弯曲时空基本量子系统的动力学演化、几何相和量子纠缠
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息科学的发展,推动了人们对各种可应用于量子信息处理的物理体系的广泛研究。然而,由于量子系统与环境之间存在着不可避免的相互作用,任何真实的量子系统都不可能是孤立系统。不同的环境可能会导致量子系统的动力学演化行为完全不同。因此,通过研究开放量子系统的动力学演化行为,我们可以获得与其耦合的环境的相关信息。在本文中,我们利用开放量子系统理论研究了一个基本量子系统的动力学演化,并讨论了其几何相和量子纠缠行为,得到了以下主要结论:
     1.我们研究了Schwarzschild黑洞外部固定位置处与Unruh真空中涨落电磁场耦合的两能级原子的动力学演化问题。通过求解这个两能级原子的主方程,我们分析了其跃迁率和最终所达到的稳态。结果表明,在经历了足够长时间的演化之后,原子会热化到一个与初态无关,而与其跃迁频率有关的热混合态,这一行为与一个稳态非热平衡环境中电介质附近原子的动力学演化行为非常类似。因此,我们的结果一方面说明了Unruh真空非热平衡的本性,另一方面也表明,原则上可以在实验室中利用人工超材料构建稳态非热平衡电磁环境来模拟黑洞Hawking辐射的某些特征。
     2.以开放量子系统的动力学演化为基础,我们进一步研究了一个开放两能级原子的几何相。我们分别考虑了Minkowski真空中的匀加速原子、理想无穷大全反射平面附近的惯性原子,以及Schwarzschild黑洞外部的静止原子这三种情形。对于Minkowski真空中匀加速两能级原子,我们发现其几何相存在由加速度带来的修正项,因此原则上可以利用干涉实验通过测量惯性原子和加速原子的几何相位差来验证Unruh效应。对于理想无穷大全反射平面附近的情形,原子的几何相与其到边界的距离有关,这是由于边界的存在使得真空中涨落电磁场的模式发生了改变。根据这一特点,我们提出了利用原子干涉实验测量到边界距离不同的惯性原子之间的几何相位差来直接探测被反射边界所改变的电磁场真空涨落的方案。对于Schwarzschild黑洞外部的情形,我们分别讨论了与Boulware, Unruh和Hartle-Hawking三种真空标量场耦合的静止原子的几何相。我们发现,与平直时空的结果相比,Schwarzschild黑洞外部原子的几何相存在由时空曲率反散射和Hawking辐射带来的修正项,原则上为我们观测弯曲时空量子效应提供了新的思路。
     3.在单原子动力学演化研究的基础上,我们进一步研究了弯曲时空中两原子系统的动力学演化,并探讨了它们之间量子纠缠产生问题。首先,我们讨论了与Schwarzschild时空中真空标量场耦合的静止两原子系统平衡态的量子纠缠,从一个新的角度阐释了黑洞的Hawking辐射。之后,我们研究了与de Sitter不变真空中无质量共形耦合标量场相互作用的静止两原子系统初始时刻的量子纠缠产生条件以及平衡态的量子纠缠。我们的结果表明,尽管de Sitter时空中单个原子的辐射行为与平直时空热库中原子的行为相同,但是两原子之间量子纠缠的产生条件不同,因此原则上可以依此区分这两种不同的环境。
With the rapid development of quantum information science, physical systems which can be applied in quantum information processing have been extensively studied. However, any real quantum system has to be an open system because of its inevitable coupling to the external environment. Different types of environment may lead to distinct dynamical behaviors of quantum systems. Therefore, one may draw information on the nature of the environment from the dynamics of the open quantum system. In this dissertation, we study the dynamical behaviors, the geometric phase, and the quantum entanglement of an elementary quantum system. The main conclusions come as follows:
     1. We investigate the dynamics of a radially polarizable two-level atom in multipolar coupling to fluctuating electromagnetic fields in the Unruh vacuum which is placed at a fixed radial distance outside a Schwarzschild black hole. With the help of the master equation, we analyze the transition rates between atomic energy levels and the steady state the atom is driven to. It is shown that, regardless of its initial state, the atom always thermalizes towards a steady thermal state at an effective temperature which depends on the transition frequency of the atom. This counterintuitive behavior is, however, in close analogy to what happens for a two-level atom in a stationary environment out of thermal equilibrium near a dielectric body of certain geometry and dielectric permittivity. On one hand, our result is a reflection of the fact that the Unruh vacuum exhibits a nonequilibrium nature. On the other hand, it suggests, in principle, a possibility to verify the peculiar features of the Hawking radiation by observing the dynamical behaviors for a two-level atom in tabletop experiments using engineered metamaterials with desired dielectric properties and superconducting circuits for an experimental implementation of two-level atoms.
     2. Based on the dynamics of open quantum systems, we study the geometric phase of an open two-level atom. We consider a uniformly accelerated one in the Minkowski vacuum, an inertial one near an infinite ideal reflecting boundary, and a static one outside a Schwarzschild black hole. For a uniformly accelerated atom, it is found that there is a correction to the geometric phase due to the acceleration, and this phase variation can in principle be observed via atomic interferometry between the accelerated atom and an inertial one, thus providing an evidence of the Unruh effect. For an inertial atom whose trajectory is parallel to a reflecting boundary, we find that the geometric phase is position dependent as a result of the presence of the boundary which modifies the quantum fluctuations, hence a possible way is proposed to detect vacuum fluctuations in experiments involving geometric phase. For a static atom outside a Schwarzschild black hole, we consider the atom coupled to a bath of fluctuating scalar fields in the Boulware, Unruh and Hartle-Hawking vacua respectively. We find the geometric phase is corrected by the presence of the backscattering of spacetime curvature and the Hawking radiation. So, a measurement of the change of the geometric phase as opposed to that in a flat spacetime can in principle demonstrate the existence of the Hawking radiation.
     3. Further, we have investigated the dynamics of open two-atom systems and the entanglement generation. First, we discuss the asymptotic entanglement of two mutually independent two-level atoms placed at a fixed radial distance outside a Schwarzschild black hole, and demonstrate the Hawking effect from a new perspective. Then, we study the entanglement generation between two mu-tually independent static two-level atoms in de Sitter spacetime. It is shown that, although a single atom behaves as if there were a thermal bath, the conditions for entanglement generation are different for the two situations. So, in principle, one can tell whether he is in a thermal bath or in de Sitter space by checking the entanglement creation between two initially separable static atoms in certain circumstances.
引文
[1]Lord Kelvin, Nineteenth-Century Clouds over the Dynamical Theory of Heat and Light [J]. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 1901,6:1.
    [2]N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space [M]. Cambridge University Press, Cambridge, England,1982.
    [3]S. Hawking, Black hole explosions? [J]. Nature 1974,248:30.
    [4]S. Hawking, Particle creation by black holes [J]. Commun. Math. Phys.1975,43: 199.
    [5]G. Gibbons and S. Hawking, Cosmological event horizons, thermodynamics and particle creation [J]. Phys. Rev. D 1977,15:2738.
    [6]C. Bernard and A. Duncan, Regulation and Renormalization of Quantum Field Theory in Curved Space-Time [J]. Ann. Phys.1977,107:201.
    [7]W. G. Unruh, Experimental Black-Hole Evaporation? [J]. Phys. Rev. Lett.1981, 46:1351.
    [8]W. Zhou and H. Yu, Can spacetime curvature induced corrections to Lamb shift be observable? [J]. J. High Energy Phys.2012,10:172.
    [9]W. G. Unruh, Notes on black-hole evaporation [J]. Phys. Rev. D 1976,14:870.
    [10]B. S. DeWitt, Quantum field theory in curved spacetime [J]. Phys. Rep.1975,19: 295.
    [11]H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems [M]. Ox-ford University Press, Oxford,2002.
    [12]V. Gorini, A. Kossakowski, and E. C. G. Surdarshan, Completely positive dynamical semigroups of N-level systems [J]. J. Math. Phys.1976.17:821.
    [13]G. Lindblad, On the generators of quantum dynamical semigroups [J]. Commun. Math. Phys.1976,48:119.
    [14]M. V. Berry, Quantel Phase Factors Accompanying Adiabatic Changes [J]. Proc. R. Soc. Lond. A 1984,392:45.
    [15]Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution [J]. Phys. Rev. Lett.1987,58:1593.
    [16]J. Samuel and R. Bhandari, General Setting for Berry's Phase [J]. Phys. Rev. Lett. 1988,60:2339.
    [17]A. Shapere and F. Wilczek (editors), Geometric Phases in Physics [M]. World Scientific, Singapore,1989.
    [18]S. R. Jain and A. K. Pati, Adiabatic Geometric Phases and Response Functions [J]. Phys. Rev. Lett.1998,80:650.
    [19]D. Xiao, M. Chang and Q. Niu, Berry phase effects on electronic properties [J]. Rev. Mod. Phys.2010,82:1959.
    [20]J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, Geometric quantum computa-tion using nuclear magnetic resonance [J]. Nature 2000,403:869.
    [21]A. Uhlmann, Parallel transport and " quantum holonomy" along density operators [J]. Rep. Math. Phys.1986,24:229.
    [22]E. Sjoqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson, D. K. L. Oi, and V. Vedral, Geometric Phases for Mixed States in Interferometry [J]. Phys. Rev. Lett. 2000,85:2845.
    [23]K. Singh, D. M. Tong, K. Basu, J. Chen, and J. Du, Geometric phases for nonde-generate and degenerate mixed states [J]. Phys. Rev. A 2003,67:032106.
    [24]D. M. Tong, E. Sjoqvist, L. C. Kwek, and C. H. Oh, Kinematic Approach to the Mixed State Geometric Phase in Nonunitary Evolution [J]. Phys. Rev. Lett.2004, 93:080405.
    [25]J. Du, P. Zou, M. Shi, L. C. Kwek, J. Pan, C. H. Oh, A. Ekert, D. K. L. Oi, and M. Ericsson, Observation of Geometric Phases for Mixed States using NMR Interferometry [J]. Phys. Rev. Lett.2003,91:100403.
    [26]M. Ericsson, D. Achilles, J. T. Barreiro, D. Branning, N. A. Peters, and P. G. Kwiat, Measurement of Geometric Phase for Mixed States Using Single Photon Interferometry [J]. Phys. Rev. Lett.2005,94:050401.
    [27]A. Einstein, B. Podolsky and N. Rosen, Can Quantum-Mechanical Description of Physical Reality be Considered Complete? [J]. Phys. Rev.1935,47:777.
    [28]E. Schrodinger, Die Gegenwartige Situation in der Quanten-Mechanik [J]. Natur-wissenschaften 1935,23:807.
    [29]M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information [M]. Cambridge University Press, Cambridge, England,2000.
    [30]C. H. Bennett and S. J. Wiesner, Communication via one-and two-particle opera-tors on Einstein-Podolsky-Rosen states [J]. Phys. Rev. Lett.1992,69:2881.
    [31]C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett.1993,70:1895.
    [32]A. K. Ekert, Quantum cryptography based on Bell's theorem [J]. Phys. Rev. Lett. 1991,67:661.
    [33]V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Metrology [J]. Phys. Rev. Lett. 2006,96:010401.
    [34]R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entangle-ment [J]. Rev. Mod. Phys.2009,81:865.
    [35]A. Peres, Separability Criterion for Density Matrices [J]. Phys. Rev. Lett.1996,77: 1413.
    [36]M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states:neces-sary and sufficient conditions [J]. Phys. Lett. A 1996,223:1.
    [37]张永德,量子信息物理原理[M].科学出版社,北京,2005.
    [38]S. Wu, X. Chen, and Y. Zhang, A necessary and sufficient criterion for multipartite separable states [J]. Phys. Lett. A 2000,275:244.
    [39]B. M. Terhal, Bell inequalities and the separability criterion [J]. Phys. Lett. A 2000, 271:319.
    [40]C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations [J]. Phys. Rev. A 1996,53:2046.
    [41]V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying Entanglement [J]. Phys. Rev. Lett.1997,78:2275.
    [42]V. Vedral and M. B. Plenio, Entanglement measures and purification procedures [J]. Phys. Rev. A 1998,57:1619.
    [43]C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels [J]. Phys. Rev. Lett.1996,76:722.
    [44]C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction [J]. Phys. Rev. A 1996,54:3824.
    [45]S. Hill and W. K. Wootters, Entanglement of a Pair of Quantum Bits [J]. Phys. Rev. Lett.1997,78:5022.
    [46]W. K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits [J]. Phys. Rev. Lett.1998,80:2245.
    [47]E. M. Rains, Rigorous treatment of distillable entanglement [J]. Phys. Rev. A 1999, 60:173.
    [48]S. Popescu and D. Rohrlich, Thermodynamics and the Measure of Entanglement [J]. Phys. Rev. A 1997,56:R3319.
    [49]L. de Broglie, Waves and Quanta [J]. Nature,1923,112:540.
    [50]A. Einstein, Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [J]. Annalen der Physik,1905,17:132.
    [51]W. Greiner, J. Reinhardt, Field quantization [M]. Springer Press, Berlin,1996.
    [52]S. A. Fulling, Nonuniqueness of canonical field quantization in Riemannian space-time [J]. Phys. Rev. D 1973,7:2850.
    [53]P. C. W. Davies, Scalar particle production in Schwarzschild and Rindler metrics [J]. J. Phys. A 1975,8:609.
    [54]L. C. B. Crispino, A. Higuchi and G. E. A. Matsas, The Unruh effect and its applications [J]. Rev. Mod. Phys.2008,80:787.
    [55]W. Rindler, Kurskal space and the uniformly accelerated frame [J]. Am. J. Phys. 1966,34:1174.
    [56]J. D. Bekenstein, Black holes and entropy [J]. Phys. Rev. D 1973,7:2333.
    [57]M. D. Kruskal, Maximal extension of Schwarzs child metric [J]. Phys. Rev.1960, 119:1743.
    [58]D. G. Boulware, Quantum field theory in Schwarzs child and Rindler spaces [J]. Phys. Rev. D 1975,11:1404.
    [59]J. Hartle and S. Hawking, Path-integral derivation of black-hole radiance [J]. Phys. Rev. D 1976,13:2188.
    [60]T. Damour and R. Ruffini, Black-hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism [J]. Phys. Rev. D 1976,14:332.
    [61]T. Jacobson, Introductory lectures on black hole thermodynamics [R]. Lectures given at the University of Utrecht, The Netherlands,1996.
    [62]W. de Sitter, On the Relativity of Inertia:Remarks Concerning Einstein's Latest Hypothesis [J]. Proc. Kon. Ned. Akad. Wet.1917,19:1217.
    [63]W. de Sitter. The Curvature of Space [J]. Proc. Kon. Ned. Akad. Wet.1917,20: 229.
    [64]E. A. Tagirov, Consequences of field quantization in de sitter type cosmological models [J]. Ann. Phys. (NY) 1973,76:561.
    [65]C. Schomblond and P. Spindel, Conditions d'unicite pour le propagateur △1(x,y) du champ scalaire dans l'univers de de Sitter [J]. Ann. Inst. Henri Poincare A 1976, 25:67.
    [66]T. S. Bunch and P. C. W. Davies, Quantum field theory in de Sitter space-Renormalization by point-splitting [J]. Proc. R. Soc. London A 1978,360:117.
    [67]L. H. Ford, Quantum instability of de Sitter spacetime [J]. Phys. Rev. D 1985,31: 710.
    [68]E. Mottola, Particle creation in de Sitter space [J]. Phys. Rev. D 1985,31:754.
    [69]B. Allen, Vacuum states in de Sitter space [J]. Phys. Rev. D 1985,32:3136.
    [70]B. Allen and A. Folacci, Massless minimally coupled scalar field in de Sitter space [J]. Phys. Rev. D 1987,35:3771.
    [71]D. Polarski, The scalar wave equation on static de Sitter and anti-de Sitter spaces [J]. Class, and Quant. Grav.1989,6:893.
    [72]D. Polarski, Minimally coupled scalar field on the static de Sitter space [J]. Phys. Rev. D 1990,41:442.
    [73]T. Mishima and A. Nakayama, Notes on the Hawking effect in de Sitter space Ⅰ [J]. Phys. Rev. D 1988,37:348.
    [74]A. Nakayama, Notes on the Hawking effect in de Sitter space Ⅱ [J]. Phys. Rev. D 1988,37:354.
    [75]D. Polarski, On the Hawking effect in de Sitter space [J]. Class, and Quant. Grav. 1989,6:717.
    [76]D. Polarski, Massive scalar field on the static de Sitter space [J]. Phys. Rev. D 1990, 41:2519.
    [77]A. Lapedes, Bogoliubov transformations, propagators, and the Hawking effect [J]. J. Math. Phys.1978,19:2289.
    [78]D. Lohiya and N. Panchapakesan, Massless scalar field in a de Sitter universe and its thermal flux [J]. J. Phys. A 1978,11:1963.
    [79]B. Garbrecht and T. Prokopec, Unruh response functions for scalar fields in de Sitter space [J]. Class. Quant. Grav.2004,21:4993.
    [80]H. Yu, Open Quantum System Approach to the Gibbons-Hawking Effect of de Sitter Space-Time [J]. Phys. Rev. Lett.2011,106:061101.
    [81]J. Hu, W. Zhou and H. Yu, Dynamics of an elementary quantum system, outside a radiating Schwarzschild black hole [J]. Phys. Rev. A 2013,88:085035.
    [82]F. Benatti and R. Floreanini, Entanglement generation in uniformly accelerating atoms:Reexamination of the Unruh effect [J]. Phys. Rev. A 2004.70:012112.
    [83]H. Yu and J. Zhang, Understanding Hawking radiation in the framework of open quantum systems [J]. Phys. Rev. D 2007,77:024031.
    [84]J. Hu and H. Yu. Geometric phase for an accelerated two-level atom and the Unruh effect [J]. Phys. Rev. A 2012,85:032105.
    [85]H. Yu and J. Hu, Detecting modified vacuum fluctuations due to the presence of a boundary by means of the geometric phase [J]. Phys. Rev. A 2012,86:064103.
    [86]J. Hu and H. Yu, Geometric phase outside a Schwarzschild black hole and the Hawking effect [J]. J. High Energy Phys.2012,09:062.
    [87]J. Hu and H. Yu, Entanglement generation outside a Schwarzschild black hole and the Hawking effect [J]. J. High Energy Phys.2011,08:137.
    [88]J. Hu and H. Yu, Quantum entanglement generation in de Sitter spacetime [J]. Phys. Rev. D 2013,88:104003.
    [89]M. Parikh and F. Wilczek, Hawking Radiation As Tunneling [J]. Phys. Rev. Lett. 2000,85:5042.
    [90]A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy [J]. Phys. Lett. B 1996,379:99.
    [91]S. P. Robinson and F. Wilczek, Relationship between Hawking Radiation and Grav-itational Anomalies [J]. Phys. Rev. Lett.2005,95:011303.
    [92]S. Iso, H. Umetsu, and F. Wilczek, Hawking Radiation from Charged Black Holes via Gauge and Gravitational Anomalies [J]. Phys. Rev. Lett.2006,96:151302.
    [93]S. Deser and O. Levin, Mapping Hawking into Unruh thermal properties [J]. Phys. Rev. D 1999,59:064004.
    [94]H. Yu and W. Zhou, Relationship between Hawking radiation from black holes and spontaneous excitation of atoms [J]. Phys. Rev. D 2007,76:027503.
    [95]H. Yu and W. Zhou, Do static atoms outside a Schwarzschild black hole sponta-neously excite? [J]. Phys. Rev. D 2007,76:044023.
    [96]W. Zhou and H. Yu, Lamb shift for static atoms outside a Schwarzschild black hole [J]. Phys. Rev. D 2010,82:104030.
    [97]M. S. Turner, Could primordial black holes be the source of the cosmic ray antipro-tons? [J]. Nature 1982,297:379.
    [98]D. E. Alexandreas et al., New limit on the rate-density of evaporating black holes [J]. Phys. Rev. Lett.1993,71:2524.
    [99]P. C. W. Davies, Quantum vacuum noise in physics and cosmology [J]. Chaos 2001, 11:539.
    [100]G. W. Gibbons and E. P. S. Shellard, Tales of Singularities [J]. Science 2002,295: 1476.
    [101]G. Taubes, String Theorists Find a Rosetta Stone [J]. Science 1999,285:512.
    [102]C. Barcelo, S. Liberati, and M. Visser, Analogue Gravity [J]. Living Rev. Relativity 2005,8:12.
    [103]L. J. Garay, J. R. Anglin, J. I. Cirac and P. Zoller, Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates [J]. Phys. Rev. Lett.2000,85:4643.
    [104]T. G. Philbin et al., Fiber-Optical Analogue of the Event Horizon [J]. Science 2008, 319:1367.
    [105]P. D. Nation et al., Analogue Hawking Radiation in a dc-SQUID Array Transmis-sion Line [J]. Phys. Rev. Lett.2009,103:087004.
    [106]C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications [M]. Wiley-VCH, Weinheim,2004.
    [107]J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits [J]. Nature 2011,474:589.
    [108]Y. Makhlin, G. Schon and A. Shnirman, Quantum-state engineering with Joseph-son junction devices [J]. Rev. Mod. Phys.2001,73:357.
    [109]J. Q. You and F. Nori, Superconducting circuits and quantum information [J]. Phys. Today 2005,58:42.
    [110]J. Clarke and F. K. Wilhelm, Superconducting quantum bits [J]. Nature 2008,453: 1031.
    [111]I. Chiorescu et al., Coherent dynamics of a flux qubit coupled to a harmonic oscil-lator [J]. Nature 2004,431:159.
    [112]A. Wallraff et al, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics [J]. Nature 2004,431:162.
    [113]A. Fragner et al., Resolving Vacuum Fluctuations in an Electrical Circuit by Mea-suring the Lamb Shift [J]. Science 2008,322:1357.
    [114]U. Weiss, Quantum Dissipative Systems [M]. World Scientific, Singapore,1993.
    [115]L. C. B. Crispino, A. Higuchi and G. E. A. Matsas, Quantization of the electromag-netic field outside static black holes and its application to low-energy phenomena [J]. Phys. Rev. D 2001,63:124008.
    [116]W. Zhou and H. Yu, Spontaneous excitation of a static multilevel atom coupled with electromagnetic vacuum fluctuations in Schwarzschild spacetime [J]. Class. Quan-tum Grav.2012,29:085003.
    [117]G. Compagno, R. Passante, and F. Persico, Atom-Field Interactions and Dressed Atoms [M]. Cambridge University Press, Cambridge, England,1995.
    [118]S. Takagi, Prog. Theor. Phys. Suppl. Vacuum noise and stress induced by uniform. acceleration [J].1986,88:1.
    [119]C. J. Borde, J. Sharma, P. Tourrenc, and T. Damour, Theoretical approaches to laser spectroscopy in the presence of gravitational fields [J]. J. Physique Lett.1983, 44:983.
    [120]B. Bellomo, R. Messina, D. Felbacq, and M. Antezza, Quantum systems in a sta-tionary environment out of thermal equilibrium [J]. Phys. Rev. A 2013,87:012101.
    [121]Z. Zhu, H. Yu and S. Lu, Spontaneous excitation of an accelerated hydrogen atom coupled with electromagnetic vacuum fluctuations [J]. Phys. Rev. D 2006,73: 107501.
    [122]R. Passante, Radiative level shifts of an accelerated hydrogen atom and the Unruh effect in quantum electrodynamics [J]. Phys. Rev. A 1998,57:1950.
    [123]R. Fabbri, Scattering and absorption of electromagnetic waves by a Schwarzschiid black hole [J]. Phys. Rev. D 1975,12:933.
    [124]A. Carollo, I. Fuentes-Guridi, M. F. Santos, and V. Vedral, Geometric Phase in Open Systems [J]. Phys. Rev. Lett.2003,90:160402.
    [125]A. Carollo, I. Fuentes-Guridi, M. F. Santos, and V. Vedral, Spin-1/2 Geometric Phase Driven by Decohering Quantum Fields [J]. Phys. Rev. Lett.2004,92:020402.
    [126]A. T. Rezakhani and P. Zanardi, Temperature effects on mixed-state geometric phase [J]. Phys. Rev. A 2006,73:052117.
    [127]F. C. Lombardo and P. I. Villar, Geometric phases in open systems:A model to study how they are corrected by decoherence [J]. Phys. Rev. A 2006,74:042311.
    [128]J. J Chen, J. H. An, Q. J. Tong, H. G. Luo, and C. H. Oh, Non-Markovian effect on the geometric phase of a dissipative qubit [J]. Phys. Rev. A 2010,81:022120.
    [129]K.-P. Marzlin, S. Ghose, and B. C. Sanders, Geometric Phase Distributions for Open Quantum Systems [J]. Phys. Rev. Lett.2004,93:260402.
    [130]E. Martin-Martinez, I. Fuentes and R. B. Mann, Using Berry's Phase to Detect the Unruh Effect at Lower Accelerations [J]. Phys. Rev. Lett.2011,107:131301.
    [131]F. M. Cucchietti, J.-F. Zhang, F. C. Lombardo, P. I. Villar, and R. Laflamme, Geometric Phase with Nonunitary Evolution in the Presence of a Quantum Critical Bath [J]. Phys. Rev. Lett.2010,105:240406.
    [132]J. M. Raimond, M. Brune, and S. Haroche, Colloquium:Manipulating quantum entanglement with atoms and photons in a cavity [J]. Rev. Mod. Phys.2001,73: 565.
    [133]M. O. Scully, V.V. Kocharovsky, A. Belyanin, E. Fry, and F. Capasso, Enhancing Acceleration Radiation from Ground-State Atoms via Cavity Quantum Electrody-namics [J]. Phys. Rev. Lett.2003,91:243004.
    [134]E. Sjoqvist, A new phase in quantum computation [J]. Physics 2008,1:35.
    [135]W. E. Lamb, Jr. and R. C. Retherford, Fine structure of the hydrogen atom by a microwave method [J]. Phys. Rev.1947,72:241.
    [136]H. A. Bethe, The electromagnetic shift of energy levels [J]. Phys. Rev.1947.72: 339.
    [137]H. B. G. Casimir, On the attraction between two perfectly conducting plates [J]. Proc. K. Ned. Akad. Wet.1948,51:793.
    [138]H. B. G. Casimir and D. Polder, The Influence of Retardation on the London-van der Waals Forces [J]. Phys. Rev.1948,73:360.
    [139]G. L. Klimchitskaya, U. Mohideen, V. M. Mostepanenko, The Casimir force be-tween real materials:Experiment and theory [J]. Rev. Mod. Phys.2009,81:1827.
    [140]H. Yu and L. H. Ford, Light-cone fluctuations in flat spacetimes with nontrivial topology [J]. Phys. Rev. D 1999.60:084023.
    [141]H. Yu and L. H. Ford, Lightcone fluctuations in quantum gravity and extra dimen-sions [J]. Phys. Lett. B 2000,496:107.
    [142]H. Yu and P. X. Wu, Quantum fluctuations of the light cone in four-dimensional spacetime with parallel plane boundaries [J]. Phys. Rev. D 2003,68:084019.
    [143]H. Yu, N. F. Svaiter and L. H. Ford, Quantum light-cone fluctuations in compact-ified spacetimes [J]. Phys. Rev. D 2009,80:124019.
    [144]H. Yu and L. H. Ford, Vacuumfluctuations and Brownian motion of a charged test particle near a reflecting boundary [J]. Phys. Rev. D 2004,70:065009.
    [145]H. Yu and J. Chen, Brownian motion of a charged test particle in vacuum between two conducting plates [J]. Phys. Rev. D 2004,70:125006.
    [146]H. Yu, X. Fu and P. Wu, Brownian motion of a charged test particle driven by vacuum fluctuations near a dielectric half-space [J]. J. Phys. A:Math. Theor.2008, 41:335402.
    [147]H. Yu, J. Chen and P. Wu, Brownian motion of a charged test particle near a reflecting boundary at finite temperature [J]. J. High Energy Phys.2006,02:058.
    [148]M. Brune et al, From Lamb shift to light shifts:Vacuum and subphoton cavity fields measured by atomic phase sensitive detection [J]. Phys. Rev. Lett.1994,72: 3339.
    [149]M. Marrocco, M. Weidinger, R. T. Sang, and H. Walther, Quantum Electrodynamic Shifts of Rydberg Energy Levels between Parallel Metal Plates [J]. Phys. Rev. Lett. 1998,81:5784.
    [150]A. H. Safavi-Naeini et al., Observation of Quantum Motion of a Nanomechanical Resonator [J]. Phys. Rev. Lett.2012,108:033602.
    [151]R. R. Chance, A. Prock, and R. Silbey, Comments on the classical theory of energy transfer [J]. J. Chem. Phys.1975,62:2245.
    [152]M. S. Yeung and T. K. Gustafson, Spontaneous emission near an absorbing dielec-tric surface [J]. Phys. Rev. A 1996,54:5227.
    [153]J. Audretsch and R. Muler, Spontaneous excitation of an accelerated atom:The contributions of vacuum fluctuations and radiation reaction [J]. Phys. Rev. A 1994, 50:1755.
    [154]S. M. Christensen and S. A. Fulling, Trace anomalies and the Hawking effect [J]. Phys. Rev. D 1977,15:2088.
    [155]P. Candelas, Vacuum polarization in Schwarzschild spacetime [J]. Phys. Rev. D 1980,21:2185.
    [156]T. Yu and J. H. Eberly, Phonon decoherence of quantum entanglement:robust and fragile states [J]. Phys. Rev. B 2002,66:193306.
    [157]T. Yu and J. H. Eberly, Qubit disentanglement and decoherence via dephasing [J]. Phys. Rev. B 2003,68:165322.
    [158]P. J. Dodd and J. J. Halliwell, Disentanglement and decoherence by open system dynamics [J]. Phys. Rev. A 2004,69:052105.
    [159]P. J. Dodd, Disentanglement by dissipative open system dynamics [J]. Phys. Rev. A 2004,69:052106.
    [160]D. Braun, Creation of Entanglement by Interaction with a Common Heat Bath [J]. Phys. Rev. Lett.2002,89:277901.
    [161]M. S. Kim, J. Lee, D. Ahn and P. L. Knight, Entanglement induced by a single-mode heat environment [J]. Phys. Rev. A 2002,65:040101 (R).
    [162]F. Benatti, R. Floreanini and M. Piani, Environment Induced Entanglement in Markovian Dissipative Dynamics [J]. Phys. R.ev. Lett.2003,91:070402.
    [163]F. Benatti and R. Floreanini, Controlling entanglement generation in external quantum fields [J]. J. Opt. B 2005,7:S429.
    [164]J. Zhang and H. Yu, Unruh effect and entanglement generation for accelerated atoms near a reflecting boundary [J]. Phys. Rev. D 2007,75:104014.
    [165]G. V. Steeg and N. C. Menicucci, Entangling power of an expanding universe [J]. Phys. Rev. D 2009,79:044027.
    [166]Y. Nambu and Y. Ohsumi, Classical and quantum correlations of scalar field in the inflationary universe [J]. Phys. Rev. D 2011,84:044028.
    [167]E. Martin-Martinez and N. C. Menicucci, Cosmological quantum entanglement [J]. Class. Quantum Grav.2012,29:224003.
    [168]B. L. Hu, S.-Y. Lin, and J. Louko, Relativistic quantum information in detectors-field interactions [J]. Class. Quantum Grav.2012,29:224005.
    [169]H. Yu and J. Zhang, Hawking radiation and thermalization phenomena in open quantum systems [A]. In J. Luo et al. (eds.), Proceedings of the Ninth Asia-Pacific International Conference on Gravitation and Astrophysics [C]. World Scientific Pub-lishing, Singpore,2010:319.
    [170]J. Zhang and H. Yu, Entanglement generation in atoms immersed in a thermal bath of external quantum scalar fields with a boundary [J]. Phys. Rev. A 2007,75: 012101.
    [171]J. B. Pendry, D. Schurig, and D. R. Smith, Controlling Electromagnetic Fields [J]. Science 2006,312:1780.
    [172]B. P. Jenson and A. C. Ottewill, Renormalized electromagnetic stress tensor in Schwarzschild spacetime [J]. Phys. Rev. D 1989,39:1130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700