛,王建东,叶飞跃, et al.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术, 2007, 29(7): 1178-1182.
    [129] S H S Chee, J Han, K Wang. RecTree: an efficient collaborative filtering method[C]. In: Proceedings of the 3rd International Conference on Data Warehousing and Knowledge Discovery. London: Springer-Verlag, 2001. 141-151.
    [130] K Yu, X Xu, J Tao, et al. Instance selection techniques for memory-based collaborative filtering[C]. In: Proceedings of the 2nd SIAM International Conference on Data Mining (SDM’02). 2002.
    [131] G-R Xue, C Lin, Q Yang, et al. Scalable collaborative filtering using cluster-based smoothing[C]. In: Proceedings of the 28th Annual International ACM SIGIR conference on Research and Development in Information Retrieval. New York: ACM Press, 2005. 114-121.
    [132] M O’Conner, J Herlocker. Clustering items for collaborative filtering[C]. In: Proceedings of the ACM SIGIR Workshop on Recommender Systems. 1999.
    [133] B M Kim, Q Li. Probabilistic model estimation for collaborative filtering based on items attributes[C]. In: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence. Washington, DC: IEEE Computer Society Press, 2004. 185-191.
    [134] A Kohrs, B Merialdo. Clustering for collaborative filtering applications[C]. In: Proceedings of the International Conference on Computational Intelligence for Modelling Control and Automation. Amsterdam,Netherlands: IOS Press, 1999. 199-204.
    [135] P Symeonidis, A Nanopoulos, A Papadopoulos, et al. Nearest-Biclusters collaborative filtering[C]. In: Proceedings of WebKDD 2006: KDD Workshop on Web Mining and Web Usage Analysis, in conjunction with the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006). 2006. 36-55.
    [136] P A D Castro, F O Franca. Evaluating the performance of a biclustering algorithm applied to collaborative filtering-a comparative analysis[C]. In: Proceedings of the 7th International Conference on Hybrid Intelligent Systems. Washington, DC: IEEE Computer Society Press, 2007. 65-70.
    [137] T George, S Merugu. A scalable collaborative filtering framework based on co-clustering[C]. In: Proceedings of the 5th IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society Press, 2005. 625-628.
    [138] T. Hoffman. Latent semantic models for collaborative filtering[J]. ACM Transactions on Information Systems, 2004, 22(1): 89-115.
    [139]李超然,徐雁斐,张亮.协同推荐pLSA模型的动态修正[J].计算机工程, 2005, 31(20): 46-48.
    [140]张亮,李敏强.面向协同过滤的真实偏好高斯混合模型[J].系统工程学报, 2007, 22(6): 613-619.
    [141] Y-H Chen, E I George. A Bayesian model for collaborative filtering[C]. In: Proceediings of the 7th International Workshop on Artificial Intelligence and Statistics. San Francisco: Morgan Kaufmann Publishers, 1999.
    [142] K Miyahara, M J Pazzani. Collaborative filtering with the simple Bayesian classifier[C]. In: Proceedings of the 6th Pacific Rim International Conference on Artificial Intelligence. 2000. 679-689.
    [143] S Kuwata, N Ueda. One-shot collaborative filtering[C]. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining. Piscataway, NJ: IEEE Press, 2007. 300-307.
    [144] M G Vozalis, K G Margaritis. Applying SVD on item-based filtering[C]. In: Proceedings of the 5th International Conference on Intelligent System Design and Applications. Washington, DC: IEEE Computer Society Press, 2005. 464-469.
    [145] Y Ding, X Li. Time weight collaborative filtering[C]. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2005. 485-492.
    [146]邢春晓,高凤荣,战思南等.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展, 2007, 44(2): 296-301.
    [147] H Ma, I King, M R Lyu. Effective missing data prediction for collaborative filtering[C]. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2007. 39-46.
    [148] K Yu, X Xu, M Ester, et al. Selecting relevant instances for efficient and accurate collaborative filtering[C]. In: Proceedings of the 10th International Conference on Information and Knowledge Management. New York: ACM Press, 2001. 239-246.
    [149] K Yu, Z Wen, X Xu, et al. Feature weighting and instance selection for collaborative filtering[C]. In: Proceediings of the 12th International Workshop on Database and Expert Systems Applications. Washington, DC: IEEE Computer Society Press, 2001. 285-290.
    [150] K Yu, X Xu, A Schwaighofer, et al. Removing redundancy and inconsistency in memory-based collaborative filtering[C]. In: Proceedings of the 11th International Conference on Information and Knowledge Management. New York: ACM Press, 2002. 52-59.
    [151] K Yu, X Xu, M Ester, et al. Feature weighting and instance selection for collaborative filtering: an information-theoretic approach[J]. Knowledge and Information systems, 2003, 5(2): 201-224.
    [152] D Lemire, A Maclachlan. Slope one predictors for online rating-based collaborative filtering[C]. In: Proceedings of the 5th SIAM International Conference on Data Mining. 2005. 471-476.
    [153] S Vucetic, Z Obradovic. A regression-based approach for scaling-up personalized recommender systems in e-commerce[C]. In: Proceedings of the Web Mining for E-Commerce Workshop at the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2000.
    [154] S Vucetic, Z Obradovic. Collaborative filtering using a regression-based approach[J]. Knowledge and Information Systems, 2005, 7(1): 1-22.
    [155] H J Ahn. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem[J]. Information Sciences, 2008, 178(1): 37-51.
    [156] J L Herlocker, J A Konstan, L G Terveen, et al. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems, 2004, 22(1): 5-53.
    [157] Z Pawlak. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, (11): 341-356.
    [158] R Slowinski, J Stefanowski. Handing various types of uncertainty in the rough set approach[C]. In: Proceedings of the International Workshop on Rough Sets and Knowledge Discovery: Rough Sets, Fuzzy Sets and Knowledge Discovery. London: Springer-Verlag, 1993. 366-376.
    [159]杨善林.智能决策方法与智能决策支持系统[M].北京:科学出版社, 2005.
    [160] R Slowinski, D Vanderpooten. A generalized definition of rough approximations based on similarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2): 331-336.
    [161]李登峰.模糊多目标多人决策与对策[M].北京:国防工业出版社, 2003.
    [162] T W Yan, M Jacobsen, H Garcia-Molina, et al. From user access patterns to dynamic hypertext linking[J]. Computer Networks and ISDN Systems, 1996, 28(7-11). 1007-1014.
    [163] C Shahabi, A M Zarkesh, J Adibi, et al. Knowledge discovery from users web-page navigation[C]. In: Proceedings of the 7th International Workshop on Research Issues in Data Engineering (RIDE’97). Washington, DC: IEEE Computer Society, 1997. 20-29.
    [164] B Mobasher, R Cooley, J Srivastava. Creating adaptive web sites through usage-based clustering of URLs[C]. In: Proceedings of the 1999 Workshop on Knowledge and Data Engineering Exchange. Washington, DC: IEEE Computer Society, 1999. 19-25.
    [165] O Nasraoui, H Frigui, A Joshi, et al. Mining web access logs using relational competitive fuzzy clustering[C]. In: Proceedings of the 8th International Fuzzy Systems Association World Congress. London: Springer-Verlag, 1999.
    [166]王实,高文,李锦涛,等.路径聚类:在Web站点中的知识发现[J].计算机研究与发展, 2001, 38(4): 482-486.
    [167] A G Büchner, M D Mulvenna. Discovering internet marketing intelligence through online analytical web usage mining[J]. ACM SIGMOD Record, 1998, 27(4): 54-61.
    [168]史忠植.知识发现[M].北京:清华大学出版社, 2002..
    [169] V I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals[J]. Soviet Physics Doklady, 1966, 10(8): 707-710.
    [170]龚光鲁,钱敏平.应用随机过程教程及在算法和智能计算中的随机模型[M].北京:清华大学出版社, 2004.
    [171]邢永康,马少平.多Markov链用户浏览预测模型[J].计算机学报, 2003, 26(11): 1510-1517.
    [172]马丽.电子商务个性化推荐技术分析及比较[J].计算机系统应用, 2008, 17(12): 58-61.
    [173] M Papagelis, I Rousidis, D Plexousakis, et al. Incremental collaborative filtering for highly-scalable recommendation algorithms[C]. In: Proceediings of ISMIS 2005, LNAI 3488. Berlin: Springer-Verlag, 2005. 553-561.
    [174] R Rosenthal, R Rosnow. Essentials of behavioral research: methods and data and analysis[M]. 2nd. New York: McGraw-Hill, 1991.
    [175]霍华,冯博琴.基于压缩稀疏矩阵矢量相乘的文本相似度计算[J].小型微型计算机系统, 2005, 26(6): 988-990.
    [176]严蔚敏,吴伟民.数据结构(C语言版)[M].北京:清华大学出版社, 2002
    [177]谢润,裴峥,何昌莲.属性添加情况下的概念格重构算法[J].系统工程学报, 2007, 22(4): 426-431.
    [178] P D Boucher-Ryan, D Bridge. Collaborative recommending using formal concept analysis[J]. Knowledge-Based Systems, 2006, 19(5): 309-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700