miRNA-101和miRNA-122功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNA(miRNA)是真核生物中一类长度约为22nt,由茎环结构前体加工而来的具有基因调控功能的小分子非编码RNA。miRNA通过与其靶基因mRNA的3′非翻译区(untranslated region, UTR)结合抑制靶基因翻译或导致靶基因mRNA的降解,从而在转录后水平调控真核生物的基因表达。miRNA广泛参与细胞增殖、凋亡、应激等重要生命过程的调控。大量研究表明,miRNA与多种肿瘤的发生有着极为密切的关系。
     我们首先研究了miRNA异常表达与肝细胞癌(Hepatocellular Carcinoma, HCC)发生发展之间的关系。利用miRNA芯片及本实验室建立的miRNA实时定量检测方法,我们检测了肝细胞癌组织及癌旁组织中miRNA的表达,发现miR-101、miR-148a、miR-182、miR-422b、miR-451在两种组织之间存在显著表达差异。运用生物信息学预测软件、荧光素酶报告基因实验以及Western Blot,我们发现miR-101能抑制fos癌基因的表达并抑制转录因子AP-1的活化。此外, Transwell细胞体外侵袭实验表明miR-101能够抑制fos的表达进而抑制肝癌细胞系的侵袭转移。
     本研究同时关注了肝脏中特异性高表达的miR-122。为了寻找miR-122的候选靶基因,我们对miR-122的成熟体进行了生物素(Biotin)标记,并将其转染入细胞,通过亲和纯化我们富集了miR-122的靶基因。此外,我们还发现miR-122能够抑制PRKRA的表达进而促进miRNA的加工成熟。
     取得的主要进展有:
     1.肝细胞癌中miRNA的异常表达。利用miRNA芯片及实时定量PCR检测了20例肝细胞癌病人癌组织和癌旁组织中miRNA的表达,发现在肝细胞癌组织中miR-101、miR-148a、miR-422b、miR-451表达显著升高,而miR-182表达显著降低。
     2. fos癌基因是miR-101的靶基因。荧光素酶报告基因实验证实miR-101通过作用于fos基因mRNA的3′非翻译区抑制其表达。在人胚肾细胞HEK 293中过表达miR-101可以显著抑制PMA对内源FOS蛋白的诱导表达。
     3. miR-101抑制转录因子AP-1的活化并抑制肝癌细胞系的侵袭转移。利用AP-1转录活性报告载体(pAP-1-Luc),表明miR-101能够抑制fos进而抑制由PMA诱导的转录因子AP-1的活化。利用Transwell细胞体外侵袭实验,发现miR-101能够抑制fos进而抑制由肝细胞生长因子(hepatocyte growth factor, HGF)诱导的肝癌细胞系的侵袭转移。
     4.运用实验方法寻找miR-122的候选靶基因。对miR-122成熟序列3′端进行生物素标记,将其转染入肝癌细胞系HepG2中,之后用温和方式裂解细胞并利用生物素与链亲和素之间的亲和性富集miR-122的靶基因。提取富集产物中的RNA,用实时定量PCR及基因芯片检测富集的基因,发现miR-122的多个已知靶基因得到了富集,并发现了一些新的候选靶基因。
     5. miR-122能够抑制PRKRA的表达进而促进miRNA的加工成熟。结合以上基因芯片结果和miRNA靶位点预测软件的预测结果,发现PRKRA是miR-122的候选靶基因。荧光素酶报告基因实验证实,miR-122可以直接作用于PRKRA的3′非翻译区。过表达miR-122可以显著抑制HepG2细胞中PRKRA的蛋白水平及其mRNA水平。miR-122和针对PRKRA的siRNA能够促进HeLa细胞中miRNA的加工成熟。
     综上,本研究揭示了肝细胞癌中异常表达的miR-101能够抑制fos癌基因的表达并抑制肝癌细胞系的侵袭转移。本研究还用亲和纯化方法寻找肝脏特异性miR-122的候选靶基因,发现miR-122可以抑制PRKRA进而促进miRNA的加工成熟。
MicroRNAs (miRNAs) are small conserved RNA molecules of ~22 nucleotides which negatively modulate gene expression in animals and plants, primarily through base pairing to the 3′untranslated region (UTR) of target mRNAs, which leads to mRNA cleavage and/or translation repression. MiRNAs are involved in a variety of basic biological processes, such as cell proliferation, apoptosis and stress responses. Recent studies showed that miRNAs correlate with various cancers.
     First of all, tissue samples of 20 primary HCCs including cancerous and adjacent normal liver tissues were obtained from patients who underwent hepatectomy. Then we employed miRNA-microarray and miRNA-realtime-PCR (developed by our lab) to investigate the expression profile of miRNA in hepatocellular carcinoma (HCC). Results showed that miR-101, miR-148a, miR-182, miR-422b and miR-451 are differentially expressed in HCC. By using bioinformatic tool, dual luciferase reporter assay and Western blot analysis, we demonstrated that miR-101 repressed the expression of fos oncogene, a key component of the activator protein-1 (AP-1) transcription factor. Moreover, via a luciferase expression vector (pAP-1-Luc) driven by seven copies of an AP-1 cis-element, we observed that miR-101 expression inhibited PMA induced AP-1 activity. In in vitro Matrigel invasion and Transwell migration assays, enhanced miR-101 expression inhibited the invasion and migration of cultured HCC cells, respectively.
     Secondly, our study focused on hepato-specific miR-122. We employed 3′-end biotinylated synthetic miR-122 to identify its targets based on affinity purification. Quantitative RT-PCR analysis of the affinity purified RNA demonstrated a specific enrichment of several reported miR-122 targets. Using bioinformatic tool, dual luciferase reporter assay and Western blot analysis, we showed that miR-122 repressed the expression of PRKRA and the inhibition of PRKRA could facilitate the expression of miRNA in HeLa cells.
     The main progresses are listed:
     1. miRNA signature in HCC. By using miRNA-microarray and miRNA-realtime PCR we found miR-101, miR-148a, miR-422b and miR-451 were significantly down-regulated in HCC tissues compared with the adjacent normal liver tissues, while miR-182 was significantly up-regulated in HCC.
     2. fos is the target gene of miR-101. miRNA targets prediction software Targetscan shows that fos is a candidate target gene of miR-101. Using dual luciferase reporter assay we demonstrated that miR-101 could interact with the 3′UTR of fos directly. Moreover, the overexpression of miR-101 could inhibit the high expression of FOS protein induced by PMA in HEK293 cells.
     3. miR-101 inhibits both the activation of AP-1 and HGF-induced migration and invasion through the inhibition of fos gene. By using a luciferase expression vector (pAP-1-Luc) driven by seven copies of an AP-1 cis-element, we observed that miR-101 expression inhibited PMA induced AP-1 activity. In in vitro Matrigel invasion and Transwell migration assays, enhanced miR-101 expression inhibited the invasion and migration of cultured HCC cells, respectively.
     4. Isolation of the hepato-specific miR-122 targets using biotinylated synthetic miRNA. We employed 3′-end biotinylated synthetic miR-122 to identify its targets based on affinity purification. Quantitative RT-PCR analysis of the affinity purified RNA demonstrated a specific enrichment of several reported miR-122 targets. To find more targets of miR-122, the purified RNA was amplified and analyzed on microarray.
     5. miR-122 facilitates miRNA expression by inhibiting PRKRA. From above microarray data and the prediction of Targetscan, we found PRKRA is a candidate target of miR-122. Using dual luciferase reporter assay we showed that miR-122 could interact with the 3′UTR of PRKRA directly. The overexpresion of miR-122 in HepG2 cells inhibited the expression of PRKRA at both protein and mRNA level. Moreover, miR-122 and siRNA for PRKRA could facilitate the expression of miRNA in HeLa cell.
     On the whole, our investigation revealed that miR-101 was downregulated in HCC and invovled in the regulation of hepatoma carcinoma cell migration and invasion by regulating the expression of fos oncogene. The study on miR-122 found out many candidate target genes of miR-122. Moreover, miR-122 could facilitate the expression of miRNA in HeLa cell by inhibiting the expression of PRKRA.
引文
[1] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75(5):843-854.
    [2] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993, 75(5):855-862.
    [3] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004,116(2):281-297.
    [4] Ambros V. The functions of animal microRNAs. Nature. 2004, 431(7006):350-355.
    [5] Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000, 403(6772):901-906.
    [6] Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes adevelopmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003, 113(1):25-36.
    [7] Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003, 13(9):790-795.
    [8] Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006, 312(5770):75-79.
    [9] Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH. MicroRNA expression in zebrafish embryonic development. Science. 2005, 309(5732):310-311.
    [10] Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007, 129(2):303-17.
    [11] Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005, 436(7048):214-220.
    [12] Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007,13(4):486-491.
    [13] Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004, 101(9):2999-3004.
    [14] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR,Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature. 2005,435(7043):834-838.
    [15] Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007, 302(1):1-12.
    [16] Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005,33(4):1290-1297.
    [17] Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64(11):3753-3756.
    [18] Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell. 2005,120(5):635-647.
    [19] Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007,315(5818):1576-9.
    [20] Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65(14):6029-6033.
    [21] Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007, 282(19):14328-14336.
    [22] Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002, 99(24):15524-15529.
    [23] Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A. 2004, 101(32):11755-11760.
    [24] Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005, 102(39):13944-13949.
    [25] He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C,Lowe SW, Cleary MA, Hannon GJ. A microRNA component of the p53 tumour suppressor network. Nature. 2007,447(7148):1130-1134.
    [26] Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 2008,582(10):1564-1568.
    [27] Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007,449(7163):682-688.
    [28] Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005,433(7027):769-773.
    [29] Tang F, Hajkova P, Barton SC, Lao K, Surani MA. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 2006,34(2):e9.
    [30] Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J. Systematic analysis ofmicroRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA. 2007,13(10):1668-1674.
    [31] Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC, Cattan H, Enver T, Mager R, Boultwood J, Wainscoat JS,Hatton CS. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer. 2007,121(5):1156-1161.
    [32] Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. 2006,5:24.
    [33] Zhang HH, Wang XJ, Li GX, Yang E, Yang NM. Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J Gastroenterol. 2007,13(20):2883-2888.
    [34] Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y,Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008,18(10):997-1006.
    [35] Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 2009,112(1):55-59.
    [36] Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A. 2009,106(11):4402-4407.
    [37] Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006,26(21):8191-8201.
    [38] Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005,438(7068):685-689.
    [39] Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, ?rum H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010,327(5962):198-201.
    [40] Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, Zucman-Rossi J. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008,47(6):1955-1963.
    [41] Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, Odenthal M.MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008,47(4):1223-32.
    [42] Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002,12(9):735-739.
    [43] Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005,309(5740):1577-1581.
    [44] Kok KH, Ng MH, Ching YP, Jin DY. Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem. 2007,282(24):17649-17657.
    [1] Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S,Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006,3(2):87-98.
    [2] Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005,309(5740):1577-1581.
    [3] Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, ?rum H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010,327(5962):198-201.
    [4] Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009,137(6):1005-1017.
    [5] Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007,133(2):647-658.
    [6] Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, Yadav A, Nuovo G, Kumar P, Ghoshal K. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009,284(46):32015-32027.
    [7] Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004,101(9):2999-3004.
    [8] Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004, 101(9):2999-3004.
    [9] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR,Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature. 2005,435(7043):834-838.
    [10] Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008,322(5908):1695-1699.
    [11] Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006,9(3):189-198.
    [12] Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP,Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005,65(16):7065-7070.
    [13] Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, GinzingerD, Getts R, Haqq C. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. 2006,5:24.
    [14] Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007,210(2):370-377.
    [15] Li W, Xie L, He X, Li J, Tu K, Wei L, Wu J, Guo Y, Ma X, Zhang P, Pan Z, Hu X, Zhao Y, Xie H, Jiang G, Chen T, Wang J, Zheng S,Cheng J, Wan D, Yang S, Li Y, Gu J. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int J Cancer. 2008,123(7):1616-1622.
    [16] Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, Zhuang SM. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009,69(3):1135-1142.
    [17] Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH, Spiegelman BM. c-fos is required for malignant progression of skin tumors. Cell. 1995,82(5):721-732.
    [18] Arbuthnot P, Kew M, Fitschen W. c-fos and c-myc oncoprotein expression in human hepatocellular carcinomas. Anticancer Res. 1991,11(2):921-924.
    [19] Wang Z, Xiang Q, Li D, Li S. Correlation between gene expression and chromatin conformation of c-fos and N-ras in human liver and hepatoma. Chin Med Sci J. 1991,6(1):6-8.
    [20] Feng DY, Zheng H, Tan Y, Cheng RX. Effect of phosphorylation of MAPK and Stat3 and expression of c-fos and c-jun proteins on hepatocarcinogenesis and their clinical significance. World J Gastroenterol. 2001,7(1):33-36.
    [21] Yuen MF, Wu PC, Lai VC, Lau JY, Lai CL. Expression of c-Myc, c-Fos, and c-jun in hepatocellular carcinoma. Cancer. 2001,91(1):106-112.
    [22] Güller MC, AndréJ, Legrand A, Setterblad N, Mauviel A, Verrecchia F, Daniel F, Bernuau D. c-Fos accelerates hepatocyte conversion to a fibroblastoid phenotype through ERK-mediated upregulation of paxillin-Serine178 phosphorylation. Mol Carcinog. 2009,48(6):532-544.
    [23] Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature. 1991,351(6324):317-320.
    [24] Benn J, Schneider RJ. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A. 1994,91(22):10350-10354.
    [25] Avantaggiati ML, Natoli G, Balsano C, Chirillo P, Artini M, De Marzio E, Collepardo D, Levrero M. The hepatitis B virus (HBV) pX transactivates the c-fos promoter through multiple cis-acting elements. Oncogene. 1993,8(6):1567-1574.
    [26] Spector M, Nguyen VA, Sheng X, He L, Woodward J, Fan S, Baumgarten CM, Kunos G, Dent P, Gao B. Activation of mitogen-activated protein kinases is required for alpha1-adrenergic agonist-induced cell scattering in transfected HepG2 cells. Exp Cell Res. 2000,258(1):109-120.
    [27] Ried S, J?ger C, Jeffers M, Vande Woude GF, Graeff H, Schmitt M, Lengyel E. Activation mechanisms of the urokinase-type plasminogen activator promoter by hepatocyte growth factor/scatter factor. J Biol Chem. 1999,274(23):16377-16386.
    [28] Chen Q, Seol DW, Carr B, Zarnegar R. Co-expression and regulation of Met and Ron proto-oncogenes in human hepatocellular carcinoma tissues and cell lines. Hepatology. 1997,26(1):59-66.
    [29] Seol DW, Chen Q, Zarnegar R. Transcriptional activation of the hepatocyte growth factor receptor (c-met) gene by its ligand (hepatocyte growth factor) is mediated through AP-1. Oncogene. 2000,19(9):1132-1137.
    [1] Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004,1(2):106-113.
    [2] Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM, Lin CD, Liao YL, Wang JL, Chau YP, Hsu MT, Hsiao M, Huang HD, Tsou AP. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009,49(5):1571-1582.
    [3] Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 2008,375(3):315-320.
    [4] Patel RC, Sen GC. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J. 1998,17(15):4379-4390.
    [5] Kok KH, Ng MH, Ching YP, Jin DY. Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem. 2007,282(24):17649-17657.
    [6] Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. The role of PACT in the RNA silencing pathway. EMBO J. 2006,25(3):522-532.
    [7] Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005,436(7051):740-744.
    [8] Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, R?dmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing.Nature. 2003,425(6956):415-419.
    [9] Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003,17(24):3011-3016.
    [10] Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004,303(5654):95-98.
    [11] Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002,12(9):735-739.
    [12] Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005,309(5740):1577-1581.
    [13] Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer S, Landthaler M, Landgraf P, Kan S, Lindenbach BD,Chien M, Weir DB, Russo JJ, Ju J, Brownstein MJ, Sheridan R, Sander C, Zavolan M, Tuschl T, Rice CM. Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci U S A. 2007,104(31):12884-12889.
    [14] Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S,Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006,3(2):87-98.
    [15] Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology. 2003,144(12):5179-5183.
    [16] Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, Ruskeep?? AL, Oresic M, Esau CC, Zdobnov EM,Schibler U. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 2009,23(11):1313-1326.
    [17] Hoofnagle JH. Course and outcome of hepatitis C. Hepatology. 2002,36(5 Suppl 1):S21-29.
    [18] Kato N. Genome of human hepatitis C virus (HCV): gene organization, sequence diversity, and variation. Microb Comp Genomics. 2000;5(3):129-151.
    [19] Jubin R. Hepatitis C IRES: translating translation into a therapeutic target. Curr Opin Mol Ther. 2001,3(3):278-287.
    [20] Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005,309(5740):1577-1581.
    [21] Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, ?rum H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010,327(5962):198-201.
    [22] Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, Goodman ZD, Koury K, Ling M, Albrecht JK. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001,358(9286):958-965.
    [23] Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Gon?ales FL Jr, H?ussinger D, Diago M, Carosi G, Dhumeaux D, Craxi A, Lin A, Hoffman J, Yu J. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med. 2002,347(13):975-982.
    [24] Sarasin-Filipowicz M, Krol J, Markiewicz I, Heim MH, Filipowicz W. Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nat Med. 2009,15(1):31-33.
    [25] Sarasin-Filipowicz M, Oakeley EJ, Duong FH, Christen V, Terracciano L, FilipowiczW, Heim MH. Interferon signaling and treatment outcome in chronic hepatitis C. Proc Natl Acad Sci U S A. 2008,105(19):7034-7039.
    [26] Chen L, Borozan I, Feld J, Sun J, Tannis LL, Coltescu C, Heathcote J, Edwards AM, McGilvray ID. Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology. 2005,128(5):1437-1444.
    [27] Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A. 2008,105(39):14879-14884.
    [28] ?rom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008,30(4):460-471.
    [29] Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature. 2009,460(7254):479-486.
    [30] ?rom UA, Lund AH. Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods. 2007,43(2):162-165.
    [31] Gatignol A, Buckler-White A, Berkhout B, Jeang KT. Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science. 1991,251(5001):1597-1600.
    [32] Park H, Davies MV, Langland JO, Chang HW, Nam YS, Tartaglia J, Paoletti E, Jacobs BL, Kaufman RJ, Venkatesan S. TAR RNA-binding protein is an inhibitor of the interferon-induced protein kinase PKR. Proc Natl Acad Sci U S A. 1994,91(11):4713-4717.
    [33] Peters GA, Hartmann R, Qin J, Sen GC. Modular structure of PACT: distinct domains for binding and activating PKR. Mol Cell Biol. 2001,21(6):1908-1920.
    [34] Gupta V, Huang X, Patel RC. The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity. Virology. 2003,315(2):283-291.
    [35] Li S, Peters GA, Ding K, Zhang X, Qin J, Sen GC. Molecular basis for PKR activation by PACT or dsRNA. Proc Natl Acad Sci U S A. 2006,103(26):10005-10010.
    [36] Benkirane M, Neuveut C, Chun RF, Smith SM, Samuel CE, Gatignol A, Jeang KT. Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J. 1997,16(3):611-624.
    [1] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75(5):843-854.
    [2] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993, 75(5):855-862.
    [3] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004,116(2):281-297.
    [4] Ambros V. The functions of animal microRNAs. Nature. 2004, 431(7006):350-355.
    [5] Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005,33(4):1290-1297.
    [6] Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003, 113(1):25-36.
    [7] Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007,449(7163):682-688.
    [8] Boutla A, Delidakis C, Tabler M. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res. 2003,31(17):4973-4980.
    [9] Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004,304(5670):594-596.
    [10] Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006, 312(5770):75-79.
    [11] Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005,433(7027):769-773.
    [12] Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S,Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006,3(2):87-98.
    [13] Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res. 2006,34(16):e107.
    [14] Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008,455(7209):64-71.
    [15] Selbach M, Schwanh?usser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008,455(7209):58-63.
    [16] Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification. RNA. 2007,13(8):1198-1204.
    [17] Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature. 2009,460(7254):479-486.
    [18] Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M,Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010,141(1):129-141.
    [19] Hsu RJ, Yang HJ, Tsai HJ. Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res. 2009,37(10):e77.
    [20] ?rom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008,30(4):460-471.
    [21] ?rom UA, Lund AH. Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods. 2007,43(2):162-165.
    [22] Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A. 2008,105(39):14879-14884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700