牛Meg8基因的克隆、组织表达及印记状态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因组印记是一种表观遗传现象,来自亲本的等位基因或染色体在发育过程中产生专一性的加工修饰,导致后代细胞中两个亲本来源的等位基因有不同的表达活性,具有这种亲本差异性表达现象的基因称为印记基因。Dlk1-Dio3区域是在哺乳动物中相对保守的一个印记基因簇,该区域内的印记基因参与调控胚胎、胎盘发育和肌肉形成。Dlk1-Dio3印记区域在人和鼠中研究的较多,由于基因序列及多态信息的限制,在牛中相关报道较少。
     本研究选取Dlk1-Dio3印记域中在鼠和羊中被鉴定为母源表达印记的Meg8基因为研究对象。首先采用RT-PCR和RACE方法得到该基因的cDNA序列(Genebank登录号:HQ407410-HQ407422)。序列分析表明牛Meg8基因至少存在12种可变剪接形式,DNA序列全长约43 kb,cDNA序列全长1062 bp,包括7个外显子,外显子表现出与羊高度的相似性(82.8%~97.7%)。牛Meg8基因5′侧翼区未发现与Kozak规则相匹配的翻译起始序列,推测该基因是一种非编码RNA,可能作为一种RNA调解分子调控靶基因的转录。以上研究结果将为进一步分析该基因的生物学功能以及揭示其分子调控机制奠定基础。
     通过RT-PCR方法分析了Meg8基因在成年牛各个组织中的表达情况,结果表明,Meg8基因在成年牛的心、肝、脾、肺、肾、脑、肌肉和脂肪都表达RNA,未表现出在鼠和羊中所报道的组织特异性。
     印记基因的表达是基于基因的单等位基因表达,为了研究基因是单等位基因表达还是双等位基因表达,必须找出一个表达的多态,并且要求被研究的动物是杂合子,由此能辨别是哪一个亲本基因被转录。哺乳动物基因组中最常见的多态是SNP,包括DNA点突变,即碱基对的插入或缺失,可以在基因组水平上检测出这种突变。SSCP技术是一种简单、快速、可重复性好的方法,广泛用于寻找基因突变和DNA分型。本研究首先应用PCR-SSCP方法寻找Meg8基因中表达的多态,鉴定杂合子,通过RT-PCR及直接测序法分析杂合子牛的心、肝、脾、肺、肾、大脑、肌肉和脂肪组织中该多态位点的表达情况。研究结果表明Meg8基因在成年牛被检测的八个组织中均表现为单等位基因表达,表明Meg8基因在牛中为印记基因。
Genomic imprinting is an epigenetic phenomenon that results in an allele-specific expression from a single in a parent-of-origin-dependent manner. Imprinted genes are genes that preferentially expressed from either the maternally allele or the paternally allele. Dlk1-Dio3 imprinted domain is conserved among mammals, and involved in embryonic, placental and muscle growth. Dlk1-Dio3 imprinted domain has been widely studied in mouse and human. But due to the lack of sequence and polymorphism information in coding regions, few imprinted genes have been reported in cattle.
     In this study, we cloned the cDNA sequence and analyzed the expression and imprinted status of Meg8 gene, which is identified as a maternally expressed gene in both mouse and sheep. The cDNA sequences were obtained by RT-PCR and RACE (GenBank accession number: HQ407410-HQ407422). Sequence analyse showed that 12 transcript variants occured in cattle Meg8 gene. The DNA and cDNA sequences were about 43 kb and 1062 bp, respectively. There are 7 exons in cattle Meg8 gene,the exons had high identity ranged from 82.8 to 97.7% when aligned with the sheep orthologue. Bioinformatics analysis showed that none of the ATGs is consistent with Kozak consensus sequence. So the cattle Meg8 gene may be a noncoding RNA and act as a regulated factor. These results are essential to analyze the biological function and the molecular regulation mechanism of cattle Meg8 gene.
     We used RT-PCR to analyse the tissue-specific distribution of the cattle Meg8 gene in different tissues.The results indicated that Meg8 was expressed in all investigated tissues, including heart, liver, spleen, lung, kidney, brain, skeletal muscle and subcutaneous fat of the adult cattle. Our data showed that no specific expression pattern existed in cattle Meg8 gene which is not consistent with mouse and sheep.
     Expression patterns of imprinted genes are studied based on the fact that the genes are monoallelically expressed. To study if gene expressed as monoallelic or biallelic, an expressed polymorphism (polymorphism in the mRNA or proteins) must be found to distinguish which parental allele is transcribed. In addition, the animals being studied must be heterozygous for the gene/polymorphism of interest. In the mammalian genome single nucleotide polymorphisms (SNP) are the most common polymorphisms, which are DNA point mutations (base-pair change or insertions/deletions) and can be distributed in the genome level. Single strand conformation polymorphism(SSCP) is a quite simple, rapid and reproducible method and widely used in the detection of known mutations and the analysis of DNA variation.
     We found an SNP in the coding sequence of cattle Meg8 gene by PCR-SSCP and then analysed the cDNA of the heterozygous individuals using RT-PCR and direct sequencing. Results revealed that the Meg8 gene was monoallelically expressed in the heart, liver, spleen, lung, kidney, brain, skeletal muscle and subcutaneous fat in adult cattle. This is the first time to determine that the Meg8 gene is imprinted in cattle.
引文
[1] Dittrich B,BuitingK,Korn B,et al.Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene[J].NatGenet,1996,14(2):163-170.
    [2] Swales A K E,Spears N.Genomic imprinting and reproduction[J].Reproduction,2005,130:389-399.
    [3] Crouse H V . The controlling element in sex chromosome behavior in Scia2ra[J].Genetics,1960,45(10):1429-1443.
    [4] Cattanach B M.Parental origin effects in mice[J].J Embryol Exp Morphol,1986,97:137-150.
    [5] McGrath J,Solter D.Completion of mouse embryogenesis requires both the maternal and paternal genomes[J].Cell,1984,37 (1):179-183.
    [6] DeChiara T M,Robertson E J,Efstratiadis A.Parental imprinting of the mouse insulin-like growth factor II gene[J].Cell,1991,64(4):849-859.
    [7] Rainier S,Johnson L A,Dobry C J,et al.Relaxation of imprinted genes in human cancer[J]. Nature,1993,362(6422):747-749.
    [8] Alleman M,Doetor J.Genomic imprinting in plants:observation and evolutionary implications[J].Plant Mol Blol,2000,43(2-3):147-161.
    [9] Kjllian J K,Byrd J C, Jirtle J V,et al.M6P/IGF2R imprinting evolution in mammals[J].Mol Cell,2000,5(4):707-716.
    [10] Luedi P P,Hartemink A J,Jirtle R L.Genome-wide Prediction of imprinted murine genes[J].Genome Res,2005,15(6):875-854.
    [11] Glaser R L,Ramsay J P,Morison I M.The imprinted gene and parent- of-origin effect database now includes parental origin of de novo mutations[J].Nucleic Aeids Res,2006,34(Database issue):D29-31.
    [12] Reik W.Walter J.Genome imprinting:parental influence on the genome[J].Nat Rev Genet,2001,2(1):21-32.
    [13] Reik W,Santos F,Dean W. Mammalian epigenomies: reprogramming the genome for development and therapy[J].Theriogenology,2003,59(1):21-32.
    [14] Reik W , Dean W . DNA methylation and mammalian epigenetics [J].Electrophoresis,2001,22(14):2838-2843.
    [15] Tycko B,Morison I M.Physiological functions of imprinted genes[J].J Cell Physiol,2002,192(3):245-258.
    [16] Trasler J M.Gamete imprinting:setting epigenetic patterns for the next generation[J].Reprod Fertil Dev,2006,18(1-2):63-69.
    [17] Morison I M,Ramsay J P,Spencer H G.A census of mammalian imprinting [J].Trends Genet,2005,21(8):457-465.
    [18] Da Rocha S T,Tevendale M,Knowles E,et al.Restricted co-expression of Dlk1 and the reciprocally imprinted non-coding RNA,Gtl2:implications for cis-acting control[J].Dev Biol,2007,306(2):810 -823.
    [19] Zhang S,Kubota C,Yang L,et al.Genomic imprinting of H19 in naturally reproduced and cloned cattle[J].Biol Reprod,2004,71:1540-1544.
    [20] Rougeulle C,Heard E.Antisense RNA in imprinting:spreading silence through Air[J].Trends Genet,2002,18(9):434-437.
    [21] O'Neill M J.The influence of non-coding RNAs on allele-specific gene expression in mammals[J].Hum Mol Genet,2005,14(1):R113-120.
    [22] Gibbs W W.The unseen genome:beyond DNA[J].Sci Am,2003,289(6):106-113.
    [23] Kim J,Bergmann A,Choo J H,et al.Genomic organization and imprinting of the Peg3 domain in bovine[J].Genomics,2007,90(1):85-92.
    [24] Cheng H C,Zhang F W,Jiang C D,et al.Isolation and imprinted status of porcine DLX5 gene and its polymorphism with carcass traits[J].Anim Genet,2008,39(4):395-399.
    [25] Mann M,Latham K E,Varmuza S.Identification of genes showing altered expression in preimplantation and early postimplantation parthenogenetic embryos[J].Dev Genet,1995,17(3):223 -232.
    [26] Hurst L D,McVean G T.Growth effects of uniparental disomies and the conflict theory of genomic imprinting[J].Trends Genet,1997,13(11):436-443.
    [27] Lucifero D,Mann M R,Bartolomei M S et al.Gene-specific timing and epigenetic memory in oocyte imprinting[J].Hum Mol Genet,2004,13(8):839 -849.
    [28] Tamaru H , Selker E U . A histone H3 methyltransferase controls DNA methylation in Neurospora crassa [J].Nature,2001,414 ( 6861):277-283.
    [29] Fuks F,Hurd P J,Wolf D,et al.The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation[J].J Biol Chem,2003,278(6):4035 -4040.
    [30] Lavorgna G,Dahary D,Lehner B,et al.In search of antisense[J].Trends Biochem Sci.2004,29(2):88 - 94.
    [31] Sleutels F,Zwart R,Barlow D P.The non-coding Air RNA is required for silencing autosomal imprinting [J].Nature,2002,415(6873):810-813.
    [32] Luikenhuis S,Wutz A,Jaenisch R.Antisense transcription through the Xist locusmediates Tsix function in embryonic stem cells[J].Mol Cell Biol,2001,21(24):8512-8520.
    [33] Green K,Lewis A,Dawson C,et al.A developmental window of opportunity for imprinted gene silencing mediated by DNA methylation and the Kcnq1ot1 noncoding RNA[J].Mamm Genome,2007,18(1):32-42.
    [34] Bjornsson H T,Brown L J,Fallin M D,et al.Epigenetic specifity of loss imprinting of IGF2 gene in Wilms tumors[J].J Natl Cancer Inst,2007,99(16):1270-1273.
    [35] Astuti D,Latif F,Wagner K,et al.Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia : analysis of neuroblastoma ,phaeochromocytoma and Wilm's tumour[J].Br J Cancer,2005,92(8):1574-1589.
    [36]戴毅敏,胡娅莉.印迹基因胰岛素样生长因子-2在胎儿生长发育中的作用[J].医学研究生学报,2005,18(6) :546-549.
    [37] Wilmut I,Schnieke A E,McWhir J,et al.Viable offspring derived from fetal and adult mammalian cells[J].Nature,1997,385(6619):810-813.
    [38] Wakayama T,Perry A C,Zuccotti M,et al.Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei[J].Nature,1998,394 (6691):369-374.
    [39] Kato Y,Tani T,Sotomuru Y,et al.Eight calves cloned from somatic cells of a single adult[J].Science,1998,282 (5396):2095-2098.
    [40] Baguisi A,Behboodi E,Melican D T,et al.Production of goats by somatic cell nuclear transfer[J].Nat Biotechnol,1999,17(5):456-461.
    [41] Polejaeva I A,Chen S H,Vaught T D,et al.Cloned pigs produced by nuclear transfer from adult somatic cells[J].Nature,2000,407(6800):86-90.
    [42] Onishi A,Iwamoto M,Akita T,et al.Pig cloning by microinjection of fetal fibroblast nuclei[J].Science,2000,289(5482):1188-1190.
    [43] ChesnéP,Adenot P G,Viglietta C,et al.Cloned rabbits produced by nuclear transfer from adult somatic cells[J].Nat Biotechnol.2002,20(4):366-369.
    [44] Walker S C,Christenson R K,Ruiz R P,et al.Comparison of meat composition from offspring of cloned and conventionally produced boars[J].Theriogenology,2007,67(1):178-184.
    [45] Rudenko L,Matheson J C.The US FDA and animal cloning:risk and regulatory approach[J].Theriogenology,2007,67(1):198-206.
    [46] Hwang W S,Lee B C,Lee C K,et al.Cloned human embryonic stem cells for tissue repair and transplantation[J].Stem Cell Rev,2005,1(2):99-109.
    [47] Blum H E.Stem cells--basic aspects and therapeutic perspectives[J].SchweizRundsch Med Prax[.2007,96(14):539-543.
    [48] Keefer C L.Lessons learned from nuclear transfer (cloning)[J].Theriogenology,2008, 69(1):48-54.
    [49] Fulka J Jr,Fulka H.Somatic cell nuclear transfer (SCNT) in mammals:the cytoplast and its reprogramming activities[J].Adv Exp Med Biol,2007,591:93-102.
    [50] Chavatte-Palmer P,de Sousa N,Laigre P,et al.Ultrasound fetal measurements and pregnancy associated glycoprotein secretion in early pregnancy in cattle recipients carrying somatic clones[J].Theriogenology,2006,66(4):829-840.
    [51] Young L E,Fairburn H R.Improving the safety of embryo technologies:possible role of genomic imprinting[J].Theriogenology,2000,53(2):627-648.
    [52] Farin C E,Farin P W,Piedrahita J A.Development of fetuses from in vitro-produced and cloned bovine embryos[J].J Anim Sci,2004,82:53-62.
    [53] Hill J R,Burghardt R C,Jones K,et al.Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses[J].Biol Reprod,2000,63(6):1787-1794.
    [54]张立岭,菊林花,杨丽君.蒙古羊胸椎数的亲本印记遗传研究[J].内蒙古农业大学学报,2000,21(2):1-6.
    [55] Murphy S K,Wylie A A,Jirtle R L.Imprinting of PEG3,the human homologue of a mouse gene involved in nurturing behavior[J].Genomics,2001,71(1):110-117.
    [56] Frohman M A,Dush M K,Martin G R.Rapid production of full-length cDNA from rare transcripts:amplification using a single gene-specific oligonucleotide primer[J].Proc Natl Acad Sci U S A,1988,85(23):8998-9002.
    [57]周维,黄翠琴,王寿昆,等.RACE:一种研究新基因的有效方法[J].热带医学杂志,2007,7(4):386-389.
    [58]黄留玉.PCR最近技术原理、方法及应用[M].北京化学工业出版,2005: 42-50, 86-93, 254-260.
    [59]薛燕,常洪,常国斌.PCR-SSCP技术在动物育种中的研究进展[J].畜牧兽医杂志,2005,24( 3):21-24.
    [60]姜运良,李宁,赵兴波,等.影响PCR-SSCP的因素分析[J].农业生物技术学报,2000,8 (3):245-247.
    [61] Orita M,Suzuki Y,Sekiya T,et al.Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction[J].Genomics,1989,5(4):874-879.
    [62] Hayashi K,Yandell D W.How sensitive is PCR-SSCP?[J].Hum Mutat,1993,2(5):338-46.
    [63] Kauppinen K,Alanko K.Oral provocation: uses[J].Semin Dermatol,1989,8(3):187-191.
    [64]李家良,杨光华.提高银染PCR-SSCP敏感性及分辨力的方法初探[J].诊断病理学杂志,1995,2(3):174.
    [65]陈杰,刘红林,姜志华,等.二花脸猪FSHR座位PCR-SSCP标记与产活仔数的关系[J].南京农业大学学报,2002,25 (3):53-56.
    [66]姜运良,李宁,吴常信,等.不同品种猪肌肉生长抑制素基因单核苷酸多态性分析[J].遗传学报,2001,28(9):840-845.
    [67]陈桂芳,谢庄,强巴央宗,等.西藏牦牛、荷斯坦牛三个功能基因部分序列多态性的比较研究[J].畜牧兽医学报,2003,34( 2):128-131.
    [68]史明艳,昝林森,李保兰,等.牛Myostatin基因单核苷酸多态性分析[J].中国农学通报,2005,21( 6):24-25.
    [69]王启贵,李宁,邓学梅,等.鸡脂肪酸结合蛋白基因的克隆和测序分析[J].遗传学报,2002,29(2):115-118.
    [70]李宁,王启贵,邓学梅,等.鸡细胞外脂肪酸结合蛋白基因单核苷酸多态性与腹脂性状的相关研究[J].中国科学(C辑),2001,31(3):266-270.
    [71] Yap P S.Rectification to the article "Involvement of phosphatidylserine and non-phospholipid components of the hepatitis B virus envelope in human annexin V binding and in HBV infection in vitro"[J].J Hepatol,2000,33(3):515.
    [72] Miyoshi N,Wagatsuma H,Wakana S,et al.Identification of an imprinted gene,Meg3/Gtl2 and its human homologue MEG3,first mapped on mouse distal chromosome 12 and human chromosome 14q [J].Genes Cells,2000,5:211-220.
    [73] Charlier C,Segers K,Wagenaar D,et al.Human-Ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1,DAT,GTL2,PEG11,antiPEG11,and MEG8 [J].Genome Research,2001,11(5):850-862.
    [74] Paulsen M,Takada S,Youngson N A,et al.Comparative sequence analysis of the imprinted Dlk1-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region[J].Genome Res,2001,11(12):2085-2094.
    [75] Da Rocha S T,Edwards C A,Ito M,et al.Genomic imprinting at the mammalian Dlk1-Dio3 domain[J].Trends Genet,2008,24(6):306-316.
    [76] Georgiades P,Watkins M,Surani M A,et al.Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12 [J].Development,2000,127(21):4719-4728.
    [77] Sutton V R,McAlister W H,Bertin T K,et al.Skeletal defects in paternal uniparental disomy for chromosome 14 are re-capitulated in the mouse model (paternal uniparental disomy 12) [J].Hum Genet,2003,113(5):447-451.
    [78] Tevendale M,Watkins M,Rasberry C,et al.Analysis of mouse conceptuses with uniparental duplication/defiiency of distal chromosome 12,comparison with chromosome 12 uniparental disomy and implications for genomic imprinting [J].Cytogenet Genome Res,2006,113(1-4):215-222.
    [79] Georgiades P,Chierakul C,Ferguson-Smith A C.Parental origin effects in human trisomy for chromosomel4q:implications for genomic imprinting[J].J Med Genet,1998,35(10):821-824.
    [80] Sanlaville D,Aubry M C,Dumez Y,et al.Maternal uniparental heterodisomy of chromosome 14,chromosomal mechanism and clinical follow up[J].J Med Genet,2000,37(7):525-528.
    [81] Sutton V R,Shaffer L G.Search for imprinted regions on chromosome 14,comparison of maternal and paternal UPD cases with cases of chromosome 14 deletion [J].Am J Med Genet,2000,93(5):381-387.
    [82] Cockett N,Jackson S,Shay T,et al.Polar overdominance at the ovine callipyge locus [J].Science,1996,273(5272):236-238.
    [83] Georges M,Charlier C,Cockett N.The callipyge locus:evidence for the trans interaction of reciprocally imprinted genes[J].Trends Genet,2003,19(5):248-252.
    [84] Kim K S,Kim J J,Dekkers J C M,et al. Polar overdominanct inheritance of a DLK1 polymorphism is associated with growth and fatness in pigs[J].Mamm Genome,2004,15(7):552-559.
    [85] Li X P,Do K T,Kim J J,et al.Molecular characteristics of the porcine DLK1 and MEG3 gene[J].Animal Genetics,2008,39(2):189-192.
    [86] Hatada I,Morita S,Obata Y,et al.Identification of a new imprinted gene,Rian,on mouse chromosome 12 by fluorescent differential display screening[J].J Biochem,2001,130(2):187-190.
    [87] CavailléJ, Seitz H, Paulsen M,et al.Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region[J].Hum Mol Genet,2002,11(13):1527-1538.
    [88] Du T,Zamore P D.MicroPrimer:the biogenesis and function of microRNA [J].Develpment,2005,132(21):4645-4652.
    [89] Hagan J P,O’Neill B L,Stewart C L,et al.At least ten genes define the imprintedDlk1–Dio3 cluster on mouse chromosome 12qF1[J].PLoS One,2009,4(2):e4352.
    [90] Davis E,Jensen C H,Schroder H D,et al.Ectopic expression of Dlk1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype[J].Curr Biol,2004,14(20):1858-1862.
    [91] J萨姆布鲁克,E F弗里奇,T曼尼阿蒂斯.分子克隆实验指南[M].科学出版社,1998.
    [92]魏群.分子生物学实验指导[M].高等教育出版社,2000.
    [93] Bidwell C A,Kramer L N,Perkins A C,et al.Expression of PEG11 and PEG11AS transcripts in normal and callipyge sheep[J].BMC Biology,2004,2(1):17.
    [94] Wang E T,Sandberg R,Luo S,et al.Alternative isoform regulation in human tissue transcriptomes[J].Nature,2008,456(7221):470-476.
    [95] Deiuliis J A,Li B,Lyvers-Peffer P A,et al.Alternative splicing of delta-like 1 homolog (DLK1) in the pig and human[J].Comp Biochem Physiol B Biochem Mol Biol,2006 ,145(1):50-59.
    [96] Fleming-Waddell J N,Olbricht G R,Taxis T M,et al.Effect of DLK1 and RTL1 but Not MEG3 or MEG8 on muscle gene expression in Callipyge lambs[J].PloS one,2009,4(10):e7399.
    [97]吴昊,何勇刚,陈鹏,等.粗山羊草(Aegilops tauschii)中Pinb基因的克隆和表达分析[J].武汉植物学研究,2007,25(6):535-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700