非对称磁场重联的Cluster数值分析及一个宇宙线源模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用cluster卫星数据对磁层顶边界层的小尺度结构作了分析研究,并对一个可能的宇宙线源模型做了初步的研究。
     陈涛等的数值模拟研究表明,当边界层受到不均匀横向剪切流冲击时,被冲击的同向磁场区磁力线逐渐弯曲,在弯曲的反磁场区,出现磁岛,然后再电流片区发生磁场重联,且逐渐形成准稳态的“反K型”的重联结构,在法向上,磁场出现多极性。
     磁层顶边界层可以看作是受到非均匀太阳风动压冲击的边界层。因此,在磁层顶的局域法向上的速度沿着切线方向存在剪切,并且磁场出现多极结构。我们利用Cluster卫星穿越磁层顶时FGM探测到的磁场数据,利用磁场的最小变量分析方法,计算了在2001年2月20日的一次穿越中磁层顶的法向矢量,并发现在法向上,磁场的确表现出了多极结构,再利用CIS仪器探测到的太阳风速度(质子速度)首次提出,法线方向的速度沿着剪切方向(磁场变化最大、中间)具有量级为几十公里的速度剪切。
     到目前宇宙线的起源没有定论。被认为是它的点源模型有:太阳、超新星爆发、白矮星和脉冲星(告诉旋转的中子星)等。由于引力引起的塌缩使白矮星和脉冲星演化为黑洞。黑洞也存在辐射机制,它简单可概括为:在黑洞的视界处当真空产生的粒子对时,负能量的例子会被黑洞吸收,正能量的粒子就能辐射出去。这种辐射可能成为宇宙线的一个源。本文我们利用求解视界附近狄拉克方程,计算了Vaidya-Bonner-de Sitter黑洞的Hawking温度和辐射谱。发现在黑洞的视界附近的确辐射Dirac粒子,这种辐射可能成为某种能量的宇宙线的源。同时,我们研究了一下黑洞的另外一些热力学性质。利用改进后的计算黑洞熵的brick-wall模型,计算了带电非稳态黑洞Vaidya-Bonner黑洞的熵,得到它的熵仍然与其世界面积成正比。
In this thesis, with ESA's Cluster data, we analyze the little scale structures of magnetopause boundary layers and study a possible source model of cosmic rays .Chen's numerical simulation research finds that when the transverse flow is not homogeneous, magnetic field lines are to be forced bent and reconnection occurs in formerly identical magnetic field directed region during the impacting period, and a new "Reverse K" pattern reconnection configuration is formed in the current sheet region. On the normal vector, the magnetic field has multi-polar structure.Magnetopause boundary layer is always impacted by the solar wind from the bow shock. So, we can suppose on the local normal vector of magnetopause there are velocity shear, and the magnetic field also has multi-polar structure similar to the numerical simulation. Using the magnetic field data detected by FGM on CLUSTER, we determine the normal vector when Cluster satellites past through the magnetopause region on Feb 20, 2001 with Minimum Variance analysis method. We found on the local normal vector, the detected magnetic field has multi-polar structure. Also using proton bulk velocity detected by CIS, we calculated the velocity shear on the normal vector and it is about tens of kilometer per second.Up to now, there are not definite source models of cosmic rays though they come from the Sun, supernovas' explosion, the white dwarfs and pulsars,et al.Because of gravity, the white dwarfs and pulsars collapse to black holes. There is a radiation mechanics at the event horizons of black hole. It is that at the event horizons of a black hole, there are vacuum particle pairs and the negative particles is absorbed by the black hole as the positive one runs away. This radiation possibly is a source
    of cosmic rays. Using DIRAC equation near black-holes'event horizon, we calculate the temperatures of Vaidya-Bonner-de Sitter black hole and its radiation spectrum. It is shown that near the event horizons, there are Dirac particles. At the same time, we study other thermodynamic charaters of the black hole. Via the improved brick-wall model proposed by t' Hooft in 1985, we calculate the entropy of charged non-stationary Vaidya-Bonner black hole and conclude that the entropy is proportional to its horizons.
引文
[1] 张惠民,《地球科学概论》,气象出版社,1987。
    [2] 邓建松等,《LATEX2e科技排版指南》科学出版社,2001.
    [3] 濮祖荫、付绥燕、刘振兴,磁场湍动重联的新模型,科学通报,39,1584,1994。
    [4] 叶永、吕保维,《空间物理学进展》,四川科学技术出版社,1988。
    [5] 刘振兴、濮祖荫等,《太空物理学》,哈尔滨工业大学出版社,。
    [6] Margaret G. Kivelson等著,曹晋滨等译《太空物理学导论》,科学出版社,2001。
    [7] O. C. Allofer著,徐春娴、朱清棋译,《宇宙线入门》,科学出版社,1987。
    [8] 林忠四郎、早川幸男主编,师华译,《宇宙物理学》,科学出版社,1981。
    [9] 陈涛,博士学位论文,1999.
    [10] 王水,李罗权,《磁场重联》,安徽教育出版社,1999。
    [11] 涂传诒等,《日地空间物理学》,科学出版社,1988。
    [12] 徐家鸾、金尚宪,《等离子体物理学》,原子能出版社,1981。
    [13] 赵峥,《黑洞的热性质与时空的奇异性》,北京师范大学出版社,1999。
    [14] 刘辽,广义相对论,高等教育出版社,1987.
    [15] 曾谨言,量子力学(卷2),科学出版社,1997.
    [16] 王竹溪,热力学,高等教育出版社,1983.
    [17] S.温伯格,引力论与宇宙论,科学出版社,1980。
    [18] T. Gold, Origin of the radiation near the earth discovered by means of satellites, Nature, 183, 355, 1959.
    [19] D. T. Young, Near-equatorial magnetospheric particles from le V to~1 Me V, Rev. Geophys. Space Phys. 21, 402, 1983.
    [20] Axford, W. I. , and C. O. Hines, A unifying theory of high latitude geophysical phenomena and geomagnetic storms, Can. J. Phys. , 39, 1433, 1961.
    [21] Axford, W. I. , Petschek, H. E. , and Siscoe, G. L. , Tails of the magnetoshpere, J. Geophys. Res. , 70, 1231, 1965.
    [22] Biernat, H. K. , Heyn, M. F. and Semenov, V. S. , Unsteady Petschek reconnection, J. Geophys. Res. , 92, 3392, 1987
    [23] Birk, G. T. and A. Otto, The resistive tearing instability for generalized resistivity models: Applications, Phys. Fluids B, 1746-1754, 1991.
    [24] Burkhart, G. R. , J. F. Drake, and J. Chen, Structure of the disspation region during magnetic reconnection in collisionless plasma, J. Geophys. Res. , 96, 11539-11553, 1991.
    [25] Cai, H. J. , D. Q. Ding, and L. C. Lee, Momentum transport near a magnetic X line in collisionless reconnection, J. Geophys. Res. , 99, 35-42, 1994.
    [26] Cao, F. , and J. R. Kan, Oblique tearing of a thin current sheet: Implications for patchy magnetopause reconnection, J. Geophys. Res. , 96, 5859-5867, 1991.
    [27] Chen, T. , Z. X. Liu, X. X. Zhang, Transient reconnection caused by the impact and switch-off of a transverse shear flow, Physics of Plasma, 6, 2393-2400, 1999
    [28] Chen, T. , Z. X. Liu, X. X. Zhang, Multiple Bipolar Structure of Normal Magnetic Field at The Magnetopause, Planetary and Space Science, 51, 381-386, 2003.
    [29] choe, J. Y. and Beard, D. B. , The compressed geomagnetic field as a function of dipole tilt Planet. Space Sci, 22, 595, 1974.
    [30] Cowley, S. W. H. , The causes of convection in the Earth's magnetosphere, A review of developments during the IMF, Rev. Geophys. , 20, 531, 1982.
    [31] Deeds, D. and G. V. Hoven, Turbulent excitation of spontaneous reconnection, J. Plasma Phys, 42 269-290, 1989.
    [32] Ding, D. Q. , L. C. Lee, and Z. W. Ma, Different FTE signatures generated by the bursty single X line reconnection and the multiple X line reconnection at the dayside magnetopause, J. Geophys. Res. , 96, 57-66, 1991.
    [33] Ding, D. Q. , L. C. Lee, and C. F. Kennel, The beta dependence of of the collisionless tearing instability at the dayside magnetopause, J. Geophys. Res. , 97, 8257-8267, 1992a.
    [34] Ding, D. Q. , L. C. Lee, and D. W. Swift, Particle simulation of driven collisionless magnetic reconnection at the dayside magnetopause, J. Geophys. Res. , 97, 8453-8461, 1992b.
    [35] Drake, J. F. , and G. R. Burkhart, Magnetic Blowout during collisionless reconnection, Geophys. Res. Lett. , 19, 1077-1080, 1992.
    [36] drackjg Drake, J. F. , J. Gerber, and R. G. Kleva, Turbulence and transport in the magnetopause current layer, J. Geophys. Res. , 99, 11211-11223, 1994.
    [37] Dungey, J. W. , Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett. , 6, 47, 1961.
    [38] D. A. Knoll and L. Chacon, Magnetic Reconnection in the two-dimensional Kelvin-Helmholtz Instability, Phys. Rev Letts, 88, 21, 215003, 2002
    [39] Fedder, J. A. , C. M. Mobarry and J. G. Lyon, Reconnection Voltage as a function of IMF clock angle, Geophys. Res. Lett. , 18, 1047-1050, 1991.
    [40] Furth, H. P. , The "mirror instability for finite particle gyro-radius, Nucl. Fusion: Suppl. , pt. bf 1, 169-175, 1962.
    [41] Fuselier, S. A. , D. M. Klumpar, and E. G. Shelley, Ion reflection and transmission during reconnection at the Earth's subsolar magnetopause, Geophys. Res. Lett. , 18, 139-142, 1991.
    [42] Fuselier, S. A. , E. G. Shelley, and D. M. Klumpar, Mass density and pressure changes across the dayside magnetopause, J. Geophys. Res. , 98, 3935-3942, 1993.
    [43] Galeev, A. A. , M. M. Kuznetsova, and L. M. Zeleny, Magnetopause stability threshold for patchy reconnection, Space Sci. Rev. , 44, 1, 1986.
    [44] Gekelman, W. , H. Pfister, and J. R. Kan, Experimental observations of patchy reconnections associated with the three-dimensional tearing instability, J. Geophys. Res. , bf 96, 3829-3833, 1991.
    [45] Goodrich and Cargill, An investigation of the structure of rotational discontinuities, Geophys. Res. Lett. , 18, 65-68, 1991.
    [46] Gosling, J. T. , Thomsen, M. F. , Bame, S. J. , Elphic, R. C. , Russell, C. T. , Observations of reconnection of interplanetary and lobe magnetic field lines at the high latitude magnetopause, J. Geophys. Res. , 96, 14097-14106, 1991.
    [47] Hau, L.-N. , and B. U. Sonnerup, Self-consistent gyroviscous fluid model of rotational discontinuities, J. Geophys. Res. , 96, 15767-15778, 1991.
    [48] Heikkila, W. J. , Penetration of Magnetosheath Plasma to Low Altitudes through the Dayside Magnetospheric Cusps, J. Geophys. Res. , 76, 883, 1971.
    [49] Heikkila, W. J. , Impulsive Plasma Transport Through Magnetopause, Geophys. Research Letters, 9, 159, 1982.
    [50] Jacob, D. J. , and C. Cattel, High-time resolution measurements of upstream magnetic field and plasma conditions during flux transfer events at the Earth's dayside magnetopause, Geophys. Res. Lett. , 20, 2007-2010, 1993.
    [51] Krauss-Varban, D. Structure and length scales of rotational discontinuities, J. Geophys. Res. , 98, 3907-3917, 1993.
    [52] Kuznetsova, M. M. , M. Roth, Z. Wang, and M. Ashour-Abdalla, Effect of the relative shear flow velocity on the structure and stability of the magnetopause current layer, J. Geophys. Res. , 99, 4095-4104, 1994.
    [53] La Belle-Hamer, A. L. , A. Otto, and L. C. Lee, Magnetic reconnection in the presence of sheared plasma flow: Intermediate shock formation, Phys. Plasmas, 1, 706-713, 1994.
    [54] Le, G. , C. T. Russell, and H. Kuo, Flux transfer events: spontaneous or driven, Geophys. Res. Lett. , 20, 791-794, 1993.
    [55] Lee, L. C. , and Z. F. Fu, A theory of magnetic flux transfer at the earth's magnetopause, Geophys. Res. Lett. , 12, 105, 1985.
    [56] Lee, L. C. , Z. W. Ma, Z. , Z. F. Fu, and A. Otto, Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasma, J. Geophys. Res. , 98, 3943-3951, 1993.
    [57] Lee, L. C. and Z. F. Fu, Multiple X-line reconnection, 1. A criterion for the transition from a single X-line o a multiple X-line reconnection, J. Geophys. Res. , 91, 6807, 1986.
    [58] Lin, Y. , and L. C. Lee, Structure of the dayside reconnection layer in resistive MHD and hybrid models, J. Geophys. Res. , 98, 3919-3934, 1993.
    [59] Lin, Y. , and L. C. Lee, Structure of reconnection layers in the magnetosphere, Space Sci. Rey. , 65, pp. 59-179, 1994a.
    [60] Lin, Y. , and L. C. Lee, Reconnection layer at the flank magnetopause in the presence of shear flow, Geophys. Res. Lett. , 21, 855-858, 1994b.
    [61] Lin, Y. , L. C. Lee, and C. F. Kennel, The role of intermediate shocks in magnetic reconnection, Geophys. Res. Lett. , 19, 229-232, 1992.
    [62] Lockwood, M. , Flux transfer events at the dayside magnetopause: transient reconnection or magnetosheath dynamic pressure pulses, J. Geophys. Res. , 95, 5497-5509, 1991.
    [63] Lockwood, M. , and M. N. Wild, On the quasi-periodic nature of magnetopause flux transfer events, J. Geophys. Res. , 98, 5935-5940, 1993.
    [64] Lyons, L. R. and D. C. , J. Geophys. Res. , 97, 2955-2960, 1992.
    [65] Ma, Z. W. , A. Otto, L. C. Lee, Core magnetic field enhancement in single X line, multiple X line, and patchy reconnection, J. Geophys. Res. , 99, 6125-6136, 1994.
    [66] Mandt, M. E. , R. E. Denton, and J. F. Drake, Transition to whistler mediated magnetic reconnection, Geophys. Res. Lett. , 21, 73-76, 1994.
    [67] Ogino, T. , R. J. Walker, R. J. , and M. Ashour-Abdalla, A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward, IEEE Trans. Plasma Sci. , 20, 6, 817-828, 1992.
    [68] Otto, A. , Three-dimensional magnetohydrodynamic simulations of processes at the Earth's magnetopause, Geophys. Astrophys. Fluid Dynamics, 62, 69-82, 1991.
    [69] Otto, A. , and U. Arendt, Numerical simulation of flux transfer events at the magnetopause: electron dynamics, Adv. Space Res. , 11, No. 9, 129-132, 1991.
    [70] Otto, A. , and G. T. Birk, Resistive instability of periodic current sheets, Phys Fluids, B, 4, 3811-3813, 1992.
    [71] Priest, E. R. , The magnetohydrodynamics of current sheet, Rep. Prog. Phys. 48, 955, 1985.
    [72] Pudovkin, M. I. and Semenov, V. S. , Magnetic field reconnection theory and the solar windmagnetosphere interaction: A review, Space Sci. Rev. , 41, 1, 1985
    [73] Rosenbauer, H. , Grunwaldt, H. , Montgomery, M. D. , Paschmann, G. and Sckopke, N, Heos 2 plasma observations in the distant polar magnetosphere: The plasma mantle, J. Geophys. Res. , 80, 2723, 1975.
    [74] Russell, C. T. , and R. C. Elphic, Initial ISEE magnetometer results: magnetopause observations, Space Sci. Ray. , 22, 681, 1978.
    [75] Semenov, V. S. , Vasiljev, E. P. and Pudovkin, A. I. , A scheme o nonstationary magnetic field line reconnection, Geomagne. Aaron. , 24, 448, 1984.
    [76] Shi, Y. , C. C. Wu, and L. C. Lee, Magnetic field reconnection patterns at the dayside magnetopause: An MHD simulation study, J. Geophys. Res. , 96, 17627-17650, 1991.
    [77] Sibeck, D. G. , Transient events in the outer magnetosphere: Boundary waves or FTE's, J. Geophys. Res. , 97, 4009-4026, 1992.
    [78] Sibeck, D. G. , Transient magnetic field signatures at high latitudes, J. Geophys. Res. , 98, 243-256, 1993.
    [79] Sibeck, D. G. , and M. F. Smith, Magnetospheric plasma flows associated with boundary waves and flux transfer events, Geophys. Res. Lett. , 19, 1903-1906, 1992.
    [80] Smith, M. F. , The magnetopause, Ray. Geophys. , suppl. , 29, 1008, 1991.
    [81] Smith, M. F. , and C. J. Owen, Temperature anisotropies in a magnetospheric FTE, Geophys. Res. Lett. , 19, 1907-1910, 1992.
    [82] Smith, M. F. , and D. J. Rodgers, Ion distributions at the dayside magnetopause, J. Geophys. Res. , 96, 11617-11624, 1991.
    [83] S. P, Jin et al, A 2.5 dimensional MHD simulation …, J. Geophys Res. , 106 A12, 29807-29830, 2001
    [84] Song, P. , G. , Le, and C. T. Russell, Observational differences between flux transfer events and surface waves at the dayside magnetopause, J. Geophys. Res. , 99, 2309-2320, 1994.
    [85] Sonnerup, B. U. ?. , L. -N. Hau, and D. W. Walthour, On steady field-aligned double-adiabatic flow, J. Geophys. Res. , 97, 12015-12028, 1992.
    [86] T. Chen, Z. X. Liu, Transient reconnectivn caused by the impact and step of a transverse shear flow, 6, 1999.
    [87] Tetreault, D. , Turbulent relaxation of magnetic fields. 1. coarse-grained disspation and reconnection, J. Geophys. Res. , 97, 8531-8540, 1992a.
    [88] Tetreault, D. , Turbulent relaxation of magnetic fields. 2. selforganization and intermittency, J. Geophys. Res. , 97, 8541-8547, 1992b.
    [89] Vasquez, B. J. , and P. J. Cargill, A wave model interpretation of the evolution of rotational discontinuities, J. Geophys. Res. , 98, 1277-1292, 1993.
    [90] Wang, Z. , and M. Ashour-Abdalla, Topological variation in the magnetic field line at the dayside magnetopause, J. Geophys. Res. , 97, 8245-8255, 1992.
    [91] Wang, Z. , and M. Ashour-Abdalla, Simulation of magnetic field line stochasticity at the magnetopause, J. Geophys. Res. , 99, 2321-2334, 1994.
    [92] Walker, R. J. , and T. Ogino, A global magnetohydrodynamic simulation of the magnetosphere when the interplanetary magnetic field is southward: the onset of magnetotail reconnection, J. Geophys. Res. , 98, 17235-17249, 1993.
    [93] Walthour, D. W. , B. U. Sonnerup, G. Paschmann, H. L u hr, D. Klumpar, and T. Potemra, Remote sensing of two-dimensional magnetopause structures, J. Geophys. Res. , 98, 1489 1504, 1993.
    [94] Walthour, D. W. , B. U. Sonnerup, R. Elphic, and C. T. Russsel, Double vision: remote sensing of a flux transfer event with ISEE 1 and 2, J. Geophys. Res. , 99, 8555-8563, 1994.
    [95] Williams, D. T. and Meed, G. D. , Night-side magnetospheric configuration as obtained from trapped electrons at 1100 kilometers, J. Geophys. Res. , 70, 3017, 1965
    [96] Wu, C. C. , and T. Hada, On rotational discontinuities in both two-fluid and hybrid models, J. Geophys. Res. , 96, 3755-3767, 1991.
    [97] Wu, C. C. , and C. F. Kennel, Structural relationships for time-dependent intermediate shocks, Geophys. Res. Lett. , 19, 2087-2090, 1992.
    [98] Yan, M. , A. Otto, D. Muzzell, and L. C. Lee, Tearing-mode instability in a multiple current sheet system, J. Geophys. Res. , 99, 8657-8669, 1994.
    [99] A Zeiler , Biskamp et al, Three-Dimensional particle simulations of collisionless magnetic reconncetion, J. Geophys Res. , 107 A9, 2001JA00287, 2002
    [100] Z. X. Liu and Y. D. Hu, Local magnetic field reconnection cause by vortices in the flow field, Geophys. Res. Lett. 15, 752, 1988.
    [101] Z. X. Liu Z. W. Zhu, F. Li and Pu Z. Y, Topology and Signature of a Model for Flux Transfer Events, J. Geophys. Res. , 97, 19351, 1992
    [102] Z. Y. Pu, M. Yei and Z. X. Liu, J. Geophys. Res 95, 10559, 1990.
    [103] B. Carter, Phy. Rev. Lett. 26, 331, 1971.
    [104] B. Hartle, S. T. Hawking, Phy. Rev. D13 2188,1976.
    [105] D. C. Robinson, Phy. Rev. D10, 458, 1974.
    [106] D, X, Wang, Phy. Rev. D53, 5705, 1996.
    [107] Gao Changjun, Zhao Zheng, Int. J. Theo. Phy. , 2000.
    [108] G't Hooft, Nucl. Phys. B256, 727, 1985.
    [109] J. D. Bekenstein, Phy. Rev. D7 2333, 1973.
    [110] J. M. Bardeen, B. Carter, S. W. Hawking, Commu. Math. Phy. 31 161, 1973.
    [111] J. Weber, Phy. Rev. Lett. 22, 1320 1969.
    [112] J. Weber, Phy. Rev. Lett. 24, 276 1970.
    [113] J. Weber, Phy. Rev. Lett. 25, 180 1970.
    [114] J. W. York, Phy. Rev. D28, 2929, 1983.
    [115] L. Susskind, J. Uglum, Phy. Rev. D58, 2700, 1994.
    [116] Liu Wenbiao, Zhao Zheng, Phy. Rev. D61 063003, 2000.
    [117] Li Xiang, Zhao Zheng, Phy. Rev. D62 104001, (2000).
    [118] R. M. Wald, General Relativity. Chicago and London: University of Chicago Press, 1984.
    [119] S. N. Solodukhin, Phy. Rev. D51 609, 1995; D51 618, 1995.
    [120] S. W. Hawking, Phy. Rev. Lett. 26, 13441971.
    [121] S. W. Hawking, Commun. Math. Phy. 43 199, 1975.
    [122] S. W. Hawking, Nature 248 30, 1974.
    [123] T. Damour and Ruffini, Phy. Rev. D14 332, 1976.
    [124] W. Iseal, Phy. Lett. A57, 107, 1976.
    [125] V. Frolov, I. Novikov, Phy. Rev. D48, 4545, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700