miR-29c在食管癌中通过调控cyclin E的表达诱导细胞周期阻滞
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食管癌是一种常见的恶性肿瘤,在世界范围内的发病率和死亡率分别排在第8位和第6位。我国食管癌发病率居世界首位,近年来其发病率虽然有所下降,但死亡率变化不大,术后五年的生存率只有20-30%。食管癌的发生发展是一个多阶段,多种分子参与的复杂过程。然而,这些分子是如何调控食管癌的起始和进展,以及如何利用这些分子进行靶向治疗仍然需要进一步探索。
     miRNAs是长度为19-22 nt,高度保守的非编码RNA,并且能够通过转录后调控的机制抑制靶基因的翻译。miRNAs在细胞增殖,分化和凋亡过程中起到了重要的作用。最近越来越多的证据显示miRNAs在肿瘤的发生和发展中起到了重要的作用。我们前期芯片结果证明miR-29c在食管癌中明显的低表达。我们研究的口的是揭示miR-29c在食管癌中的表达模式及其在食管癌发生中发挥的作用。
     已有大量证据显示某些miRNAs的异常表达可能导致肿瘤的发生,并且在多种肿瘤中已经发现miR-29c低表达的现象。然而,miR-29c低表达在食管癌中所发挥的作用仍然不清楚。在我们的研究中证明miR-29c在食管癌组织和细胞中明显低表达,并且能够在体内和体外抑制食管癌细胞的增殖。我们通过双荧光素酶报告基因实验证明cyclin E是miR-29c的靶基因。众所周知,cyclin E是细胞周期G1/S期过渡的重要分子,并且其在食管癌的发生过程中频繁的高表达。实验结果证明在食管癌细胞中miR-29c和cyclin E的表达水平呈负相关。同时,过表达miR-29c能够抑制cyclin E的表达,并且随着miR-29c前体分子转染剂量的增加而cyclin E的表达降低。此外,我们还发现miR-29c过表达能够诱导细胞周期G1/S期阻滞并且抑制Rb蛋白的磷酸化。这些结果暗示miR-29c可能是通过cyclin E/Cdk2-pRb信号通路实现的诱导细胞周期G1/S期阻滞。我们还检测其它的G1期相关蛋白的表达水平如cyclin D1、cyclin D2、CDK2、CDK6,结果证实miR-29c不影响这些蛋白的表达。因此,我们可以得出miR-29c在食管癌细胞中主要通过调控cyclin E的表达诱导细胞周期G1/S期阻滞。
     综上所述,我们的研究证明miR-29c能够抑制cyclin E的表达,并且在食管癌的发生中起到抑癌分子的作用。近期的文献报道,cyclin E在食管癌组织和细胞中持续高表达,我们的实验结果证明miR-29c通过作用在cyclin E 3'UTR抑制cyclin E的表达,这一机制为解释cyclin E在食管癌中持续高表达提供了新的线索。同时,miR-29c可能成为靶向治疗食管癌的一个重要分子,因此,miR-29c将具有良好的应用前景。
Esophageal cancer is the eighth most common cancer and the sixth most common cause of cancer deaths worldwide. The incidence of esophageal squamous cell carcinoma (ESCC) is more frequent in China. Despite the advances in therapy; ESCC is still one of the most lethal malignancies in China, with an overall 5-year survival rate of 20-30% after curative surgery. The development of ESCC is a multistep, progressive process, and a number of canonical genetic alterations in the tumor cells have been identified. However, how specific molecules regulate the initiation and progression of esophageal squamous cell carcinoma and are utilized for a clinical target therapy remains to be elucidated.
     miRNAs are 19-22 nt in length, highly conserved noncoding RNA that control gene expression post-transcriptionally. miRNAs play important roles in cell proliferation, differentiation, and apoptosis. Recent cumulative evidences suggested that miRNAs play important roles in the tumor growth and development. Our previously microarray analysis demonstrated that miR-29c expression was down-regulated in esophageal squamous cell carcinoma. The aim of this study was to evaluate the miR-29c expression patterns and the role of miR-29c in esophageal squamous cell carcinoma.
     Increasing evidence has suggested that dysregulation of certain miRNAs may contribute to tumorigenesis. Downregulation of miR-29c was observed in various types of cancers. However, the biological function of miR-29c in esophageal squamous cell carcinoma (ESCC) is still unknown. In our study, we showed that the expression of miR-29c was significantly decreased in ESCC tissues and five ESCC cell lines. Moreover, miR-29c could suppress in vitro and in vivo proliferation of ESCC cells. Cyclin E, which was critical for G1/S transition and was overexpression in most of esophageal squamous cell carcinoma, was identified as a target of miR-29c by luciferase assay. The cyclin E protein expression was detected in ESCC cell lines by western blotting. Interestingly, inverse correlations between miR-29c and cyclin E protein level were found in five ESCC cell lines. Introduction of miR-29c could reduce the expression of cyclin E protein but not the cyclin E mRNA, and the expression of cyclin E was decreased along with the increased miR-29c level. In addition, we observed that increased expression of miR-29c could induce cell cycle G0/G1 arrest and suppress the phosphorylation of Rb in ESCC cell lines. These results suggest that miR-29c may regulate G1/S transition through the cyclin E/Cdk2-pRb signaling pathway. We detect the expression of other G1 related protein such as cyclin Dl, cyclin D2, CDK2, and CDK6. The results confirmed that overexpression of miR-29c can not affect the expression of these proteins in ESCC cell lines. Furthermore, miR-29c induces cell cycle arrest in esophageal squamous cell carcinoma by modulating expression of cyclin E mainly.
     Taken together, our study demonstrates that the miR-29c can regulate cyclin E and function as a tumor suppressor in ESCC. Recent evidences show the level of cyclin E protein has been found to increase in ESCC tissue and cell lines. miR-29c inhibits the translation of cyclin E mRNA by targeting its 3'UTR, which add a new explain of deregulation of cyclin E expression in ESCC. Therefore, miR-29c may serve as a useful therapeutic agent for miRNA-based ESCC therapy.
引文
[1]. Jemal A., Siegel R., Ward E., Hao Y., Xu J., Thun M. J. Cancer statistics. [J]. CA Cancer J Clin,2009,59(4):225-249.
    [2]. Crew K. D., Neugut A. I. Epidemiology of upper gastrointestinal malignancies. [J]. Semin Oncol,2004.31(4):450-464.
    [3]. Sant M., Aareleid T., Berrino F., Bielska Lasota M., Carli P. M., Faivre J., Grosclaude P., Hedelin G., Matsuda T.. Moller H., Moller T., Verdecchia A., Capocaccia R., Gatta G., Micheli A., Santaquilani M.. Roazzi P., Lisi D. EUROCARE-3:survival of cancer patients diagnosed 1990-94-results and commentary. [J]. Ann Oncol.2003.14 Suppl 5:61-118.
    [4]. Law S. Y., Fok M., Cheng S. W., Wong J. A comparison of outcome after resection for squamous cell carcinomas and adenocarcinomas of the esophagus and cardia. [J]. Surg Gynecol Obstet.1992.175(2):107-112.
    [5]. McCann J. Esophageal cancers:changing character, increasing incidence. [J]. J Natl Cancer Inst,1999.91(6):497-498.
    [6]. Garidou A., Tzonou A., Lipworth L., Signorello L. B., Kalapothaki V., Trichopoulos D. Life-style factors and medical conditions in relation to esophageal cancer by histologic type in a low-risk population. [J]. Int J Cancer,1996,68(3):295-299.
    [7]. Cheng K. K., Duffy S. W., Day N. E., Lam T. H. Oesophageal cancer in never-smokers and never-drinkers. [J]. Int J Cancer,1995,60(6):820-822.
    [8]. Hu N., Dawsey S. M., Wu M., Bonney G. E., He L. J., Han X. Y., Fu M., Taylor P. R. Familial aggregation of oesophageal cancer in Yangcheng County, Shanxi Province, China. [J]. Int J Epidemiol,1992,21(5):877-882.
    [9]. Jankowski J. A., Wright N. A., Meltzer S. J., Triadafilopoulos G., Geboes K., Casson A. G., Kerr D., Young L. S. Molecular evolution of the metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. [J]. Am J Pathol,1999,154(4):965-973.
    [10]. Dawsey S. M., Lewin K. J., Wang G.Q., Liu F. S., Nieberg R. K., Yu Y., Li J. Y., Blot W. J., Li B., Taylor P. R. Squamous esophageal histology and subsequent risk of squamous cell carcinoma of the esophagus. A prospective follow-up study from Linxian. China. [J]. Cancer,1994,74(6):1686-1692.
    [11]. Wang G. Q., Abnet C. C., Shen Q., Lewin K. J., Sun X. D., Roth M. J., Qiao Y. L. Mark S. D., Dong Z. W., Taylor P. R., Dawsey S. M. Histological precursors of oesophageal squamous cell carcinoma:results from a 13 year prospective follow up study in a high risk population. [J]. Gut,2005.54(2):187-192.
    [12]. Hollstein M. C., Metcalf R. A., Welsh J. A.. Montesano R.. Harris C. C. Frequent mutation of the p53 gene in human esophageal cancer. [J]. Proc Natl Acad Sci U S A. 1990,87(24):9958-9961.
    [13]. Jiang W., Zhang Y. J., Kahn S. M., Hollstein M. C., Santella R. M., Lu S. H., Harris C. C., Montesano R.. Weinstein I. B. Altered expression of the cyclin D1 and retinoblastoma genes in human esophageal cancer. [J]. Proc Natl Acad Sci U S A.1993. 90(19):9026-9030.
    [14]. Hu N., Wang C., Han X. Y., He L. J., Tang Z. Z., Giffen C., Emmert-Buck M. R., Goldstein A. M., Taylor P. R. Evaluation of BRCA2 in the genetic susceptibility of familial esophageal cancer. [J]. Oncogene,2004,23(3):852-858.
    [15]. Gratas C., Tohma Y., Barnas C., Taniere P., Hainaut P.. Ohgaki H. Up-regulation of Fas (APO-1/CD95) ligand and down-regulation of Fas expression in human esophageal cancer. [J]. Cancer Res,1998,58(10):2057-2062.
    [16]. Shih C. H., Ozawa S., Ando N., Ueda M., Kitajima M. Vascular endothelial growth factor expression predicts outcome and lymph node metastasis in squamous cell carcinoma of the esophagus. [J]. Clin Cancer Res,2000,6(3):1161-1168.
    [17]. Mizushima T., Nakagawa H., Kamberov Y. G., Wilder E. L., Klein P. S., Rustgi A. K. Wnt-1 but not epidermal growth factor induces beta-catenin/T-cell factor-dependent transcription in esophageal cancer cells. [J]. Cancer Res,2002,62(1):277-282.
    [18]. Yang L., Leung A. C., Ko J. M., Lo P. H., Tang J. C., Srivastava G., Oshimura M., Stanbridge E. J., Daigo Y., Nakamura Y., Tang C. M., Lau K. W., Law S., Lung M. L. Tumor suppressive role of a 2.4 Mb 9q33-q34 critical region and DEC1 in esophageal squamous cell carcinoma. [J]. Oncogene,2005,24(4):697-705.
    [19]. Roth M. J., Hu N., Emmert-Buck M. R., Wang Q. H., Dawsey S. M., Li G., Guo W. J., Zhang Y. Z., Taylor P. R. Genetic progression and heterogeneity associated with the development of esophageal squamous cell carcinoma. [J]. Cancer Res,2001.61(10): 4098-4104.
    [20]. Xing E. P., Yang G. Y., Wang L. D., Shi S. T., Yang C. S. Loss of heterozygosity of the Rb gene correlates with pRb protein expression and associates with p53 alteration in human esophageal cancer. [J]. Clin Cancer Res,1999,5(5):1231-1240.
    [21]. Vogelstein B., Kinzler K. W. The multistep nature of cancer. [J]. Trends Genet,1993. 9(4):138-141.
    [22]. Belinsky S. A., Nikula K. J., Palmisano W. A.. Michels R.. Saccomanno G., Gabrielson E., Baylin S. B., Herman J. G. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. [J]. Proc Natl Acad Sci U S A,1998,95(20):11891-11896.
    [23]. Wong D. J., Paulson T. G., Prevo L. J., Galipeau P. C., Longton G., Blount P. L. Reid B. J. p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett's metaplastic epithelium. [J]. Cancer Res,2001,61(22):8284-8289.
    [24]. Guo M., Ren J., House M. G., Qi Y.. Brock M. V., Herman J. G. Accumulation of promoter methylation suggests epigenetic progression in squamous cell carcinoma of the esophagus. [J]. Clin Cancer Res,2006,12(15):4515-4522.
    [25]. Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. [J]. Cell,1993.75(5): 843-854.
    [26]. John B., Enright A. J., Aravin A., Tuschl T., Sander C., Marks D. S. Human MicroRNA targets. [J]. PLoS Biol, 2004, 2( 11 ):363.
    [27]. Berezikov E., Guryev V., van de Belt J., Wienholds E., Plasterk R. H., Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. [J]. Cell. 2005. 120(1): 21-24.
    [28]. Lewis B. P., Burge C. B., Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. [J]. Cell, 2005, 120(1): 15-20.
    [29]. Bartel D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. [J]. Cell, 2004, 116 (2): 281-297.
    [30]. Okamura K., Hagen J. W., Duan H., Tyler D. M., Lai E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. [J]. Cell, 2007, 130(1): 89-100.
    [31]. Kim V. N., Han J., Siomi M. C. Biogenesis of small RNAs in animals. [J]. Nat Rev Mol Cell Biol, 2009, 10(2): 126-139.
    [32]. Bushati N., Cohen S. M. microRNA functions. [J]. Annu Rev Cell Dev Biol, 2007, 23: 175-205.
    [33]. Esquela-Kerscher A., Slack F. J. Oncomirs-microRNAs with a role in cancer. [J]. Nat Rev Cancer, 2006, 6(4): 259-269.
    [34]. Calin G. A., Sevignani C, Dumitru C. D., Hyslop T., Noch E., Yendamuri S., Shimizu M., Rattan S., Bullrich F., Negrini M., Croce C. M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. [J]. Proc Natl Acad Sci U S A, 2004, 101(9): 2999-3004.
    [35]. Ota A., Tagavva H., Karnan S., Tsuzuki S., Karpas A., Kira S., Yoshida Y., Seto M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. [J]. Cancer Res, 2004, 64(9): 3087-3095.
    [36]. Rinaldi A., Poretti G., Kwee I., Zucca E., Catapano C. V., Tibiletti M. G., Bertoni F. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. [J]. Leuk Lymphoma,2007,48(2):410-412.
    [37]. He L., Thomson J. M., Hemann M. T., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S. W.. Hannon G. J., Hammond S. M. A microRNA polycistron as a potential human oncogene. [J]. Nature,2005,435(7043):828-833.
    [38]. Hayashita Y., Osada H., Tatematsu Y., Yamada H., Yanagisawa K., Tomida S., Yatabe Y., Kavvahara K., Sekido Y., Takahashi T. A polycistronic microRNA cluster. miR-17-92. is overexpressed in human lung cancers and enhances cell proliferation. [J]. Cancer Res,2005.65(21):9628-9632.
    [39]. Monzo M., Navarro A., Bandres E., Artells R., Moreno I., Gel B., Ibeas R., Moreno J., Martinez F., Diaz T., Martinez A., Balague O.. Garcia-Foncillas J. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. [J]. Cell Res. 2008.18(8):823-833.
    [40]. Connolly E., Melegari M., Landgraf P., Tchaikovskaya T.. Tennant B. C., Slagle B. L., Rogler L. E., Zavolan M., Tuschl T., Rogler C. E. Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. [J]. Am J Pathol,2008,173(3):856-864.
    [41]. Takakura S., Mitsutake N., Nakashima M., Namba H., Saenko V. A., Rogounovitch T.I., Nakazawa Y., Hayashi T., Ohtsuru A., Yamashita S. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. [J]. Cancer Sci,2008,99(6):1147-1154.
    [42]. Chen H. C., Chen G. H., Chen Y. H., Liao W. L., Liu C. Y., Chang K. P., Chang Y. S., Chen S. J. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. [J].Br J Cancer,2009,100(6):1002-1011.
    [43]. Diosdado B., van de Wiel M. A., Terhaar Sive Droste J. S., Mongera S., Postma C., Meijerink W. J., Carvalho B., Meijer G. A. MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. [J]. Br J Cancer,2009, 101(4):707-714.
    [44]. Du Y. Xu Y. Ding L. Yao H, Yu H, Zhou T, Si J. Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. [J]. J Gastroenterol.2009:44(6):556-61.
    [45]. Noonan EJ et al. MiR-449a targets HDAC-1 and induces growth arrest in prostate cancer. [J]. Oncogene.2009.28(14):1714-24.
    [46]. Wu H et al. Suppression of cell growth and invasion by miR-205 in breast cancer. [J]. Cell Res.2009.19(4):439-48.
    [47]. Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S, Ge R, Jiang S. Li G, Chen Y, He ML, Kung HF, Lai L, Lin MC. MicroRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. [J]. Brain Res.2009,7;1269:158-65
    [48]. Gramantieri L et al. MicroRNA involvement in hepatocellular carcinoma. [J]. J Cell Mol Med.2008.12(6A):2189-204.
    [49]. Gramantieri L et al.Cyclin G1 is a target of miR-122a, a microRNA frequently down- regulated in human hepatocellular carcinoma. [J].Cancer Res.2007.67(13):6092-6099.
    [50]. Fornari F et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. [J]. Oncogene.2008,27(43):5651-5661.
    [51]. Galardi S et al. MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kipl. [J]. J Biol Chem.2007,282 (32):23716-23724.
    [52]. Volinia S, Calin GA. Liu CG, Ambs S. Cimmino A. Petrocca F, Visone R, Iorio M, RoldoC, Ferracin M, et al. [J]. Proc Natl Acad Sci USA.2006,103:2257-2261.
    [53]. Yanaihara N, Caplen N, Bowman E, SeikeM, Kumamoto K, YiM, Stephens RM, OkamotoA, Yokota J. Tanaka T. et al. [J]. Cancer Cell.2006.9:189-198.
    [54]. Mraz M. Malinova K. Kotaskova J. Pavlova S, Tichy B, Malcikova J, Stano Kozubik K, Smardova J, Brychtova Y, Doubek M. Trbusek M. Mayer J, Pospisilova S. miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. [J]. Leukemia.2009,23(6):1159-63.
    [55]. Sengupta S, den Boon JA, Chen IH, Newton MA. Stanhope SA, Cheng YJ, Chen CJ, Hildesheim A, Sugden B, Ahlquist P. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. [J]. Proc Natl Acad Sci U S A.2008,15; 105(15):5874-8.
    [56]. Nguyen T, Kuo C, Nicholl MB, Sim MS. Turner RR, Morton DL, Moon DS. Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. [J]. Epigenetics.2011, 1:6(3):388-94.
    [57]. Nishinaka T, Fu YH, Ch en Li, et al. A unique cathepsin-like protease isolated from CV-1 cells is involved in rapid degradation of retinoblastoma susceptibility gene product. RB, and transcription factor SRI. [J]. Biochim Biophys Acta.1997.96(I):274.
    [58]. Fang X, Jin X, Xu HJ, et al. Expression of p16 induces transcriptional down regulation of the RB gene. [J]. Oncogene,1998.16(1):1.
    [59]. Erlansson, F, C. wahlby. S.Ekholm-Reed, A.C. Hellstrom, E. Bengtsson, and A, Zetterberg.2003. Abnormal expression pattern of cyclin E in tumour cells. [J]. Int J Cancer.104:369-75.
    [60]. Erlandson, M. and G. Landberg. Prognostic implications of p27 and cyclin E protein contents in malignant lymphomas. [J]. Leuk Lymphoma.2001,40:461-70.
    [61]. Keyomarsi, K., D. Conte, Jr., W. Toyofuku, and M. P. Fox. Deregulation of cyclin E in breast cancer. [J]. Oncogene.1995,11:941-50.
    [62]. Sandhu, C., and J. Slingerland. Deregulation of the cell cycle in cancer. [J]. Cancer Detect Prev.2000.24:107-18.
    [63]. Schrml, P., C. Bucher. H. Bissig, A. Nocito. P. Haas, K. Wilber. S. Seelig, J. Kononen. M.J. Mihatsch, S. Dirnhofer. and D. Sauter. Cyclin E overexpression and amplification in human tumours. [J]. J Pathol.2003,200:375-82.
    [64]. Foulkes. W.D., J.S. Brunet. I.M.Stefansson, O. Straume. P.O. Chappuis, L.R. Begin. N. Hamel. J.R. Coffin. N. Wong, M. Trudel. L. Kapusta. P. Porter, and L.A. Akslen. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. [J].2004. Cancer Res.64:830-5.
    [65]. Porter. PL., K.E. Malone. P.J. I leagerty, G.M. Alexander. L.A. Gatti, E.J. Firpo, J.R. Daling, and J.M. Roberts.. Expression of Cell-cycle regulators p27Kip1 and cyclin E. alone and in combination. correlate with survival in young breast cancer patients.[J]. Nat Med.1997.3:222-5.
    [66]. Erlanson. M., C. Portin, B. Linderholm, J. Lindh, G. Roos. and G. Landberg. Expression of cyclin E and the cyclin-dependant kinase inhibitor p27 in malignant lymphomas- prognostic implications. [J]. Blood.1998.92:770-7.
    [67]. Hayashi. H., N. Ogawa, N. Ishiwa, T. Yazawa, Y. Inayama, T. Ito, and H. Kitamura. High cyclin E and low p27/Kip1 expressions are potentially poor prognostic factors in lung adenocarcinoma patients. [J]. Lung Cancer.2001,34:59-65.
    [68]. Bortner, D.M., and M.P. Rosenberg. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. [J]. Mol Cell Biol.1997,17: 453-9.
    [69]. Koepp, D.M., L.K. Schaefer, X. Ye, K. Keyomarsi, C. Chu, J.W. Harper, and S.J. Elledge. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. [J]. Science.2001.294:173-7.
    [70]. Moberg, K.H., D.W. Bell. D.C. Wahrer. D.A. Haber, and I.K. Hariharan. Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines. [J]. Nature.2001,413:311-6.
    [71]. Rajagopalan. H., P.V.Jallepalli, C. Rago, V.E. Velculescu. K.W. Kinzler, B. Vogelstein. and C. Lengauer. Inactivation of hCDC4 can cause chromosomal instability. [J]. Nature.2004.428:77-81.
    [72]. Spruck. C.H., H. Strohmaier. O. Sangfelt. H.M. Muller. M. Hubalek. E. Muller-Holzner. C. Marth. M. Wideschwendter. and S.I, Reed. hCDC4 gene mutations in endometrial cancer. [J]. Cancer Res.2002.62:4535-9.
    [73]. Strohmaier. H., C.H. Spruck. P. Kaiser. K.A. Won, O. Sangfelt, and S.I. Reed. Human F-box protein hCDC4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. [J]. Nature.2001.413:316-22.
    [74]. Courjal. F.. G. Louason, P. Speiser, D. Katsaros, R. Zeillinger. and C. Theillet. Cyclin gene amplification and overexpression in breast and ovarian cancers:evidence for the selection of cyclin D1 in breast and cvclin E in ovarian tumors. [J]. Int J Cancer.1996. 69:247-53.
    [75]. Marone. M.. G. Scambia, C. Giannitelli. G. Ferrandina. V. Masciullo. A. Bellacosa. P. Benedetti-Panici, and S. Mancuso. Analysis of cyclin E and CDK2 in ovarian cancer: gene amplification and RNA overexpression. [J]. Int J Cancer.1998.75:34-9. [76]. Matsumoto M, Furihata M, Ishikawa T, Ohtsuki Y, Ogoshi S. Comparison of deregulated expression of cyclin dl and cyclin e with that of cyclin-dependent kinase 4 (cdk4) and cdk2 in human oesophageal squamous cell carcinoma. [J]. Br J Cancer,1999, 80:256-261.
    [77]. Fujii S, Tominaga O, Nagawa H, Tsuno N, Nita ME, Tsuruo T, Muto T. Quantitative analysis of the cyclin expression in human esophageal cancer cell lines. [J]. J Exp Clin Cancer Res,1998,17:491-496.
    [78]. Sengupta S. den Boon JA, Chen IH, Newton MA, Stanhope SA. Cheng Y.I, Chen CJ, Hildesheim A, Sugden B. Ahlquist P. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. [J]. Proc Natl Acad Sci U S A.2008.105:5874-8.
    [79]. Dalmay T. Edwards D R. MicroRNAs and the hallmarks of cancer. [J]. Oncogene. 2006,25(46):6170-6175.
    [80]. Calin G A. Sevignani C. Dumitru C D. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. [J]. Proc Natl Acad Sci USA.2004,101(9):2999-3004.
    [81]. Calin G A, Croce C M. MicroRNA signatures in human cancer. [J]. Nat Rev Cancer, 2006.6(11):857-866.
    [82]. Esquela-Kersher A. Slack F j. Oncomirs-microRNAs with a role in cancer. [J]. Nat Rev Cancer,2006,6(4):259-269.
    [83]. Yu S L, Chen H Y. Yang P C, et al. Unique MicroRNA signature and clinical outcome of cancers. [J]. DNA Cell Biol,2007.26(5):283-292.
    [84]. Meltzer P S. Cancer genomics:small RNAs with big impacts. [J]. Nature.2005.435 (7043):745-746.
    [85]. Yong Guo, Zhaoli Chen, Liang Zhang, Fang Zhou, Susheng Shi, Xiaoli Feng, Baozhong Li, Xin Meng, Xi Ma, Mingyong Luo, Kang Shao, Ning Li, Bin Qiu, Keith Mitchelson, Jing Cheng, and Jie He. Distinctive MicroRNA Profiles Relating to Patient Survival in Esophageal Squamous Cell Carcinoma. [J]. Cancer Res,2008,68:26-33.
    [86]. Tavazoie S. F., Alarcon C., Oskarsson T., Padua D., Wang Q., Bos P. D., Gerald W. L., Massague J. Endogenous human microRNAs that suppress breast cancer metastasis. [J].Nature,2008,451(7175):147-152.
    [87]. Venturini L., Battmer K., Castoldi M., Schultheis B., Hochhaus A., Muckenthaler M. U., Ganser A., Eder M., Scherr M. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. [J]. Blood.2007,15; 109(10):4399-405.
    [88]. Gillies J. K., Lorimer I. A. Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. [J]. Cell Cycle.2007.6(16):2005-2009.
    [89]. Li J D, Peng Y, Dai Y, et al. Comparison of the metastatic characteristics of HCCLM3 cells and SMCC-7721 cells in nude mice model. [J]. Zhonghua Gan Zang Bing Za Zhi.2010,18(1):19-22.
    [90]. Ye L. Wang G B, Tao K X. Synergistic use of epidermal growth factor and 5-fluorouracil for the treatment of human colorectal cancer in BALB/C nude mice subcutaneous xenograft model [J]. Zhonghua Wei Chang Wai Ke Za Zhi.2009,12(1): 69-72.
    [91]. Giustozzi G M, Lucaroni E. Lauro A. et al. Effect of octreotide on the hepatic metastasis of human colorectal cancer:an experimental model in athymic mice [J]. Chir ltal.1999,51(3):235-240.
    [92]. Liu L. Zhang Q L, Jiang H Y, et al. Establishment of a whole-body visualization model of orthotopically implanted colorecatal carcinoma and metastasis model in nude mice [J]. Nan Fang Yi Ke Da Xue Xue Bao.2007,27(8):1161-1163.1166.
    [93]. Flatmark K. Maelandsmo G M. Martinsen M, et al. Tewlve colorectal cancer cell lines exhibit highly variable growth and metastatic capacities in an orthotopic model in nude mice. [J]. Eur J Cancer,2004,40(10):1593-1598.
    [94]. Croce C M. Causes and consequences of microRNA dysregulation in cancer. [J]. Nat Rev Genet,2009,10(10):704-714.
    [95]. Calin G A, Sevignani C, Dumitru C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. [J]. Proc Natl Acad Sci USA,2004,101(9):2999-3004.
    [96]. Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. [J]. Proc Natl Acad Sci USA,2002,99(24):15524-15529.
    [97]. Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene. C13orf25. as a target for 13q31-q32 amplification in malignant lymphoma. [J] Cancer Res.2004,64(9):3087-3095.
    [98]. Saito Y. Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the photo-oncogene BCL6 by chromatin-modifying drug in human cancer cells. [J]. Cancer Cell.2006.9(6):435-443.
    [99]. Karube Y. Tanake H. Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. [J]. Cancer Sci,2005,96(2):111-115.
    [100]. Calin G. A., Ferracin M., Cimmino A., et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. [J]. N Engl J Med. 2005.353(17):1793-1801.
    [101]. Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. [J]. Hum Mol Genet,2007,16(9):1124-1131.
    [102]. Swanton C. Cell-cycle targeted therapies. [J]. Lancet Oncol,2004,5(1):27-36.
    [103]. Pass HI, Goparaju C, Ivanov S, Donington J, Carbone M, Hoshen M. Cohen D. Chajut A, Rosenwald S. Dan H, Benjamin S, Aharonov R. hsa-miR-29c* is linked to the prognosis of malignant pleural mesothelioma. [J]. Cancer Res.2010,1; 70 (5):1916-24.
    [104]. Thadani R. Tammi M T. MicroTar:predicting microRNA targets from RNA duplexes. [J]. BMC Bioinformatics,2006,7 Suppl 5:S20.
    [105]. Sethupathy P., Megraw M., Hatzigeorgion A. G.. A guide through present com-putational approaches for the identification of mammalian microRNA targets. [J]. Nat Methods,2006,3(11):881-886.
    [106]. John B., Sander C., Marks D. S.. Prediction of human microRNA targets. [J]. Methods Mol Biol,2006,342:101-113.
    [107]. Rehmsmeier M. Prediction of microRNA targets. [J]. Methods Mol Biol,2006, 342:87-99.
    [108]. Volinia S, Visone R, Galasso M, et al. Indetification od microRNA activity by Targets' Reverse Expression. [J]. Bioinformatics.2010,26(1):91-97.
    [109]. Hu Z. Insight into microRNA regulation by analyzing the characteristics of their targets in human. [J]. BMC Genomics,2009,10:594.
    [110]. Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. [J]. Biol Pharm Bull,2006,29(5):903-906.
    [111]. Kim S, Lee U J, Kim M N. et al. MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2(ERK2). [J]. J Biol Chem.2008,283(26):18158-18166.
    [112]. Liu B. Peng X C. Zheng X L. et al. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. [J]. Lung cancer.2009. 66(2):169-175.
    [113]. Yang W.. Chendrimada T. P., Wang Q., Higuchi M., Seeburg P. H., Shiekhattar R., Nishikura K. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. [J]. Nat Struct Mol Biol.2006,13(1):13-21.
    [114]. Raver-Shapira N., Marciano E., Meiri E., Spector Y., Rosenfeld N., Moskovits N., Bentwich Z.. Oren M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. [J]. Mol Cell,2007,26(5):731-743.
    [115]. Hossain A., Kuo M. T., Saunders G. F. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. [J]. Mol Cell Biol,2006,26(21): 8191-8201.
    [116]. Gray JW, Collins C. Genome changes and gene expression in human solid tumors. [J]. Carcinogenesis,2000,21(3):443-452.
    [117]. Tomlinson I.P., Lambros M.B., and Roylance R.R. Loss of heterozygosity analysis: practically and conceptually flawed Genes Chromosomes. [J]. Cancer.2002.34(4): 349-353.
    [118]. Tsai LM, Yu D. MicroRNAs in common diseases and potential therapeutic applications. [J]. Clin. Exp. Pharmaco. Physiol.2010,37:102-107.
    [1]. Lee RC et al.Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. [J]. Cell.1993.75 (5):843-854.
    [2]. Pasquinelli AE et al. Conservation of the sequence and temporal expression of let-7 hetero-chronic regulatory RNA. [J]. Nature.2000.408 (6808):86-89.
    [3]. Lee RC et al. An extensive class of small RNAs in Caenorhabditis elegans. [J]. Science.2001.294 (5543):862-864.
    [4]. Lau NC et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. [J]. Science.2001,294 (5543):858-862. [5]. Lagos-Quintana M et al. Identification of novel genes coding for small expressed RNAs. [J]. Science.2001.294 (5543):853-858.
    [6]. Calin G. A., Dumitru C. D., Shimizu M., Bichi R., Zupo S., Noch E., Aldler H., Rattan S.. Keating M., Rai K., Rassenti L., Kipps T., Negrini M., Bullrich F., Croce C. M. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. [J]. Proc Natl Acad Sci U S A.2002,99(24): 15524-15529.
    [7]. Tam W. Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. [J].274(1-2):157-167.
    [8]. Tanzer A., Stadler P. F. Molecular evolution of a microRNA cluster. [J]. J Mol Biol, 2004,339(2):327-335.
    [9]. Kim V. N., Han J., Siomi M. C. Biogenesis of small RNAs in animals. [J]. Nat Rev Mol Cell Biol,2009,10(2):126-139.
    [10]. Denli A. M., Tops B. B., Plasterk R. H., Ketting R. F., Hannon G. J. Processing of primary microRNAs by the Microprocessor complex. [J]. Nature,2004,432(7014): 231-235.
    [11]. Zeng Y., Cullen B. R. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. [J]. J Biol Chem. 2005280(30): 27595-27603.
    [12]. Landgraf P., Rush M., Sheridan R., Sewer A., Iovino N., Aravin A., Pfeffer S., Rice A., Kamphorst A. O., Landthaler M., Lin C. Socci N. D., Hermida L., FulciV., Chiaretti S., Foa R., Schliwka J., Fuchs U., Novosel A., Muller R. U., Schermer B., Bissels U., Inman J., Phan Q., Chien M., Weir D. B., Choksi R., De Vita G., Frezzetti D., Trompeter H. I., Hornung V., Teng G., Hartmann G., Palkovits M., Di Lauro R., Wernet P., Macino G., Rogler C. E., Nagle J. W., Ju J., Papavasiliou F. N., Benzing T., Lichter P., Tam W., Brownstein M. J., Bosio A.,Borkhardt A., Russo J. J., Sander C., Zavolan M., Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. [J]. Cell 2007, 129(7): 1401 -1414.
    [13]. Jiang Q., Wang Y., Hao Y., Juan L., Teng M., Zhang X., Li M., Wang G., Liu Y.miR2Disease: a manually curated database for microRNA deregulation in human disease. [J]. Nucleic Acids Res, 2009, 37(Database issue):D98-104.
    [14]. Chen J. F., Mandel E. M., Thomson J. M., Wu Q., Callis T. E., Hammond S. M., Conlon F. L., Wang D. Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. [J]. Nat Genet, 38(2):228-233.
    [15]. Kim H. K., Lee Y. S., Sivaprasad U., Malhotra A., Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation. [J]. J Cell Biol, 2006, 174(5): 677-687.
    [16]. Rao P. K., Kumar R. M., Farkhondeh M., Baskerville S., Lodish H. F. Myogenicfactors that regulate expression of muscle-specific microRNAs. [J]. Proc Natl Acad Sci U S A, 2006, 103(23):8721-8726.
    [17]. O'Donnell K. A., Wentzel E. A., Zeller K. I., Dang C. V., Mendell J. T. c-Myc-regulated microRNAs modulate E2F1 expression. [J]. Nature, 2005, 435 (7043): 839-843.
    [18].He L..He X..Lowe S.W..Hannon G.J.microRNAs join the p53 network--another piece in the tumour-suppression puzzle.[J].Nat Rev Cancer 2007,7(11):819-822.
    [19].Bueno M.J.,Perez de Castro I.,Gomez de Cedron M.,Santos J.,Calin G.A., Cigudosa J.C.,Croce C. M., Fernandez-Piqueras J., Malumbres M.Genetic andepigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression.[J].Cancer Cell,2008,13(6):496-506.
    [20].Eyholzer M.,Schmid S.,Schardt J.A.,Haefliger S., Mueller B.U., Pabst T. Complexity of miR-223 regulation by CEBPA in human AML.[J].Leuk Res.34(5): 672-676.
    [21]. Davis B.N.,Hilyard A.C., Lagna G., Hata A.SMAD proteins control DROSHA-mediated microRNA maturation.[J].Nature.2008,454(7200):56-61.
    [22].Guil S.,Caceres J.F.The multifunctional RNA-binding protein hnRNP A I is required for processing of miR-18a.[J].Nat Struct Mol Biol.2007.14(7):591-596.
    [23].Michlewski G.,Guil S.,Semple C.A.,Caceres J.F.Posttranscriptional regulation of miRNAs harboring conserved terminal loops.[J].Mol Cell,2008.32(3):383-393.
    [24].Pasquinelli A.E.,Reinhart B.J.,Slack F.,Martindale M.Q.,Kuroda Maller B., Hayward D.C.,Ball E.E.,Degnan B.,Muller P.,Spring J.,Srinivasan A.,Fishman M., Finnerty J.,Corbo J.,Levine M.,Leahy P.,Davidson E.,Ruvkun G.Conservation of the sequence and temporal expression of let-7 heterochroniregulatory RNA.[J].Nature, 2000,408(6808):86-89.
    [25].Suh M.R.,Lee Y.,Kim J.Y.,Kim S.K.,Moon S.H.,Lee J.Y.,Cha K.Y.,Chung H.M.,Yoon H.S.,Moon S.Y.,Kim V.N.,Kim K.S.Human embryonicstem cells express a unique set of microRNAs.[J].Dev Biol,2004,270(2):488-498.
    [26].Thomson J.M.,Newman M.,Parker J.S.,Morin-Kensicki E.M.,Wright T., Hammond S. M. Extensive post-transcriptional regulation of microRNAs and itsim-plications for cancer. [J]. Genes Dev,2006.20(16):2202-2207.
    [27]. Wulczyn F. G., Smirnova L., Rybak A., Brandt C.. Kwidzinski E., Ninnemann O., Strehle M., Seiler A., Schumacher S., Nitsch R. Post-transcriptional regulation of the Iet-7 microRNA during neural cell specification. [J]. Faseb J.2007.21(2):415-426.
    [28]. Newman M. A.. Thomson J. M., Hammond S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. [J]. RNA,2008.14(8):1539-1549.
    [29]. Viswanathan S. R., Daley G. Q., Gregory R. I. Selective blockade of microRNA processing by Lin28. [J]. Science,2008.320(5872):97-100.
    [30]. Rybak A., Fuchs H., Smirnova L.. Brandt C., Pohl E. E., Nitsch R., Wulczyn F. G. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation duringneural stem-cell commitment. [J]. Nat Cell Biol.2008.10(8):987-993.
    [31]. Heo I., Joo C., Cho J., Fla M., Han J., Kim V. N. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. [J]. Mol Cell,2008.32(2):276-284.
    [32]. Balzer E., Moss E. G. Localization of the developmental timing regulator Lin28to mRNP complexes, P-bodies and stress granules. [J]. RNA Biol,2007,4(1):16-25.
    [33]. Hwang H. W., Wentzel E. A., Mendell J. T. A hexanucleotide element directs microRNA nuclear import. [J]. Science,2007,315(5808):97-100.
    [34]. Ramachandran V., Chen X. Degradation of microRNAs by a family of exoribo-nucleases in Arabidopsis. [J]. Science,2008,321(5895):1490-1492.
    [35]. Yang W., Chendrimada T. P., Wang Q., Higuchi M., Seeburg P. H., Shiekhattar R., Nishikura K. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. [J]. Nat Struct Mol Biol,2006,13(1):13-21.
    [36].Kawahara Y.,Zinshteyn B.,Chendrimada T.P.. Shiekhattar R., Nishikura K RNA cediting of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex.[J]. EM BO Rep.2007.8(8):763-769.
    [37].Kawahara Y., Megraw M.,Kreider E.,Iizasa H., Valente L.,Hatzigeorgiou A.G., Nishikura K.Frequency and fate of microRNA editing in human brain.[J]. Nucleic Acids Res,2008,36(16):5270-5280.
    [38].Lee E.J., Baek M.,Gusev Y., Brackett D.J., Nuovo G.J.,Schmittgen T.D. Systematic evaluation of microRNA processing patterns in tissues,cell lines,andtumors. [J].RNA,2008,14(1):35-42.
    [39].Michael M.Z.,SM o'Connor,van Holst Pellekaan N.G.,Young G.P.,James R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia.[J].Mol Cancer Res.2003.1(12):882-891.
    [40].Kefas B.,Godlewski J., Comeau L., Li Y., Abounader R., Hawkinson M.,Lee J.,Fine H.,Chiocca E.A.,Lawler S.,Purow B. microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and ls Dow-regulated in Glioblastoma. [J].Cancer Res,2008,68(10):3566-3572.
    [41].Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function.[J].Cell, 2004,116:281-97.
    [42].Lagos-Quintana M et al.New microRNAs from mouse and human.[J].RNA.2003, 9:175-9.
    [43].Lewis BP et al.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets.[J].Cell,2005,120(1):15-20.
    [44].Tsai WC,Hsu PW, Lai TC,Chau G Y,Lin CW, Chen CM,Lin CD,Liao YL,Wang JL,Chau YP,Hsu MT, Hsiao M,Huang HD,Tsou AP.MicroRNA-122,a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. [J].Hepatolog,2009,49(5):1571-82.
    [45]. Mochizuki S et al. ADAMs in cancer cell proliferation and progression. [J]. Cancer Sci,2007,98:621-628.
    [46]. Ding X et al. ADAM 17 mRNA expression and pathological features of hepato-cellular carcinoma. [J]. World J Gastroenterol.2004,10:2735-2739.
    [47]. Castillo J et al. Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. [J]. Cancer Res.2006,66:6129-6138.
    [48]. Li N et al.MiR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. [J]. Cancer Lett,2009,275(1):44-53.
    [49]. Hiyoshi Y et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. [J]. Clin Cancer Res,2009.15(6):1915-22.
    [50]. Xia H, Qi Y. Ng SS, Chen X. Li D, Chen S, Ge R, Jiang S, Li G. Chen Y. He ML. Kung HF, Lai L, Lin MC. MicroRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. [J]. Brain Res,2009,1269:158-65.
    [51]. Gebeshuber CA et al.MiR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. [J]. EMBO Rep,2009,10 (4):400-5.
    [52]. Hurst DR et al.Beast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. [J]. Cancer Res,2009,69(4):1279-83.
    [53]. Segura MF et al.Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. [J]. Proc Natl Acad Sci U S A,2009,106(6):1814-9.
    [54]. Du Y, Xu Y, Ding L, Yao H, Yu H, Zhou T, Si J.. Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. [J]. J Gastroenterol,2009; 44(6):556-61.
    [55]. Noonan EJ et al.MiR-449a targets HDAC-I and induces growth arrest in prostate cancer. [J]. Oncogene,2009,28(14):1714-24.
    [56]. Wu H et al. Suppression of cell growth and invasion by miR-205 in breast cancer. [J]. Cell Res,2009, 19(4):439-48.
    [57]. Xia H et al.MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. [J]. Biochem Biophys Res Commun.2009.380 (2):205-10.
    [58]. Gramantieri L et al. MicroRNA involvement in hepatocellular carcinoma. [J]. J Cell Mol Med.2008.12(6A):2189-204.
    [59]. Gramantieri L et al.Cyclin G1 is a target of miR-122a, a microRNA frequently down- regulated in human hepatocellular carcinoma. [J]. Cancer Res.2007.67(13):6092-6099.
    [60]. Fornari F et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. [J]. Oncogene,2008,27 (43):5651-5661.
    [61]. Galardi S et al.MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kipl. [J]. J Biol Chem.2007.282 (32):23716-23724.
    [62]. He L et al. A microRNA component of the p53 tumour suppressor network. [J]. Nature,2007,447 (7148):1130-1134.
    [63]. Chang TC et al.Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. [J]. Mol Cell,2007,26(5):745-752.
    [64]. Raver-Shapira N et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. [J]. Mol Cell,2007,26 (5):731-743.
    [65]. Park SY et al. MiR-29 miRNAs activate p53 by targeting p85a and CDC42. [J]. Nat Struct Mol Biol,2009,16(1):23-9.
    [66]. Hennessy et al. Exploiting the PI3K/AKT pathway for cancer drug discovery. [J]. Nat. Rev. Drug Discov,2005,4:988-1004.
    [67]. Mayo, L.D et al. The PTEN. Mdm2, p53 tumor suppressor-oncoprotein network. [J]. Trends Biochem. Sci,2002,27:462-467.
    [68]. Wu. F. et al. RNA-interference-mediated Cdc42 silencing down-regulates phosphorylation of STAT3 and suppresses growth in human bladder-cancer cells. Biotechnol. [J]. Appl. Biochem.2008.49:121-128.
    [69]. Su H et al.MicroRNA-101. down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. [J]. Cancer Res.2009,69 (3):1135-42.
    [70]. Fish.JE et al.MicroRNAs:opening a new vein in angiogenesis research. [J]. Sci Signal,2009,2 (52):pe1.
    [71]. Wurdinger T et al. MiR-296 regulates growth factor receptor overexpression in angiogenic en-dothelial cells. [J]. Cancer Cell.2008.14 (5):382-93.
    [72]. Lee DY et al. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. [J]. Proc Natl Acad Sci U S A. 2007,104(51):20350-5.
    [73]. Calin G. A., Liu C. G., Sevignani C., Ferracin M., Felli N., Dumitru C. D., Shimizu M., Cimmino A., Zupo S., Dono M., Dell'Aquila M. L., Alder H., Rassenti L., Kipps T. J., Bullrich F., Negrini M., Croce C. M. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. [J]. Proc Natl Acad Sci U S A,2004, 101(32):11755-11760.
    [74]. Liu C. G., Calin G. A., Meloon B., Gamliel N., Sevignani C., Ferracin M., Dumitru C. D., Shimizu M., Zupo S., Dono M., Alder H., Bullrich F., Negrini M., Croce C. M. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. [J]. Proc Natl Acad Sci USA,2004,101(26):9740-9744.
    [75]. Lu J., Getz G., Miska E. A., Alvarez-Saavedra E., Lamb J., Peck D., JSweet-Cordero A., Ebert B. L., Mak R. H., Ferrando A. A., Downing J. R., JacksT., Horvitz H. R., Golub T. R. MicroRNA expression profiles classify human cancers. [J]. Nature, 2005, 435(7043):834-838.
    [76]. Yanaihara N., Caplcn N., Bowman E., Seike M., Kumamoto K., Yi M., StephensR. M., Okamoto A., Yokota J., Tanaka T., Calin G. A., Liu C. G., Croce C. M., Harris C. C. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. [J]. Cancer Cell, 2006, 9(3): 189-198.
    [77]. He L., Thomson J. M., Hemann M. T., Hernando-Monge E., Mu D., Goodson S.,Powers S., Cordon-Cardo C., Lowe S. W., Hannon G. J., Hammond S. M. A microRNA polycistron as a potential human oncogene. [J]. Nature, 2005, 435 (7043): 828-833.
    [78]. Iorio M. V., Ferracin M., Liu C. G., Veronese A., Spizzo R., Sabbioni S., Magri E. Pedriali M., Fabbri M., Campiglio M., Menard S., Palazzo J. P., Rosenberg A., Musiani P., Volinia S., Nenci I., Calin G. A., Querzoli P., Negrini M., Croce CM. MicroRNA gene expression deregulation in human breast cancer. [J]. Cancer Res, 2005, 65(16): 7065-7070.
    [79]. Volinia S., Calin G. A., Liu C. G., Ambs S., Cimmino A., Petrocca F., Visone R., lorio M., Roldo C., Ferracin M., Prueitt R. L., Yanaihara N., Lanza G., Scarpa A., Vecchione A., Negrini M., Harris C. C., Croce C. M. A microRNA expression signature of human solid tumors defines cancer gene targets. [J]. Proc Natl Acad Sci U S A, 2006, 103(7): 2257-2261.
    [80]. Lee E. J., Gusev Y., Jiang J., Nuovo G. J., Lerner M. R., Frankel W. L., MorganD. L., Postier R. G., Brackett D. J., Schmittgen T. D. Expression profiling identifies microRNA signature in pancreatic cancer. [J]. Int J Cancer, 2007, 120(5): 1046-1054.
    [81]. Yu S. L., Chen H. Y., Chang G. C., Chen C. Y., Chen H. W., Singh S., Cheng C.L., Yu C. J., Lee Y. C., Chen H. S., Su T. J., Chiang C. C., Li H. N., Hong Q. S., Su H. Y., Chen C. C., Chen W. J., Liu C. C., Chan W. K., Chen W. J., Li K. C., Chen J. J., Yang P. C. MicroRNA signature predicts survival and relapse in lung cancer. [J]. Cancer Cell, 2008,13(1):48-57.
    [82]. Lawrie C. H., Gal S., Dunlop H. M., Pushkaran B., Liggins A. P., Pulford K., Banham A. H., Pezzella F., Boultwood J., Wainscoat J. S., Hatton C. S., Harris A. L. Detection of elevated levels of tumour-associated microRNAs in serum patients with diffuse large B-cell lymphoma. [J]. Br J Haematol,141(5):672-675.
    [83]. Mitchell P. S., Parkin R. K., Kroh E. M., Fritz B. R., Wyman S. K., Pogosova-Agadjanyan E. L., Peterson A., Noteboom J.. O'Briant K. C., Allen A., Lin D. W., Urban N., Drescher C. W., Knudsen B. S., Stirewalt D. L., Gentleman R., Vessella R. L., Nelson P. S., Martin D. B., Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. [J]. Proc Natl Acad Sci U S A,2008,105(30):10513-10518.
    [84]. Chen X., Ba Y., Ma L., Cai X., Yin Y., Wang K., Guo J., Zhang Y., Chen J., Guo X., Li Q., Li X., Wang W., Zhang Y., Wang J., Jiang X., Xiang Y., Xu C., Zheng P., Zhang J., Li R., Zhang H., Shang X., Gong T., Ning G., Wang J., Zen K., Zhang J., Zhang C. Y. Characterization of microRNAs in serum:a novel class ofbiomarkers for diagnosis of cancer and other diseases. [J]. Cell Res,2008,18(10):997-1006.
    [85]. Si ML et al. MiR-21-mediated tumor growth. [J]. Oncogene,2007,26(19):2799-2803.
    [86]. Zhu S et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). [J]. J Biol Chem,2007,282 (19):14328-14336.
    [87]. Zhu S et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. [J]. Cell Res,2008 18 (3):350-359.
    [88]. Venturini L et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. [J]. Blood,2007,109 (10):4399-4405.
    [89]. Weiss GJ et al. EGFR regulation by microRNA in lung cancer:correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. [J]. Ann Oncol,2008,19 (6):1053-1059.
    [90]. Thomson JM et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. [J]. Genes Dev.2006.20 (16):2202-2207.
    [91]. Kedde M et al. RNA-binding protein Dndl inhibits microRNA access to target mRNA. [J]. Cell,2007,131(7):1273-1286.
    [92]. Vasudevan S et al. Switching from repression to activation:microRNAs can up-regulate translation. [J]. Science,2007,318 (5858):1931-1934.
    [93]. Gillies JK et al. Regulation of p27Kipl by miRNA 221/222 in glioblastoma. [J]. Cell Cycle,2007,6(16):2005-2009.
    [94]. Le Sage C et al. Regulation of the p27 (Kipl) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. [J]. Embo J,2007,26 (15):3699-3708.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700