丙型肝炎病毒感染树鼩的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,缺乏感染模型是丙型肝炎病毒(HCV)研究中所面临的难题,近两年来虽然建立了感染性的HCV细胞培养模型,但仅限于有限的基因型。由于缺乏理想的HCV感染小动物模型,HCV防治研究进展缓慢。HCV感染的标准疗法是聚乙二醇化的IFN-α与利巴韦林的联合应用,2、3型HCV感染对该疗法的持续反应率达75%以上,但流行最广的1型HCV感染的持续反应率不到50%。此外,该疗法的费用昂贵,还具有副作用。HCV分子克隆以来,HCV疫苗在发达国家一直是研究热点,但迄今为止,尚无任何有效的疫苗问世。探索更加有效的HCV治疗方法,研发有效的HCV疫苗非常迫切。
     黑猩猩(Pan troglodytes)是目前唯一被肯定的HCV易感动物,但使用黑猩猩作为实验动物的费用很高,且动物来源极为有限。近年来有Trimera小鼠和uPA-SCID小鼠被用作HCV感染模型,但两者的制备方法复杂,且免疫缺陷的特性限制了其在HCV免疫学研究方面的应用。
     树鼩(tree shrews,tupaia belangeri)是一种与灵长目动物诸多特征相似的小动物,被用于人类多种疾病,包括HBV、HSV等病毒感染的实验动物模型研究。1998年首次有报道,用HCV RNA阳性的血清感染中国云南野生树鼩,部分可发生短期病毒血症和HCV抗体阳转,2007年再次有类似报道。尽管如此,目前对树鼩是否可用作HCV感染的动物模型还存在争议。
     病毒体与宿主细胞表面受体的结合是病毒进入细胞的第一步,病毒与细胞表面相应受体的结合是病毒感染复制的始动环节。虽然HCV进入靶细胞的确切机制现在仍不十分清楚,但一系列确凿的证据表明这与HCV包膜糖蛋白E2与靶细胞表面的多种受体相关分子的相互作用有关,这些分子包括CD81、SR-BI、claudin-1(CLDN1)以及最近鉴定出的occludin(OCLN)。
     从1997年到2008年,有一些研究表明HCV病人血浆能感染PTH(primary tupaia hepatocytes),能感染树鼩,但树鼩能否作为小动物模型但是仍然存在争议。使用HCV病人血浆作为病毒来源,则无法保证研究的连贯性和重复性。因此,除临床病毒株(病人血浆)外,使用来源稳定、背景一致、感染性高的细胞培养HCV病毒代替丙型肝炎病人血浆进行HCV动物模型的研究是最好的解决方法。
     由于病毒特异性受体的表达和分布是影响病毒感染的宿主和组织亲嗜性的重要限制性因素,因此关于树鼩CD81、CLDN1、SR-BI以及OCLN功能的研究有着重要的意义。本研究克隆了树鼩的CD81、SR-BI、CLDN1以及OCLN基因,用一系列功能实验分析这些分子是否可介导HCV感染,观察了HCV假病毒(HCV pseudopatticles, HCVpp)和细胞培养产生的HCV(cell culture produced HCV, HCVcc)对PTH的感染性,并用HCVcc体内感染树鼩,检测树鼩血清中是否可产生HCV病毒血症。
     方法:1.抽提PTH的总RNA,逆转录为cDNA,设计引物,扩增出树鼩CD81、SR-BI、CLDN1以及OCLN基因序列。2.构建原核表达质粒pET32a-tCD81 LEL(large extracellular loop),在大肠杆菌BL21中表达树鼩CD81 LEL的重组蛋白,用ELISA分析HCV包膜E2蛋白与树鼩CD81 LEL的结合活性。3.构建真核表达质粒pCI-tCD81、pCI-tSR-BI转染CHO细胞,用流式细胞术检测HCV E2蛋白与其结合活性。4.将树鼩CD81基因转染HepG2细胞,再用荧光素酶作为报告基因的假HCV颗粒(HCVpp-Luc)感染,检测荧光素酶在细胞中的表达。5.构建真核表达质粒pCI-tCLDN1,转染293T细胞,再用HCVpp-Luc感染,检测荧光素酶活性。6.将人CD81、SR-BI、CLDN1以及树鼩OCLN共转染CHO细胞,然后用HCVpp-Luc感染,检测报告基因的表达。7.分离培养PTH,用HCVpp-Luc感染,检测荧光素酶活性。8.细胞培养的HCVcc(J6/JFH1)感染PTH,western blot检测HCV蛋白的表达。9.用HCVcc(J6/JFH1)感染PTH连续培养3周,取不同时间的培养上清感染Huh7.5细胞,免疫荧光检测细胞内的HCV蛋白。10.HCVcc(J6/JFH1)感染树鼩(6只实验组,6只对照组),连续十次(1次/周)取血,realtime-PCR检测血清中HCV拷贝数,同时检测ALT水平的变化。
     结果:1.扩增出树鼩CD81(GenBank: EF581831),CLDN1(GenBank: EF584564),SR-BI(GenBank:EF584564),OCLN(GenBank:FJ809937)编码基因。2.扩增出树鼩和人的CD81 LEL,并构建了原核表达质粒pET32a-tCD81 LEL、pET32a-hCD81 LEL,获得重组蛋白。ELISA法检测发现人与树鼩的CD81 LEL都能结合可溶性HCV包膜E2蛋白,且二者与HCV E2的结合活性相似。3.构建树鼩CD81真核表达质粒,转染CHO细胞,检测发现CD81分子可在CHO细胞表面表达,且CHO细胞表面的CD81分子能与可溶性HCV E2蛋白结合。4.人或树鼩的CD81表达质粒转染的HepG2细胞均可被HCVpp感染。5.构建人与树鼩的SR-BI的真核表达质粒,转染CHO细胞,流式细胞术检测显示HCV包膜E2蛋白能与表达在CHO细胞表面的SR-BI分子结合。6.转染人或树鼩CLDN1表达质粒到293T细胞,转染后的细胞能被HCVpp感染。7.共转染人CD81、SR-BI、CLDN1及树鼩OCLN后CHO细胞能被HCVpp感染。8.HCVpp和HCVcc可感染PTH,且HCVcc感染PTH可产生生产性感染。9.J6/JFH1 HCVcc感染的6只树鼩中,有2只血清中能间歇性检测到HCV RNA。
     结论:1.树鼩CD81、SR-BI、CLDN1以及OCLN可介导HCV感染。2.HCVpp、HCVcc能感染PTH,并且HCVcc感染PTH能完成完整的病毒复制过程,产生感染性HCV颗粒。3.J6/JFH1 HCVcc可感染树鼩,产生病毒血症。
     以上结果为用树鼩作为HCV小动物感染模型的可行性提供了依据。
Detailed analyses of HCV have been hampered by the lacks of stable small animal model for a long time. In the recent two years, although the infectious HCV cell model has been established, it is restricted in only one genotype, which brought difficulties to HCV preventing and curing research. The current therapy for HCV infection is PegIFN-αin combination with ribavirin. Although the sustained viral response rate for HCV genotype 2 and 3 is more than 75%, it is no more than 50% for HCV genotype 1, the most widespread type in the world. This treatment is expensive and has side effects. Since HCV was cloned, some European and American developed countries have been always trying to develop its vaccine, but so far yet, there is no effective vaccine available. Thus, the development of new therapies and effective vaccine for HCV infection is of great clinical and economic significance.
     The chimpanzee (Pan troglodytes) is the only nonhuman host serving as a model for HCV infection. While HCV infection can be successfully studied in chimpanzees, these animal experiments are expensive and raise ethical issues. An alternative model for HCV infection is the tree shrew (tupaia belangeri), a small, squirrel-like mammal closely related to primates. Tree shrew has been shown to be susceptible to avariety of human viruses including herpes simplex, hepatitis B, and rotavirus. Two studies have demonstrated that T. belangeri can be infected in vivo with HCV. Some researches had shown that primary tupaia hepatocytes (PTH) can be successfully infected with serum or plasma derived from chronically HCV-infected humans. Incubation of PTH with native HCV from chronically HCV infected patients resulted in the production of infectious virus in vitro, indicating that PTH provide a model for the study of HCV infection and the functional assessment of HCV receptor candidates. Three interesting models for HCV infection: the immunotolerized rat model, Trimera mouse model and the uPA/SCID model, are being developed. Trimera mouse model involves the development of a chimeric mouse with a different source of tissue. Indeed, these three rodent models are really promising, although relatively complicated to use, but they present the un-questionable advantage of being much less expensive and easier to maintain and breed than primates. The first step of cell entry for virus is to attach to the receptors on the target cell surface. In this step the virus envelope protein plays an important role.Viruses initiate infection by attaching to molecules or receptors on the cell surface. Thus, major research efforts are focused on HCV receptors.
     The exact mechanism of HCV cell entry is still not very clear. A series of conclusive evidences show that the HCV envelope glycoprotein 2 could bind to a variety of target cell surface receptors, among which CD81 is most improtant. CD81, also known as TAPA-1, is a member of the tetraspanin family, containing four transmembrane domains. It is a 26kD nonglycosylated cell surface protein and absolutely necessary for the HCV cell entry.
     Strong evidence exists for the involvement of the HCV E2-binding proteins-CD81 and SR-BI in HCV entry. However, these molecules are insufficient for productive viral entry because some cell lines express CD81 and SR-BI, but do not support HCV entry. Most recently, CLDN1 was found to be required in HCV entry and confer susceptibility to HCV when ectopically expressed in non-hepatic cells. CLDN1 is one of the major proteins forming backbone of tight junctions. It has four transmembrane helices, two extracellular loops (EL).The EL1 of CLDN1 is critical for HCV entry and antibodies directed against an epitope inserted in the CLDN1 EL1 block HCV infection.
     Since 1997, several publications reported that primary tupaia hepatocytes (PTH) or tree shrews can be successfully infected with serum or plasma derived from chronically HCV-infected humans. But it is still controversial that PTH provide a model and tree shrew can be used as small animal model for the study of HCV infection and the functional assessment of HCV receptor candidates.For most viruses, the receptor distribution in an individual is associated with tissue tropism. Many virus-receptor interactions determine the host range and therefore constitute an interspecies barrier.The interaction of a virus with its cellular receptor initiates a chain of dynamic events that will enable entry of the virus into the cell. HCV Infection of the host cell is initiated through interactions between the HCV gps and several cell surface molecules. Currently, four host molecules, CD81, SR-BI, CLDN1 and OCLN, are thought to be specific and required (co-)receptors for HCV entry.
     In present study, we cloned the tree shrew CD81, SR-BI CLDN1 and OCLN. And we analyzed the functional role of the receptors for HCV binding and infection of PTH. using HCVpp and HCVcc models. We demonstrate that they represent important cell surface molecules mediating binding of the HCV E2 and infections to hepatocytes. Our research provide further possibility of that HCV infect tree shrew, in vivo and taking it as potential small animal model for the study of HCV infection.
     HCVcc were used to inoculate adult tree shrew in vivo. Alanine aminotransferase (ALT) levels, HCV RNA and viral load were determined in the animals before and after inoculation (from week 1 to week 10, once a week).
     Methods 1.RNA was extracted from liver tissue of adult tree shrews (T. belangeri). And RT-PCR was performed to amplify tree shrews CD81、SR-BI and CLDN1. 2 . TRX-hCD81 LEL and TRX-tCD81 LEL fusion proteins were expressed in Escherichia coli DH5a. And the interactions between them to HCV E2 were analyzed by ELISA. 3.CHO cells were transduced with human and tree shrew CD81. The interaction between CHO and HCV sE2 was analyzed by FCM. 4.HepG2 cells were transduced with human and tree shrew CD81. The infection was analyzed by HCVpp-Luc. 5.CHO cells were transduced with human and tree shrew SR-BI. The interaction between CHO and HCV E2 was analyzed by FCM. 6.HEK 293T cells were transduced with human and tree shrew CLDN1. The infection was analyzed by HCVpp-Luc and HCVpp-EGFP . 8.CHO cells were transduced with human CD81,SR-BI, CLDN1 and tree shrew OCLN. The infection was analyzed by HCVpp-Luc 7.Primary tupaia hepatocytes were separated and cultivate. The infection was analyzed by HCVpp-Luc. 9. The infectivity of supernatant in PTH was analyzed by immunofluorescence and Western blotting. 10. The tree shrews were inoculated with HCVcc(J6/JFH1). Alanine aminotransferase (ALT) levels, HCV RNA and viral load were analyzed in the animals before and after inoculation.
     Results 1.We cloned tree shrew CD81(GenBank: EF581831),SR-BI(GenBank: EF584564),CLDN1(GenBank:EF584564)and OCLN(GenBank:FJ809937)ORF. The comparitive analysis of CD81,SR-BI, CLDN1 and OCLN deduced amino acid sequences between human and tree shrew showed the high degree of homology.
     2.We cloned tree shrew CD81 LEL ORF and cloned them into pET32a vector. The recombinant protein was express in E.coli1 BL21. The comparitive analysis of CD81LEL binding activity to HCV sE2 between human and tree shrew by ELISA demonstrated that bacterially expressed tCD81 LEL fused to TRX is able to bind HCV E2 proteins as well as hCD81 LEL.
     3.CHO cells transduced with human and tree shrew CD81 can interact with HCV sE2.
     4.HCVpp can infect HepG2 cells transduced with human and tree shrew CD81.
     5.CHO cells transduced with human and tree shrew SR-BI can interact with HCV sE2.
     6.HCVpp can infect the 293T cells transfected tree shrew CLDN1 .
     7.HCVpp can infect PTH.
     8.CHO cells transduced with human CD81,SR-BI,CLDN1 and tree shrew OCLN can be infected by HCVpp.
     9.HCVcc can infect PTH. And HCVcc-infected PTH generated infectious virus in supernatants culture.
     10.HCV RNA can be detected form 2 in 6 tree shrews inoculated with HCVcc by realtime-PCR .
     Conclutions:
     1. Tree shrew CD81 LEL and SR-BI can bind to HCV E2. Tree shrew CD81, SR-BI, CLDN1 and OCLN can mediate HCV infection.
     2. HCVpp and HCVcc can infect PTH .
     3. In vivo infection of tree shrew with HCVcc is possible and tree shrew may be used as small animal model to research HCV infection.
引文
[1] Choo QL, Kuo G, Weiner AJ, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science, 1989,244:359-62.
    [2] Farci P. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome [Science 1989;244:359-362]. J Hepatol, 2002,36:582-5.
    [3] de Alava E, Camps J, Pardo-Mindan J, et al. Histological outcome of chronic hepatitis C treated with a 12-month course of lymphoblastoid alfa interferon. Liver, 1993,13:73-9.
    [4] Lauer GM, Walker BD. Hepatitis C virus infection. N Engl J Med, 2001,345:41-52.
    [5] Kolykhalov AA, Agapov EV, Blight KJ, et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science, 1997,277:570-4.
    [6] McGovern BH, Wurcel A, Kim AY, et al. Acute hepatitis C virus infection in incarcerated injection drug users. Clin Infect Dis, 2006,42:1663-70.
    [7] Lindenbach, B. D, and C. M. Rice. Flaviviridae: the viruses and their replication,2001. 991-1041.
    [8] Ito T, Tahara SM, Lai MM. The 3'-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol, 1998,72:8789-96.
    [9] Hahm B, Kim YK, Kim JH, et al. Heterogeneous nuclear ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C virus. J Virol, 1998,72:8782-8.
    [10] Arrieta JJ, Rodriguez-Inigo E, Casqueiro M, et al. Detection of hepatitis C virus replication by In situ hybridization in epithelial cells of anti-hepatitis C virus-positive patients with and without oral lichen planus. Hepatology, 2000,32:97-103.
    [11] Bartenschlager R, Lohmann V. Replication of hepatitis C virus. J Gen Virol, 2000,81:1631-48.
    [12] Kolykhalov AA, Mihalik K, Feinstone SM, et al. Hepatitis C virus-encodedenzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Virol, 2000,74:2046-51.
    [13] Pileri P, Uematsu Y, Campagnoli S, et al. Binding of hepatitis C virus to CD81. Science, 1998,282:938-41.
    [14] Roccasecca R, Ansuini H, Vitelli A, et al. Binding of the hepatitis C virus E2 glycoprotein to CD81 is strain specific and is modulated by a complex interplay between hypervariable regions 1 and 2. J Virol, 2003,77:1856-67.
    [15] Chan-Fook C, Jiang WR, Clarke BE, et al. Hepatitis C virus glycoprotein E2 binding to CD81: the role of E1E2 cleavage and protein glycosylation in bioactivity. Virology, 2000,273:60-6.
    [16] Meola A, Sbardellati A, Bruni Ercole B, et al. Binding of hepatitis C virus E2 glycoprotein to CD81 does not correlate with species permissiveness to infection. J Virol, 2000,74:5933-8.
    [17] Drummer HE, Boo I, Maerz AL, et al. A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry. J Virol, 2006,80:7844-53.
    [18] Lyra AC, Fan X, Di Bisceglie AM. CD81 binding regions of hepatitis C virus remain conserved after liver transplantation. Braz J Infect Dis, 2004,8:126-32.
    [19] Hofmann WP, Sarrazin C, Kronenberger B, et al. Mutations within the CD81-binding sites and hypervariable region 2 of the envelope 2 protein: correlation with treatment response in hepatitis C virus-infected patients. J Infect Dis, 2003,187:982-7.
    [20] Triyatni M, Vergalla J, Davis AR, et al. Structural features of envelope proteins on hepatitis C virus-like particles as determined by anti-envelope monoclonal antibodies and CD81 binding. Virology, 2002,298:124-32.
    [21] Op De Beeck A, Voisset C, Bartosch B, et al. Characterization of functional hepatitis C virus envelope glycoproteins. J Virol, 2004,78:2994-3002.
    [22] Owsianka AM, Timms JM, Tarr AW, et al. Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding. J Virol, 2006,80:8695-704.
    [23] Heo TH, Lee SM, Bartosch B, et al. Hepatitis C virus E2 links soluble human CD81 and SR-B1 protein. Virus Res, 2006,121:58-64.
    [24] Hsu M, Zhang J, Flint M, et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A, 2003,100:7271-6.
    [25] Lozach PY, Amara A, Bartosch B, et al. C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J Biol Chem, 2004,279:32035-45.
    [26] Higginbottom A, Quinn ER, Kuo CC, et al. Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J Virol, 2000,74:3642-9.
    [27] Lindenbach BD, Evans MJ, Syder AJ, et al. Complete replication of hepatitis C virus in cell culture. Science, 2005,309:623-6.
    [28] Zeisel MB, Koutsoudakis G, Schnober EK, et al. Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology, 2007,46:1722-31.
    [29]Mee CJ, Grove J, Harris HJ, et al. Effect of cell polarization on hepatitis C virus entry. J Virol, 2008,82:461-70.
    [30] Cocquerel L, Voisset C, Dubuisson J. Hepatitis C virus entry: potential receptors and their biological functions. J Gen Virol, 2006,87:1075-84.
    [31] Scarselli E, Ansuini H, Cerino R, et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J, 2002,21:5017-25. Yang W, Qiu C, Biswas N, et al. Correlation of the tight junction-like distribution of Claudin-1 to the cellular tropism of hepatitis C virus. J Biol Chem, 2008,283:8643-53.
    [33] Reynolds GM, Harris HJ, Jennings A, et al. Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology, 2008,47:418-27.
    [34] Dubuisson J, Helle F, Cocquerel L. Early steps of the hepatitis C viruslife cycle. Cell Microbiol, 2008,10:821-7. [35Evans MJ, von Hahn T, Tscherne DM, et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature, 2007,446:801-5.
    [36] Ploss A, Evans MJ, Gaysinskaya VA, et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature, 2009,457:882-6.
    [37] Callens N, Ciczora Y, Bartosch B, et al. Basic residues in hypervariable region 1 of hepatitis C virus envelope glycoprotein e2 contribute to virus entry. J Virol, 2005,79:15331-41.
    [38] Bartosch B, Verney G, Dreux M, et al. An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies. J Virol, 2005,79:8217-29.
    [39] Flint M, Logvinoff C, Rice CM, et al. Characterization of infectious retroviral pseudotype particles bearing hepatitis C virus glycoproteins. J Virol, 2004,78:6875-82.
    [40] Lavillette D, Tarr AW, Voisset C, et al. Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology, 2005,41:265-74.
    [41] Lagging LM, Meyer K, Owens RJ, et al. Functional role of hepatitis C virus chimeric glycoproteins in the infectivity of pseudotyped virus. J Virol, 1998,72:3539-46.
    [42] Tani H, Komoda Y, Matsuo E, et al. Replication-competent recombinant vesicular stomatitis virus encoding hepatitis C virus envelope proteins. J Virol, 2007,81:8601-12.
    [43] Lindenbach BD, Meuleman P, Ploss A, et al. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci U S A, 2006,103:3805-9.
    [44] Wakita T, Pietschmann T, Kato T, et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med, 2005,11:791-6.
    [45] Puig M, Major ME, Mihalik K, et al. Immunization of chimpanzees withan envelope protein-based vaccine enhances specific humoral and cellular immune responses that delay hepatitis C virus infection. Vaccine, 2004,22:991-1000.
    [46] Lanford RE, Bigger C, Bassett S, et al. The chimpanzee model of hepatitis C virus infections. ILAR J, 2001,42:117-26.
    [47] Brass V, Moradpour D, Blum HE. Hepatitis C virus infection: in vivo and in vitro models. J Viral Hepat, 2007,14 Suppl 1:64-7.
    [48] Guha C, Lee SW, Chowdhury NR, et al. Cell culture models and animal models of viral hepatitis. Part II: hepatitis C. Lab Anim (NY), 2005,34:39-47.
    [49] Poduri CD. Hepatitis C virus (HCV)--a review molecular biology of the virus, immunodiagnostics, genomic heterogeneity and the role of virus in hepatocellular carcinoma. Indian J Exp Biol, 2003,41:549-62.
    [50] Major ME, Mihalik K, Puig M, et al. Previously infected and recovered chimpanzees exhibit rapid responses that control hepatitis C virus replication upon rechallenge. J Virol, 2002,76:6586-95.
    [51] Bukh J, Apgar CL, Engle R, et al. Experimental infection of chimpanzees with hepatitis C virus of genotype 5a: genetic analysis of the virus and generation of a standardized challenge pool. J Infect Dis, 1998,178:1193-7.
    [52] Xu X, Chen H, Cao X, et al. Efficient infection of tree shrew (Tupaia belangeri) with hepatitis C virus grown in cell culture or from patient plasma. J Gen Virol, 2007,88:2504-12.
    [53]Liu C. Hepatitis C virus: virology and experimental systems. Clin Liver Dis, 2006,10:773-91.
    [54] Zhu Q, Oei Y, Mendel DB, et al. Novel robust hepatitis C virus mouse efficacy model. Antimicrob Agents Chemother, 2006,50:3260-8.
    [55]Chong TW, Smith RL, Hughes MG, et al. Primary human hepatocytes in spheroid formation to study hepatitis C infection. J Surg Res, 2006,130:52-7.
    [56]Shan Y, Chen XG, Huang B, et al. Malignant transformation of the cultured human hepatocytes induced by hepatitis C virus core protein. Liver Int, 2005,25:141-7.
    [57]Kock J, Nassal M, MacNelly S, et al. Efficient infection of primarytupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol, 2001,75:5084-9.
    [58]Yu RQ, Bi JJ, Wang QS. [Clinical and experimental study on treatment of chronic hepatitis B with yanggan aoping mixture]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 1997,17:155-8.
    [59]Walter E, Keist R, Niederost B, et al. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology, 1996,24:1-5.
    [60]Xie ZC, Riezu-Boj JI, Lasarte JJ, et al. Transmission of hepatitis C virus infection to tree shrews. Virology, 1998,244:513-20.
    [61]Guitart A, Riezu-Boj JI, Elizalde E, et al. Hepatitis C virus infection of primary tupaia hepatocytes leads to selection of quasispecies variants, induction of interferon-stimulated genes and NF-kappaB nuclear translocation. J Gen Virol, 2005,86:3065-74.
    [62]Barth H, Cerino R, Arcuri M, et al. Scavenger receptor class B type I and hepatitis C virus infection of primary tupaia hepatocytes. J Virol, 2005,79:5774-85.
    [63]Honda M, Sakai A, Kaneko S. [Animal model for HCV infection--chimpanzee and tupaia, etc.]. Nippon Rinsho, 2004,62 Suppl 7:126-30.
    [64]Su JJ, Li Y, Ban KC, et al. [Alteration of p53 gene during tree shrews' hepatocarcinogenesis]. Zhonghua Gan Zang Bing Za Zhi, 2003,11:159-61.
    [65] Wu GY, Konishi M, Walton CM, et al. A novel immunocompetent rat model of HCV infection and hepatitis. Gastroenterology, 2005,128:1416-23.
    [66] Takehara T, Hayashi N, Miyamoto Y, et al. Expression of the hepatitis C virus genome in rat liver after cationic liposome-mediated in vivo gene transfer. Hepatology, 1995,21:746-51.
    [67] Hayashi N, Takehara T, Kamada T. In vivo transfection of rat liver with hepatitis C virus cDNA using cationic liposome-mediated gene delivery. Princess Takamatsu Symp, 1995,25:143-9.
    [68] Galun E, Terrault NA, Eren R, et al. Clinical evaluation (Phase I) of a human monoclonal antibody against hepatitis C virus: safety and antiviral activity. J Hepatol, 2007,46:37-44.
    [69] Eren R, Landstein D, Terkieltaub D, et al. Preclinical evaluation of two neutralizing human monoclonal antibodies against hepatitis C virus(HCV): a potential treatment to prevent HCV reinfection in liver transplant patients. J Virol, 2006,80:2654-64.
    [70] Okumura H, Katoh M, Sawada T, et al. Humanization of excretory pathway in chimeric mice with humanized liver. Toxicol Sci, 2007,97:533-8.
    [71] Turrini P, Sasso R, Germoni S, et al. Development of humanized mice for the study of hepatitis C virus infection. Transplant Proc, 2006,38:1181-4.
    [72] Meuleman P, Vanlandschoot P, Leroux-Roels G. A simple and rapid method to determine the zygosity of uPA-transgenic SCID mice. Biochem Biophys Res Commun, 2003,308:375-8.
    [73] Giannini C, Morosan S, Tralhao JG, et al. A highly efficient, stable, and rapid approach for ex vivo human liver gene therapy via a FLAP lentiviral vector. Hepatology, 2003,38:114-22.
    [74] Meuleman P, Leroux-Roels G. The human liver-uPA-SCID mouse: a model for the evaluation of antiviral compounds against HBV and HCV. Antiviral Res, 2008,80:231-8.
    [75] Cerec V, Glaise D, Garnier D, et al. Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology, 2007,45:957-67.
    [76] Meuleman P, Libbrecht L, Wieland S, et al. Immune suppression uncovers endogenous cytopathic effects of the hepatitis B virus. J Virol, 2006,80:2797-807.
    [77] Li YW, Wu B, Zhao ZH, et al. Studies on mechanism of entry of EB virus into non-B lymphocytes. Establishment of an EB virus-producing human-tupaia hybrid cell line TuH18. Sci Sin [B], 1984,27:284-93.
    [78] Darai G, Schwaier A, Komitowski D, et al. Experimental infection of Tupaia belangeri (tree shrews) with herpes simplex virus types 1 and 2. J Infect Dis, 1978,137:221-6.
    [79] Zhao XP, Tian ZF, Chen YC, et al. [Infection of tupaia hepatocytes with hepatitis C virus in vitro]. Zhonghua Gan Zang Bing Za Zhi, 2005,13:805-7.
    [80] Dreux M, Pietschmann T, Granier C, et al. High density lipoprotein inhibits hepatitis C virus-neutralizing antibodies by stimulating cellentry via activation of the scavenger receptor BI. J Biol Chem, 2006,281:18285-95.
    [81] Feng ZH, Wang QC, Nie QH, et al. DC-SIGN: binding receptor for HCV?. World J Gastroenterol, 2004,10:925-9.
    [82] Wang QC, Feng ZH, Nie QH, et al. DC-SIGN: binding receptors for hepatitis C virus. Chin Med J (Engl), 2004,117:1395-400.
    [83] Flint M, Dubuisson J, Maidens C, et al. Functional characterization of intracellular and secreted forms of a truncated hepatitis C virus E2 glycoprotein. J Virol, 2000,74:702-9.
    [84] Drummer HE, Wilson KA, Poumbourios P. Identification of the hepatitis C virus E2 glycoprotein binding site on the large extracellular loop of CD81. J Virol, 2002,76:11143-7.
    [85] Tani H, Matsuura Y. [Entry mechanisms of hepatitis C virus]. Tanpakushitsu Kakusan Koso, 2007,52:1095-100.
    [86] Esaulenko EV, Dunaeva NV, Vetrov TA. [Interaction of hepatitis C virus with cytoplasmic membrane receptors]. Vopr Virusol, 2007,52:4-7.
    [87] Zhao X, Tang ZY, Klumpp B, et al. Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. J Clin Invest, 2002,109:221-32.
    [88] Sprinzl MF, Oberwinkler H, Schaller H, et al. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier. J Virol, 2001,75:5108-18.
    [89]闵峰,王素美.丙型肝炎病毒感染离体培养树鼩肝细胞模型初探.肝脏, Chinese Hepatology,2008.
    [90]陈瑾,代解杰,孙晓梅,等.树鼩肝炎动物模型的研究进展.中国比较医学杂志, Chinese Journal of Comparative Medicine, 2008.
    [91]高丽.树鼩原代肝细胞分离培养及HCV对其感染性研究:硕士论文.昆明,昆明理工大学, 2008.
    [1]. Lindenbach, B. D., Thiel, H.-J., and Rice, C. M. (2007) Flaviviridae: The Viruses and Their Replication. In: Knipe, D. M., and Howley, P. M. (eds). Fields Virology, 5th Ed.Lippincott-Raven, Philadelphia
    [2]. De Francesco, R., and Migliaccio, G. (2005) Nature 436(7053), 953-960
    [3]. Takyar, S. T., Li, D., Wang, Y., Trowbridge, R., and Gowans, E. J. (2000) Hepatology 32(2), 382-387
    [4]. Michalak, J. P., Wychowski, C., Choukhi, A., Meunier, J. C., Ung, S., Rice, C. M., and Dubuisson, J. (1997) J Gen Virol 78 ( Pt 9), 2299-2306
    [5]. Drummer, H. E., Maerz, A., and Poumbourios, P. (2003) FEBS Lett 546(2-3), 385-390
    [6]. Lindenbach, B. D., Meuleman, P., Ploss, A., Vanwolleghem, T., Syder, A. J., McKeating, J. A., Lanford, R. E., Feinstone, S. M., Major, M. E., Leroux-Roels, G., and Rice, C. M. (2006) Proc Natl Acad Sci U S A 103(10), 3805-3809
    [7]. Kapadia SB, Barth H, Baumert T, et al. Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I. J Virol. 2007 Jan;81(1):374-83. Epub 2006 Oct 18.
    [8]. Cocquerel, L., Op de Beeck, A., Lambot, M., Roussel, J., Delgrange, D., Pillez, A., Wychowski, C., Penin, F., and Dubuisson, J. (2002) Embo J 21(12), 2893-2902
    [9]. Owsianka, A. M., Timms, J. M., Tarr, A. W., Brown, R. J., Hickling, T. P., Szwejk, A., Bienkowska-Szewczyk, K., Thomson, B. J., Patel, A. H., and Ball, J. K. (2006) J Virol 80(17), 8695-8704
    [10]. Kitadokoro, K., Bordo, D., Galli, G., Petracca, R., Falugi, F., Abrignani, S., Grandi, G., and Bolognesi, M. (2001) Embo J 20(1-2), 12-18
    [11]. Levy, S., and Shoham, T. (2005) Nat Rev Immunol 5(2), 136-148
    [12]. Rubinstein, E., Ziyyat, A., Wolf, J. P., Le Naour, F., and Boucheix, C. (2006) Semin Cell Dev Biol 17(2), 254-263
    [13]. Rigotti, A., Miettinen, H. E., and Krieger, M. (2003) Endocr Rev 24(3), 357-387
    [14]. Kapadia, S. B., Barth, H., Baumert, T., McKeating, J. A., and Chisari, F. V. (2007) J Virol 81(1), 374-383
    [15]. Catanese, M. T., Graziani, R., von Hahn, T., Moreau, M., Huby, T., Paonessa, G., Santini,
    [16]. Evans, M. J., von Hahn, T., Tscherne, D. M., Syder, A. J., Panis, M., Wolk, B., Hatziioannou, T., McKeating, J. A., Bieniasz, P. D., and Rice, C. M. (2007) Nature 446(7137), 801-805
    [17]. Furuse, M., and Tsukita, S. (2006) Trends Cell Biol 16(4), 181-188
    [18]. Flint, M., von Hahn, T., Zhang, J., Farquhar, M., Jones, C. T., Balfe, P., Rice, C. M., and McKeating, J. A. (2006) J Virol 80(22), 11331-11342
    [19].Thomas von Hahn and Charles M. Rice. HEPATITIS C VIRUS ENTRY. J Biol Chem. 2008 15;283(7):3689-93.
    [20],Gundo Diedrich. How does hepatitis C virus enter cells? FEBS J. 2006 Sep;273(17):3871-85
    [21].Ploss A;Evans MJ;Gaysinskaya VA;Panis M;You H;de Jong YP;Rice CM. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells.Nature 2009 feb;7232 (457) :882-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700