Necker立方体知觉翻转的事件相关功能磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双稳态图形(如Necker立方体)是近年研究视觉意识常用的模型。当持续注视Necker立方体时,大脑会觉知到两种相互竞争的知觉,特定时刻只能觉知到一种知觉,并持续数秒,随即被另一种知觉所替代,这一过程称之为知觉翻转或内源性知觉翻转。在这一过程中,刺激物(Nekcer立方体)的物理属性没有发生任何改变,因此这一过程的神经生理就是视知觉意识的神经生理过程。
     目前的资料显示额顶叶皮质参与了双稳态图形的知觉翻转过程,并发挥一般性作用。我们使用功能磁共振方法验证这一观点,并尝试寻找是否存在其它皮质对双稳态图形知觉翻转过程有贡献及与额顶叶皮质功能的关系。使用修订后的不连续的刺激呈现序列,采集并比较知觉翻转过程的功能磁共振信号。功能磁共振结果显示(1)相对于内源性知觉稳定过程,内源性翻转过程除了激活额顶叶皮质以外,颞叶也有相同程度的激活(2)并且相对于外源性翻转过程,在内源性翻转过程时,右侧颞叶表现出更高的激活,而额顶叶皮质的激活程度却没有差异。
     双稳态图形的知觉翻转过程是有多个皮质脑区(包括额顶叶皮质,颞叶皮质)共同参与完成的,额顶叶对于双稳态图形的知觉翻转过程是必要的,贡献一般性的作用。右侧中间颞叶(并非双侧颞叶)对于双稳态图形的知觉翻转可能更为重要,并可能在多个皮质部位功能整合过程中发挥作用。
Ambiguous figures (such as the Necker cube and Rubins face/vase) produce a type of bistable percepts that has been used for studying visual consciousness. When human observers prolong view ambiguous figures, two percepts mutually compete for perceptual dominance so that each percept is aware for a few seconds while the other is suppressed. The process is well known as perceptual reversal or endogenous reversal. As the alternation occurs in the absence of any changes in the stimulus itself, variation in brain activity can be directly related to conscious perception. These recent results indicated a general role for fronto-parietal areas in mediating the perceptual transitions experienced during bistable figures.
     We examine the hypothesis by using functional magnetic resonance imaging (fMRI) and try to explore‘extra’brain area possibly related to the process of perceptual reversal. The fMRI reveal that (1) in contrast to endogenous stability, event-related response were observed in fronto-parietal areas as well as temporal gyrus in endogenous reversal. However, (2) in contrast to exogenous reversal, response at higher level were observed in right temporal gyrus rather than in bilateral temporal gyrus and fronto-parietal cortex in endogenous reversal.
     The neural process of perceptual reversal of bistable figures is systematic interactions among fronto-parietal areas and temporal gyrus which bind functionally information together. A fronto-parietal network is required and subserves more genersal aspects in bistable visual perception. Moreover, right middle temporal gyrus may participate systemetic binding process as a key nod and contribute a important role to bistable visual perception.
引文
[1] Schopenhauer A, On the fourfold root of the principle of sufficient reason. 1974: Open Court La Salle, Ill.
    [2] Edelman GM, Tononi G, A Universe of Consciousness: How Matter Becomes Imagination. 2001: Basic Books.
    [3] Crick F, Koch C. Consciousness and neuroscience [J]. Cereb Cortex. 1998,8(2):97-107
    [4] Crick F, Koch C. Towards a neurobiological theory of consciousness [J]. Seminars in the Neurosciences. 1990,2(263-275):201
    [5] Tootell RB, Dale AM, Sereno MI, et al. New images from human visual cortex [J]. Trends Neurosci. 1996,19(11):481-9
    [6] Blake R, Logothetis NK. Visual competition [J]. Nature Reviews Neuroscience. 2002,3:13 - 21
    [7] Toppino TC, Long GM. Selective adaptation with reversible figures: don't change that channel [J]. Percept Psychophys. 1987,42(1):37-48
    [8] Rock I, Hall S, Davis J. Why do ambiguous figures reverse? [J]. Acta Psychol (Amst). 1994,87(1):33-59
    [9] Slotnick SD, Yantis S. Common neural substrates for the control and effects of visual attention and perceptual bistability [J]. Brain Res Cogn Brain Res. 2005,24(1):97-108
    [10] Maloney LT, Dal Martello MF, Sahm C, et al. Past trials influence perception of ambiguous motion quartets through pattern completion [J]. Proc Natl Acad Sci U S A. 2005,102(8):3164-9
    [11] Hopfinger JB, Buonocore MH, Mangun GR. The neural mechanisms of top-down attentional control [J]. Nat Neurosci. 2000,3(3):284-91
    [12] Parker AJ, Krug K. Neuronal mechanisms for the perception of ambiguous stimuli [J]. Curr Opin Neurobiol. 2003,13(4):433-9
    [13] Kornmeier J, Ehm W, Bigalke H, et al. Discontinuous presentation of ambiguousfigures: how interstimulus-interval durations affect reversal dynamics and ERPs [J]. Psychophysiology. 2007,44(4):552-60
    [14] Leopold DA, Wilke M, Maier A, et al. Stable perception of visually ambiguous patterns [J]. Nat Neurosci. 2002,5(6):605-9
    [15] Kornmeier J, Bach M. Bistable perception -- along the processing chain from ambiguous visual input to a stable percept [J]. Int J Psychophysiol. 2006,62(2):345-9
    [16] Kawabata N, Mori T. Disambiguating ambiguous figures by a model of selective attention [J]. Biol Cybern. 1992,67(5):417-25
    [17] Peterson MA, Gibson BS. Directing spatial attention within an object: altering the functional equivalence of shape descriptions [J]. J Exp Psychol Hum Percept Perform. 1991,17(1):170-82
    [18] Corbetta M, Miezin FM, Shulman GL, et al. A PET study of visuospatial attention [J]. J Neurosci. 1993,13(3):1202-26
    [19] Lumer ED, Friston KJ, Rees G. Neural correlates of perceptual rivalry in the human brain [J]. Science. 1998,280(5371):1930-4
    [20] Corbetta M, Shulman GL, Miezin FM, et al. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction [J]. Science. 1995,270:802-5
    [21] Wojciulik E, Kanwisher N. The generality of parietal involvement in visual attention [J]. Neuron. 1999,23:747-64
    [22] Marois R, Chun MM, Gore JC. Neural correlates of the attentional blink [J]. Neuron. 2000,28:299-308
    [23] Mack A, Rock I, Inattentional Blindness. 1998.
    [24] Kastner S, Ungerleider LG. The neural basis of biased competition in human visual cortex [J]. Neuropsychologia. 2001,39:1263-76
    [25] Hopfinger JB, Woldorff MG, Fletcher EM, et al. Dissociating top-down attentional control from selective perception and action [J]. Neuropsychologia. 2001,39:1277-91
    [26] Kanwisher N. Neural events and perceptual awareness [J]. Cognition. 2001,79:89-113
    [27] Kreiman G, Fried I, Koch C. Single neuron responses in humans during binocular rivalry and flash suppression [J]. Soc. Neurosci. Abstr. 2001,27:348.3
    [28] Bandettini PA, Ungerleider LG. From neuron to BOLD: new connections [J]. Nature Neurosci. 2001,4:864-6
    [29] Meenan JP, Miller LA. Perceptual flexibility after frontal or temporal lobectomy [J]. Neuropsychologia. 1994,32:1145-9
    [30] Ricci C, Blundo C. Perception of ambiguous figures after focal brain lesions [J]. Neuropsychologia. 1990,28:1163-73
    [31] Wilkins AJ, Shallice T, McCarthy R. Frontal lesions and sustained attention [J]. Neuropsychologia. 1987,25:359-65
    [32] Beck D, Rees G, Frith CD, et al. Neural correlates of change detection and change blindness [J]. Nature Neurosci. 2001,4:645-50
    [33] Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis [J]. Annu. Rev. Neurosci. 1995,18:555-86
    [34] Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness [J]. Trends Cogn. Sci. 2001,5:16-25
    [35] Crick F, Koch C. Some reflections on visual awareness [J]. Cold Spring Harb. Symp. Quant. Biol. 1990,55:953-62
    [36] Rees G, Lavie N. What can functional imaging reveal about the role of attention in visual awareness? [J]. Neuropsychologia. 2001,39:1343-53
    [37] Fries P, Reynolds JH, Rorie AE, et al. Modulation of oscillatory neuronal synchronization by selective visual attention [J]. Science. 2001,291:1560-3
    [38] Steinmetz PN. Attention modulates synchronized neuronal firing in primate somatosensory cortex [J]. Nature. 2000,404:187-90
    [39] Watson RT, Valenstein E, Day A, et al. Posterior neocortical systems subserving awareness and neglect. Neglect associated with superior temporal sulcus but not area 7 lesions [J]. Arch Neurol. 1994,51(10):1014-21
    [40] Binder J. The new neuroanatomy of speech perception [J]. Brain. 2000,123 Pt 12:2371-2
    [41] Karnath H-O, Ferber S, Himmelbach M. Spatial awareness is a function of the temporal not the posterior parietal lobe [J]. Nature. 2001,411(6840):950-3
    [42] Dodd JV, Krug K, Cumming BG, et al. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT [J]. J Neurosci. 2001,21(13):4809-21
    [43] Sterzer P, Russ MO, Preibisch C, et al. Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion [J]. Neuroimage. 2002,15(4):908-16
    [44] Windmann S, Wehrmann M, Calabrese P, et al. Role of the prefrontal cortex in attentional control over bistable vision [J]. J Cogn Neurosci. 2006,18(3):456-71
    [45] Meng M, Tong F. Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures [J]. J Vis. 2004,4(7):539-51
    [46] Pastukhov A, Braun J. Perceptual reversals need no prompting by attention [J]. Journal of Vision. 2007,7(10):1-17
    [1] Crick F, Koch C. Some reflections on visual awareness [J]. Cold Spring Harb. Symp. Quant. Biol., 1990, 55:953-962.
    [2] Schiff ND, Plum F. The role of arousal and 'gating' systems in the neurology of impaired consciousness [J]. J. Clin. Neurophysiol., 2000, 17:438-452.
    [3] Driver J, Mattingley JB. Parietal neglect and visual awareness [J]. Nature Neurosci., 1998, 1:17-22.
    [4] Marcel AJ. Conscious and unconscious perception: experiments on visual masking and word recognition [J]. Cogn. Psychol., 1983, 15:197-237.
    [5] Frith CD, Perry R, Lumer E. The neural correlates of conscious experience: an experimental framework [J]. Trends Cogn. Sci., 1999, 3:105-114.
    [6] Crick F, Koch C. Consciousness and neuroscience [J]. Cereb. Cortex, 1998, 8:97-107.
    [7] Metzinger T, Neural Correlates of Consciousness: Empirical and Conceptual Questions. 2000.
    [8] Sahraie A. Pattern of neuronal activity associated with conscious and unconscious processing of visual signals [J]. Proc. Natl Acad. Sci. USA, 1997, 94:9406-9411.
    [9] Weiskrantz L, Blindsight: a Case Study and its Implications. 1986.
    [10] Crick F, Koch C. Are we aware of neural activity in primary visual cortex? [J]. Nature, 1995, 375:121-123.
    [11] Miller EK. The prefrontal cortex and cognitive control [J]. Nature Rev. Neurosci., 2000, 1:59-65.
    [12] Blake R, Cormack R. On utrocular discrimination [J]. Percept. Psychophys., 1979, 26:53-68.
    [13] He S, Cavanagh P, Intriligator J. Attentional resolution and the locus of visual awareness [J]. Nature, 1996, 383:334-337.
    [14] He S, MacLeod DI. Orientation-selective adaptation and tilt after-effect frominvisible patterns [J]. Nature, 2001, 411:473-476.
    [15] Blake R, Fox R. Binocular rivalry suppression: insensitive to spatial frequency and orientation change [J]. Vision Res., 1974, 14:687-692.
    [16] Cumming BG, Parker AJ. Responses of primary visual cortical neurons to binocular disparity without depth perception [J]. Nature, 1997, 389:280-283.
    [17] Gawne TJ, Martin JM. Activity of primate V1 cortical neurons during blinks [J]. J. Neurophysiol., 2000, 84:2691-2694.
    [18] Martinez-Conde S, Macknik SL, Hubel DH. Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys [J]. Nature Neurosci., 2000, 3:251-258.
    [19] Gur M, Snodderly DM. A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived [J]. Vision Res., 1997, 37:377-382.
    [20] Blake R, Logothetis NK. Visual competition [J]. Nature Rev. Neurosci., 2002, 3:13-23.
    [21] Myserson J, Miezin FM, Allman JM. Binocular rivalry in macaque monkeys and humans: a comparative study in perception [J]. Behav. Anal. Lett., 1981, 1:149-159.
    [22] Sheinberg DL, Logothetis NK. The role of temporal cortical areas in perceptual organization [J]. Proc. Natl Acad. Sci. USA, 1997, 94:3408-3413.
    [23] Polonsky A, Blake R, Braun J, et al. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry [J]. Nature Neurosci., 2000, 3:1153-1159.
    [24] Rees G, Wojciulik E, Clarke K, et al. Neural correlates of conscious and unconscious vision in parietal extinction [J]. Neurocase, 2002, 8(5):387-393.
    [25] Vuilleumier P. The neural fate of seen and unseen faces in visuospatial neglect: a combined event-related fMRI and ERP study of visual extinction [J]. Proc. Natl Acad. Sci. USA, 2001, 98:3495-3500.
    [26] Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primatecerebral cortex [J]. Cereb. Cortex, 1991, 1:1-47.
    [27] Rees G. Unconscious activation of visual cortex in the damaged right hemisphere of a parietal patient with extinction [J]. Brain, 2000, 123:1624-1633.
    [28] Zihl J, von Cramon D, Mai N. Selective disturbance of movement vision after bilateral brain damage [J]. Brain, 1983, 106:313-340.
    [29] Beauchamp MS, Haxby JV, Jennings JE, et al. An fMRI version of the Farnsworth-Munsell 100-hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex [J]. Cereb. Cortex, 1999, 9:257-263.
    [30] Meadows JC. Disturbed perception of colours associated with localized cerebral lesions [J]. Brain, 1974, 97:615-632.
    [31] Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception [J]. J. Neurosci., 1997, 17:4302-4311.
    [32] Puce A, Allison T, Gore JC, et al. Face-sensitive regions in human extrastriate cortex studied by functional MRI [J]. J. Neurophysiol., 1995, 74:1192-1199.
    [33] Damasio AR, Damasio H, Van Hoesen GW. Prosopagnosia: anatomic basis and behavioral mechanisms [J]. Neurology, 1982, 32:331-341.
    [34] Zeki S. Parallel processing, asynchronous perception, and a distributed system of consciousness in vision [J]. Neuroscientist, 1998, 4:365-372.
    [35] ffytche DH. The anatomy of conscious vision: an fMRI study of visual hallucinations [J]. Nature Neurosci., 1998, 1:738-742.
    [36] Culham JC. Recovery of fMRI activation in motion area MT following storage of the motion aftereffect [J]. J. Neurophysiol., 1999, 81:388-393.
    [37] ffytche DH, Zeki S. Brain activity related to the perception of illusory contours [J]. Neuroimage, 1996, 3:104-108.
    [38] Hirsch J. Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging [J]. Proc. Natl Acad. Sci. USA, 1995, 92:6469-6473.
    [39] Mendola JD, Dale AM, Fischl B, et al. The representation of illusory and realcontours in human cortical visual areas revealed by functional magnetic resonance imaging [J]. J. Neurosci., 1999, 19:8560-8572.
    [40] Rees G, Russell C, Frith CD, et al. Inattentional blindness versus inattentional amnesia for fixated but ignored words [J]. Science, 1999, 286:2504-2507.
    [41] Wolfe J. Reversing ocular dominance and suppression in a single flash [J]. Vision Res., 1984, 24:471-478.
    [42] Leopold DA, Logothetis NK. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry [J]. Nature, 1996, 379:549-553.
    [43] Lumer E, Neural Correlates of Consciousness: Conceptual and Empirical Questions. 2000. p. 231-240.
    [44] Tong F, Nakayama K, Vaughan JT, et al. Binocular rivalry and visual awareness in human extrastriate cortex [J]. Neuron, 1998, 21:753-759.
    [45] Kreiman G, Koch C, Fried I. Category-specific visual responses of single neurons in the human medial temporal lobe [J]. Nature Neurosci., 2000, 3:946-953.
    [46] Kreiman G, Fried I, Koch C. Single neuron responses in humans during binocular rivalry and flash suppression [J]. Soc. Neurosci. Abstr., 2001, 27:348.343.
    [47] Kreiman G, Koch C, Fried I. Imagery neurons in the human brain [J]. Nature, 2000, 408:357-361.
    [48] O'Craven KM, Kanwisher N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions [J]. J. Cogn. Neurosci., 2000, 12:1013-1023.
    [49] Kosslyn SM, Ganis G, Thompson WL. Neural foundations of imagery [J]. Nature Rev. Neurosci., 2001, 2:635-642.
    [50] Dehaene S. Cerebral mechanisms of word masking and unconscious repetition priming [J]. Nature Neurosci., 2001, 4:752-758.
    [51] Luck SJ, Vogel EK, Shapiro KL. Word meanings can be accessed but not reported during the attentional blink [J]. Nature, 1996, 383:616-618.
    [52] Nobre AC, Allison T, McCarthy G. Word recognition in the human inferior temporal lobe [J]. Nature, 1994, 372:260-263.
    [53] Grill-Spector K, Kushnir T, Hendler T, et al. The dynamics of object-selective activation correlate with recognition performance in humans [J]. Nature Neurosci., 2000, 3:837-843.
    [54] Barlow JS, The Electroencephalogram: its Patterns and Origins. 1993.
    [55] Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis [J]. Annu. Rev. Neurosci., 1995, 18:555-586.
    [56] Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness [J]. Trends Cogn. Sci., 2001, 5:16-25.
    [57] Shadlen MN, Movshon JA. Synchrony unbound: a critical evaluation of the temporal binding hypothesis [J]. Neuron, 1999, 24:67-77.
    [58] Rees G, Lavie N. What can functional imaging reveal about the role of attention in visual awareness? [J]. Neuropsychologia, 2001, 39:1343-1353.
    [59] Fries P, Reynolds JH, Rorie AE, et al. Modulation of oscillatory neuronal synchronization by selective visual attention [J]. Science, 2001, 291:1560-1563.
    [60] Steinmetz PN. Attention modulates synchronized neuronal firing in primate somatosensory cortex [J]. Nature, 2000, 404:187-190.
    [61] Fries P, Roelfsema PR, Engel AK, et al. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry [J]. Proc. Natl Acad. Sci. USA, 1997, 94:12699-12704.
    [62] Tononi G, Srinivasan R, Russell DP, et al. Investigating neural correlates of conscious perception by frequency-tagged neuromagnetic responses [J]. Proc. Natl Acad. Sci. USA, 1998, 95:3198-3203.
    [63] Rodriguez E. Perception's shadow: long-distance synchronization of human brain activity [J]. Nature, 1999, 397:430-433.
    [64] Ringach DL, Hawken MJ, Shapley R. Dynamics of orientation tuning in macaque primary visual cortex [J]. Nature, 1997, 387:281-284.
    [65] Sugase Y, Yamane S, Ueno S, et al. Global and fine information coded by singleneurons in the temporal visual cortex [J]. Nature, 1999, 400:869-873.
    [66] Kapadia MK, Ito M, Gilbert CD, et al. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys [J]. Neuron, 1995, 15:843-856.
    [67] Lamme VA, Roelfsema PR. The distinct modes of vision offered by feedforward and recurrent processing [J]. Trends Neurosci., 2000, 23:571-579.
    [68] Pollen DA. On the neural correlates of visual perception [J]. Cereb. Cortex, 1999, 9:4-19.
    [69] Lumer ED, Friston KJ, Rees G. Neural correlates of perceptual rivalry in the human brain [J]. Science, 1998, 280:1930-1934.
    [70] Lumer ED, Rees GE. Covariation of activity in visual and prefrontal cortex associated with subjective visual perception [J]. Proc. Natl Acad. Sci. USA, 1999, 96:1669-1673.
    [71] Kleinschmidt A, Buchel C, Zeki S, et al. Human brain activity during spontaneously reversing perception of ambiguous figures [J]. Proc. R. Soc. Lond. B, 1998, 265:2427-2433.
    [72] Meenan JP, Miller LA. Perceptual flexibility after frontal or temporal lobectomy [J]. Neuropsychologia, 1994, 32:1145-1149.
    [73] Ricci C, Blundo C. Perception of ambiguous figures after focal brain lesions [J]. Neuropsychologia, 1990, 28:1163-1173.
    [74] Wilkins AJ, Shallice T, McCarthy R. Frontal lesions and sustained attention [J]. Neuropsychologia, 1987, 25:359-365.
    [75] Beck D, Rees G, Frith CD, et al. Neural correlates of change detection and change blindness [J]. Nature Neurosci., 2001, 4:645-650.
    [76] Perry RJ, Zeki S. Integrating motion and colour within the visual brain: an fMRI approach to the binding problem [J]. Soc. Neurosci. Abstr., 2000, 26:250.251.
    [77] Portas CM, Strange BA, Friston KJ, et al. How does the brain sustain a visual percept? [J]. Proc. R. Soc. Lond. B, 2000, 267:845-850.
    [78] Corbetta M, Shulman GL, Miezin FM, et al. Superior parietal cortex activationduring spatial attention shifts and visual feature conjunction [J]. Science, 1995, 270:802-805.
    [79] Wojciulik E, Kanwisher N. The generality of parietal involvement in visual attention [J]. Neuron, 1999, 23:747-764.
    [80] Marois R, Chun MM, Gore JC. Neural correlates of the attentional blink [J]. Neuron, 2000, 28:299-308.
    [81] Mack A, Rock I, Inattentional Blindness. 1998.
    [82] Kastner S, Ungerleider LG. The neural basis of biased competition in human visual cortex [J]. Neuropsychologia, 2001, 39:1263-1276.
    [83] Hopfinger JB, Woldorff MG, Fletcher EM, et al. Dissociating top-down attentional control from selective perception and action [J]. Neuropsychologia, 2001, 39:1277-1291.
    [84] Kanwisher N. Neural events and perceptual awareness [J]. Cognition, 2001, 79:89-113.
    [85] Nakamura RK, Mishkin M. Blindness in monkeys following non-visual cortical lesions [J]. Brain Res., 1980, 188:572-577.
    [86] Nakamura RK, Mishkin M. Chronic 'blindness' following lesions of nonvisual cortex in the monkey [J]. Exp. Brain Res., 1986, 63:173-184.
    [87] Sperry RW, Myers RE, Schrier AM. Perceptual capacity of the isolated visual cortex in the cat [J]. Q. J. Exp. Psychol., 1960, 12:65-71.
    [88] Robertson L, Treisman A, Friedman-Hill S, et al. The interaction of spatial and object pathways: evidence from Balint's syndrome [J]. J. Cogn. Neurosci., 1997, 9:295-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700