CS-PEG纳米载体介导Mcl-1 siRNA联合奥沙利铂治疗肝癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     设计与构建Mcl-1 siRNA质粒,明确Mcl-1 siRNA对肝癌细胞的治疗作用和CS-PEG纳米载体介导基因治疗的优势,通过体内外实验探讨奥沙利铂联合Mcl-1 siRNA对肝癌的协同杀伤作用,从而为临床治疗肝癌提供理论依据。
     方法:
     1.构建靶向Mcl-1 RNAi片段的pGCsi-H1/Neo/GFP质粒,并进行酶切鉴定和测序分析。
     2.通过接枝共聚法制备壳聚糖-聚乙二醇(CS-PEG)纳米粒,用基因:纳米粒材料比1:5制备基因纳米复合物,通过其形态、粒径、ζ电位、载药量、包封率、基因保护实验考察载体的理化特性以及基因转染效果。
     3.利用脂质体或CS-PEG纳米粒为载体将Mcll siRNA质粒转染入肝癌细胞中,对细胞内Mcl-1基因表达进行干扰。
     4.逆转录多聚酶链反应(RT-PCR)法检测转染Mcl-1 siRNA质粒后肝癌细胞中Mcl-1 mRNA的表达,Western blot法检测转染Mcl-1 siRNA质粒后肝癌细胞中Mcl-1蛋白的表达。
     5.MTT法检测Mcl-1 siRNA、奥沙利铂或联合用药对人肝癌细胞增殖抑制作用。
     6.流式细胞仪分析Mcl-1 siRNA、奥沙利铂对人肝癌细胞周期和凋亡的影响。
     7. Transwell侵袭实验检测Mcl-1 siRNA.奥沙利铂或联合用药对人肝癌细胞的侵袭力变化。
     8.建立肝癌动物模型,用基因纳米复合物作瘤内多次注射,对比奥沙利铂腹腔注射或联合用药组,绘制肿瘤生长曲线,切取肿瘤检测体积抑制率和瘤重抑制率,免疫组化染色观察肿瘤内部的Mcl-1蛋白的分布情况,Western blot法检测肿瘤组织中Mcl-1蛋白的表达水平。
     结果:
     1.重组质粒经酶切鉴定与测序证实构建成功,质粒在HepG2细胞中的转染率为65.80±3.67%。转染48 h后Mcl-1 mRNA水平和蛋白水平均明显低于空白对照组和阴性对照组(p<0.01), Mcl-1 mRNA的抑制率为68.2%,其蛋白水平的抑制率为71.2%。
     2.空白纳米粒粒径为68.9±12.3nm,粒度分布均匀,ζ电位为32±6.4mV。在基因:纳米粒为1:5(w/w)时制备的基因纳米复合物粒径为111.4±16.9nm,ζ电位为7.5±6.4mV,包封率为86.8±9.7%,载药量为31.2±5.3%,对基因有较好的保护作用。基因纳米复合物组最大转染效率为转染后72h(81.39±3.57%),明显强于脂质体组且持续作用时间长。转染后持续作用时间较脂质体和裸基因均要长,转染72h后对Mcl-1 mRNA抑制率较两对照组明显增强。
     3.MTT法检测结果显示不同的时间Mcl-1 siRNA对肝癌细胞均有抑制作用,基因纳米复合物组细胞抑制率显著高于纳米粒组和对照组(p<0.01),且与脂质体转染组相比作用时间越长(72h以上)抑制效果越明显(p<0.05)。奥沙利铂对肝癌细胞的抑制作用呈现出剂量、时间依赖性,其联合应用基因纳米复合物时对细胞的抑制作用为(71.46±6.44%),明显大于基因纳米复合物组(26.72±4.69%)和单药(20.30±2.10%)处理后的作用之和。
     4.流式细胞仪(FCM)分析结果显示纳米粒对肝癌细胞周期的影响不明显,奥沙利铂作用HepG2细胞后S期细胞增加,GO/G1期细胞减少。肝癌细胞经基因纳米复合物转染+奥沙利铂处理后的凋亡率为64.21%,明显高于基因纳米复合物组(28.24%)、奥沙利铂组(21.02%)(p<0.01)。
     5. Transwell侵袭实验结果显示基因纳米复合物组细胞侵过滤膜数目与CS-PEG纳米粒和对照组相比较差别明显(p<0.01)。基因纳米复合物+奥沙利铂联合作用后穿膜细胞数(53.60±16.64)明显少于对照组(176.70±12.46)、基因纳米复合物组(111.40±9.52)、奥沙利铂组(127.10±9.77)的细胞穿膜数(p<0.01)。
     6.裸鼠移植瘤动物模型体内实验结果显示联合治疗组、基因纳米复合物治疗组、药物组的肿瘤体积较NC阳性对照组、阴性对照组增长明显缓慢(p<0.01)。联合治疗组、基因纳米复合物治疗组、药物组的抑瘤率分别为69.24%、53.96%、49.47%,明显高于NC阳性对照组的12.16%(p<0.01)。组织病理学检查后发现各治疗组肝癌组织以中重度坏死为主,对照组呈轻度坏死;联合治疗组、基因纳米复合物治疗组中Mcl-1蛋白阳性表达率均有所降低,表达强度较弱。Western blot检测结果显示基因纳米复合物治疗、联合治疗后对肝癌移植瘤组织中Mcl-1的蛋白表达与对照组相比有明显的抑制(p<0.01)。
     结论:
     1.成功构建出的靶向Mcl-1的RNA干扰质粒对肝癌细胞内的Mcl-1表达具有明显抑制作用.
     2.制备出低细胞毒性的CS-PEG纳米载体,载Mcl-1 siRNA质粒后粒径约为111 nm,带正电荷,有很好的基因保护功能、较高的包封率和载药量,能高效率转染至细胞并有效抑制肝癌细胞中Mcl-1的表达,明显降低癌细胞的生存和转移侵袭能力。
     3.联合应用基因纳米复合物和奥沙利铂在体外可增强肝癌细胞对奥沙利铂的敏感性,抑制肿瘤细胞生长代谢,协同作用效果大大优于单基因或单药作用的效果,能有效的降低肝癌细胞的生长和侵袭力,具有明显的临床应用价值。
     4.联合应用基因纳米复合物和奥沙利铂在肝癌裸鼠移植瘤模型的体内研究中能明显抑制肿瘤组织的生长,在Mcl-1基因被沉默的情况下奥沙利铂的抑瘤作用更加明显,体积与重量明显减少,组织中癌细胞的异质性减弱,达到治疗的效果。
     5.证明Mcl-1 siRNA纳米复合物和奥沙利铂联合应用对肝癌具有更好的治疗效果,为临床上对肿瘤进行生物和化学联合治疗的方案提供了理论基础。
Objective
     To design and construct a plasmid containing Mcl-1 siRNA. Identify the therapeutical effect of Mcl-1 siRNA on human hepatocellular carcinoma cells and the preponderance of gene therapy mediated by CS-PEG nanoparticals. Investigate the synergistic effect of oxaliplatin and Mcl-1 siRNA on hepatocellular carcinoma in vitro and in vivo. And provide theoretical base of clinical treatment of hepatocellular carcinoma.
     Methods
     1. The plasmid (pGCsi-Hl/Neo/GFP) containing short hairpin RNA (shRNA) that target at the myeloid cell leukemia-1 (Mcl-1) gene were constructed and identified using restriction enzyme analysis and sequencing analysis.
     2. Chitosan-polyethylene glycol particle (CS-PEG) was synthesized through stem grafting and copoly-merizing. Gene-nanoparticle compound was prepared at the ratio of 1:5 for gene-nanoparticle. The shape, size, zeta electric potential, envelopment rate and carry gene rate were inspected to evaluate characteristics of the vector and effect of gene transfection was detected.
     3. Human hepatocellular carcinoma cells were cultured in vitro and transfected with Mcl-1 siRNA by LipofectamineTM 2000 or CS-PEG nanoparticles which interfering the expression of Mcl-1.
     4. The expression of Mcl-1 mRNA in human hepatocellular carcinoma cells which transfected with Mcl-1 siRNA was detected by semi-quantitive reverse transcription-polymerase chain reaction (RT-PER). The expression of Mcl-1 protein was detected by Western blot.
     5. The effects of Mcl-1 siRNA, oxaliplatin or combination treatment on the proliferation inhibit of HEPATOCELLULAR CARCINOMA cells by MTT assay.
     6. Cell cycle and cell apoptotic rate were assayed by Flow Cytometry (FCM) with the treatment of Mcl-1 siRNA or oxaliplatin.
     7. The invasion ability was detected through Transwell invasion experiment with the treatment of Mcl-1 siRNA, oxaliplatin or combination treatment.
     8. Naked mouse hepatocellular carcinoma animal model was established. Gene nanopatical compound was injected into tumor multiple, contrast to intraperitoneal injection of oxaliplatin or gene-drug combination treatment. Drew the growth curve of tumor and took out the tumor to detect volume inhibition ratio and weight inhibition ratio. Distribution of Mcl-1 in transplantation tumor was detected by Strepavidin-peroxidase immunohistochemistry staining. Expression of Mcl-1 protein in tumor tissues was detected by Western blot.
     Results
     1. The expression plasmid was confirmed by restriction enzyme analysis and sequencing analysis. The transfection rate of recombinant plasmid in HepG2 cells was 65.80±3.67%.48 hours after transfection the Mcl-1 mRNA and protein levels were significantly lower than that of the blank control group and the negative control group (p<0.01). Inhibition ratio of Mcl-1 mRNA was 68.2%. Inhibition ratio of Mcl-1 protein level was 71.2%.
     2. The blank nanoparticle size was 68.9±12.3nm and well-distributed. Its zeta electric potential was 32±6.4mV. In conditions of 1:5 for gene/nanoparticle, the size, zeta electric potential, envelopment rate and carry gene rate of gene nanoparticle compound prepared were 111.4±16.9nm,7.5±6.4mV,86.8±9.7% and 31.2±5.3% respectively. It also had very good protection to gene. The highest transfection rate of gene nanoparticle compound was 81.39±3.57%, which appeared after 72h transfection. The persistence time after transfection was longer than both of liposome and bare gene. And the inhibition rate after 72h of transfection was reinforced significantly too.
     3. MTT assay showed that Mcl-1 siRNA had inhibitory effect on HEPATOCELLULAR CARCINOMA cells by different times. The inhibition of gene nanoparticle compound was higher than nanoparticle group and control group markedly (p<0.01). Contrast to liposome transfect group, the inhibitory rate was increased significantly as the time increased (over 72h) (p< 0.05). The inhibition of oxaliplatin on HEPATOCELLULAR CARCINOMA cells showed a dose-time dependent manner. The inhibitory rate of combination treatment of oxaliplatin and gene nanoparticle compound was 71.46±6.44%, which was higher obviously than the sum of single gene group (26.72±4.69%) and single drug group (20.30±2.10%).
     4. FCM assay showed that nanopaticals had no obvious effect on cell cycle of hepatocellular carcinoma cells. Oxaliplatin arrested cell cycle in S phase with G0/G1 phase reducing. The apoptotic rate of combination treatment of oxaliplatin and gene nanoparticle compound was 64.21%, which was higher obviously than gene nanoparticle compound group (28.24%) and oxaliplatin group (21.02%) (p<0.01).
     5. Transwell invasion assay results showed that the invading-membrane cell number of gene nanopartical compound group was fewer than the number of CS-PEG nanoparticles group and the control group markedly (p<0.01). The trans-membrane cell number of combination treatment of oxaliplatin and gene nanoparticle compound was 53.60±16.64, which was lower significantly than the number of the control group (176.70±12.46), gene nanopartical compound group (111.40±9.52) and oxaliplatin group (127.10±9.77) (p<0.01).
     6. The results of transplantation tumor animal model in vivo showed that tumor volumes of combination treatment group, gene nanoparticle compound group and drug group growed slower than NC positive control group and negative control group significantly (p<0.01). The tumor-inhibition rates of combination treatment group, gene nanoparticle compound group and drug group were 69.24% ,53.96% and 49.47%, which were significantly higher than NC positive control group (12.16%) (p<0.01). Histopathological examination revealed that the treatment groups showed moderate to severe necrosis in hepatocellular carcinoma tissues while the control group showed mild necrosis. Mcl-1 protein positive expression was weaked in combination treatment group and gene nanoparticle compound group. Western blot results showed that Mcl-1 protein expression was inhibited significantly in transplantation tumor tissues of gene nanoparticle compound group and combination treatment group when compared with the control group (p<0.01).
     Conclusions
     1. The RNA interference plasmid targeting at Mcl-1 gene is constructed successfully. The Mcl-1 mRNA and protein expressions are suppressed significantly by this given plasmid.
     2. We prepare CS-PEG nanoparticles with a low cellular toxicity. The nanoparticles have contained Mcl-1 siRNA plasmid with diameter of about 111 nm, a positive charge, a good genetic protection, high encapsulation efficiency and drug loading. The compound can be transfected into hepatocellular carcinoma cells effectively, inhibit Mcl-1 expression and reduce survival and invasive ability of cancer cells significantly.
     3. Combination of gene nanoparticle compound and oxaliplatin in vitro can enhance the drug sensitivity of hepatocellular carcinoma cells and inhibit cell growth. Synergistic effect is much better than single-gene or single-drug effect and can reduce cell growth and invasion ability of hepatocellular carcinoma cells effectively, which has obvious clinical value.
     4. Combination treatment of gene nanoparticle compound and oxaliplatin in human hepatocellular carcinoma transplantation tumors in vivo can inhibit the growth of tumor, especially when Mcl-1 gene is silent the antitumor effect of oxaliplatin is more obvious such as the tumor size and weight decrease remarkably, the heterogeneity of cancer cells reduce, which achieves therapeutic effect.
     5. Combination treatment of Mcl-1 siRNA/nanopartical compound and oxaliplatin has a better effect on hepatocellular carcinoma. It provides a theoretical basis for clinical combination of biological and chemical therapy in cancers.
引文
[1]Akgul C, Turner PC, White MR, et al. Functional analysis of the human MCL-1 gene[J]. Cell Mol Life Sci.2000,57:684-691.
    [2]Osford SM, Dallman CL, Johnson PW, et al. Current strategies to target the anti-apoptotic Bcl-2 protein in cancer cells[J]. CurrMed Chem,2004,11(8): 1031-1039
    [3]Saxena A, Viswanathan S, Moshynska O, et al. Mcl-1 and Bcl-2/Bax ratio are associated with treatment response but not with Rai stage in B-cell chronic lymphocytic leukemia[J].Am J Hematol,2004,75(1):22-33
    [4]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic intederenee by double---stranded RNA in Caenorhabdltis elegatm[j]. Nature.1998.39 1:806-811.
    [5]Song E, Lee S K, Wang J, Lace N, et a I. RNA i nterference targeting Fas protects mice from fulminanth epatitis[J]. Nat Med,2003,9(3):347-351
    [6]Brummelkamp T R,Bemards R,Agami R. Stable suppression of tumor igenicity by virus—mediate dRNA interference[J]. Cancer Cell,2002; 2(3): 245-249
    [7]Paul CP, Good PD, Winer L, et al. Efective expression of small interfering RNA in human cells[J]. Nat Biotechnol,2002,20(5):505-508.
    [8]Sui G, Soohoo C, Afarel B, et al. A DNAvector-based RNAi technology to suppress gene expression in mammalian cells[J]. Proe Nail Acad sei USA,2002,99(8):5515-5520.
    [9]Yu JY. DeRuiter SL, Turner DL. RNA interference by expression of short-intefering and hairpin RNAs in mammalian cells[J]. Proc Natl Acad Sci USA,2002.99(9):6047-6052.
    [10]Haqnon GJ, Conklin DS. RNA interferenceby shorthairpin RNAs expressed in vertebrate cells[J]. Methods Mol Biol,2004,257:255-266.
    [11]Uitel K, Nalto Y, Takabashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference[J]. Nueleie Acids Res,2004,32:936-948.
    [12]HsiehAC, Bo R, Manola J, et al. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway:determinants of gene silencing for Use in cell-basedscreens[J]. Nucleic Acids Res,2004,32:893-901.
    [13]Uchida H, Tanaka T, Sasaki K, et al. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo[J]. Mol Ther,2004,10(1):162-171.
    [14]Mazor M, KawanoY, Zhu H, et al. Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth[J]. Oneogene,2004,23(47):7882-7892.
    [15]Wilda M, Fuchs U, Wossmarm W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference(RNAi)[J]. Oncogene,2002, 21(37):5716-5721
    [16]Qiu S, Adema CM, Lane T. A computational study of off-target effects of RNA interference[J]. Nucleic Acids Res,2005,33(6):1834-1847.
    [17]Wolfgang S, Doris L, Sabine S, et al. Mcl-1 overexpression in hepatocellular carcinoma: A potential target for antisense therapy [J]. Journal of Hepatology. 2006,44:151-157.
    [18]Hannon GJ. RNA interference[J]. Nature,2002,418:244-251.
    [19]Caplen NJ. A new approach to the inhibition of gene express[J]. Trends Biotechnol,2002.20:49-51.
    [20]Uprichard S L. The therapeutic potential of RNA interference。FEBS Lett, 2005,579(26):5996-6007.
    [21]X Lin, Y Yu, H Zhao, Y Zhang, et al. Overexpression of PKCa is required to impart estradiol inhibition and tamoxifen-resistance in a T47D human breast cancer tumor model[J]. Carcinogenesis,2006,27(8):1538-1546.
    [22]M Rodriguez, E Aladowicz, L Lanfrancone, et al. Tbx3 Represses E-Cadherin Expression and Enhances Melanoma Invasiveness[J]. Cancer Res.2008;68(19):7872-81.
    [23]SP Zielske, M Stevenson. Importin 7 May Be Dispensable for Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus Infection of Primary Macrophages[J]. J Virol.2005,79(17):11541-11546.
    [24]KF Pirollo, A Rait, Q Zhou, et al. Materializing the Potential of Small Interfering RNA via a Tumor-Targeting Nanodelivery System[J]. Cancer Res.2007;67(7):2938-43
    [25]Michels J, Johnson PW, Packham G. Mcl-1[J]. Int J Biochem Cell Biol 2005; 37:267-271
    [26]Zhang B, Gojo I, Fenton RG. Myeloid cell factor-1 is a critical survival factor for multiple myeloma[J]. Blood 2002; 99:1885-1893
    [27]Derenne S, Monia B, Dean NM, Taylor JK, Rapp MJ, Harousseau JL, Bataille R, Amiot M. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells[J]. Blood 2002; 100:194-199
    [28]Song L, Coppola D, Livingston S, Cress D, Haura EB. Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells[J]. Cancer Biol Ther 2005; 4:267-276
    [29]Yoon JH, Werneburg NW, Higuchi H, Canbay AE, Kaufmann SH, Akgul C, Edwards SW, Gores GJ. Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism[J]. Cancer Res 2002; 62:6500-6505
    [30]Okaro AC, Deery AR, Hutchins RR, Davidson BR. The expression of antiapoptotic proteins Bcl-2, Bcl-X(L), and Mcl-1 in benign, dysplastic, and malignant biliary epithelium[J]. J Clin Pathol 2001; 54:927-932
    [31]Zhou P, Levy NB, Xie H, Qian L, Lee CY, Gascoyne RD, Craig RW. MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes[J]. Blood 2001; 97:3902-3909
    [32]Wuilleme-Toumi S, Robillard N, Gomez P, Moreau P, Le Gouill S, Avet-Loiseau H, Harousseau JL, Amiot M, Bataille R. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival[J]. Leukemia 2005; 19:1248-1252
    [33]Backus HH, van Riel JM, van Groeningen CJ, Vos W, Dukers DF, Bloemena E, Wouters D, Pinedo HM, Peters GJ. Rb, mcl-1 and p53 expression correlate with clinical outcome in patients with liver metastases from colorectal cancer[J]. Ann Oncol 2001; 12:779-785
    [34]Fleischer B, Schulze-Bergkamen H, Schuchmann M, Weber A, Biesterfeld S, Muller M, Krammer PH, Galle PR. Mcl-1 is an anti-apoptotic factor for human hepatocellular carcinoma[J]. Int J Oncol 2006; 28:25-32
    [35]Sieghart W, Losert D, Strommer S, Cejka D, Schmid K, Rasoul-Rockenschaub S, Bodingbauer M, Crevenna R, Monia BP, Peck-Radosavljevic M, Wacheck V. Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy [J]. J Hepatol 2006; 44: 151-157
    [36]Schulze-Bergkamen H, Fleischer B, Schuchmann M, Weber A, Weinmann A, Krammer PH, Galle PR. Suppression of Mcl-1 via RNA interference sensitizes human hepatocellular carcinoma cells towards apoptosis induction[J]. BMC Cancer 2006; 6:232
    [37]Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K, Korsmeyer SJ. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells[J]. Science 2005; 307:1101-1104
    [38]廖明媚.中南大学博士论文.2009.5.26-27
    [39]李银鹏,朱惠明,侯晓华.靶向mcl-1基因的shRNA真核表达质粒的构建与筛选[J].世界华人消化杂志,2008,16(26):2940-2945.
    [40]Okita H, Umezawa A, Fukuma M, et al. Acute myeloid leukemia possessing jumping translocation is related to highly elevated levels of EAT/mcl-1, a Bcl-2 related gene with anti-apoptotic functions[J]. Leuk Res.2000,24: 73-77.
    [41]Katoh O, Takahashi T, Oguri T, et al. Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor[J]. Cancer Res.1998,58 (23):5565-5569.
    [42]Kobayashi S, Werneburg NW, Bronk SF, et al. Interleukin-6 contributes to Mcl-1 upregulationand TRAIL resitance via an akt signaling pathway in cholangiocarcinoma cells[J]. Gastroenterology.2005,128:2054-2065.
    [43]Ulrich M, Ce'line C, Allan S.W., et al. Glycogen Synthase Kinase-3 Regulates Mitochondrial Outer Membrane Permeabilization and Apoptosis by Destabilization of MCL-1[J]. Molecular Cell.2006,21:749-760.
    [44]Leonid AS, Shalini ST, Mitchell FD. The Protein Kinase Cδ Catalytic Fragment Targets Mcl-1 for Degradation to Trigger Apoptosis [J]. J. Biol. Chem,2006,281(40):29703-29710.
    [45]Wirth T, Kuhnel F, Fleischmann-Mundt B. Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against hemotherapy and tumor necrosis factor- related apoptosis- inducing ligand by elimination of Mcl-1 [J]. Cancer Res.2005,65 (16):7393-7402.
    [46]Davenport R.J.. Gene Silencing. A Faster Way to Shut Down Genes[J]. Science.2001,292(5521):1469-1471.
    [47]Jansen B, Zangemeister-Wittke U. Antisense therapy for cancer—the time of truth[J]. Lancet Oncol.2002,3:672-683.
    [48]J.Miao, G. Chen, S. Chun, et al. Hepatitis B virus X protein induces apoptosis in hepatoma cells through inhibiting Bcl-xL expression [J]. Cancer Letters.2006,236(1):115-124.
    [49]Tetsuo T., Hiroshi T.. Suppression of Bcl-xL deamidation in human hepatocellular carcinomas [J]. Cancer Research.2003,63:3054-3057.
    [50]Wu Q, Moyana T, Xiang J. Cancer gene therapy by adenovirus-mediated gene transfer [J]. Curr Gene Ther 2001; 1(1):101-122
    [51]Lai CM, Lai YK, Rakoczy PE. Adenovirus and adeno-associated virus vectors[J]. DNA Cell Biol.2002; 21(12):895-913.
    [52]郭荣,邹萍,陆华中.非病毒型纳米载体在基因治疗中的研究现状及展望[J].国外医学生物医学工程分册,2002,25(2):77-81.
    [53]Pierre L, Sylvie F, Noufrssa O, et al. Gene delivery systems:Bridging the gap between Recombinant viruses and artificial vectors[J].Adv Drug Delve.1998(30):5-11.
    [54]Truong L, Walsh W, Scot M, et al.Gene transfer by DNA-gelatin nanospheres[J]. Arch Biochem Biophys.1999 (361):47-56.
    [55]Fox JL. Gene therapy safety issues come to fore[J]. Nat Biotechnol.1999; 17 (12):1153.
    [56]Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration[J]. Science.2003; 300 (5626):1749-1751.
    [57]Sun X, Zhang HW, Zhang ZR. Transfection efficiency of PORF lacZ plasmid lipopolyplex to hepatocytes and hepatoma cells[J]. World J Gastroenterol.2004; 10(4):531-534.
    [58]于丽.中南大学博士论文,2009.5:23-24.
    [59]Colin W, Pouton S, Leonard W, et al. Key issues in non-viral gene delivery[J]. Adv Drug Delve.1998 (34):3-19.
    [60]Cristiano R J. Targeted, non-viral gene delivery for cancer gene therapy [J]. Front Biosci.1998(3):D1161-D1170.
    [61]Anderson W F. Human gene therapy [J]. Nature.1998,392 (6679 Suppl), 25-30.
    [62]Richardson SCW, Kolbe HVJ, Duncan R, et al. Potential of low molecular mass chitosan as a DNA delivery system:biocompatibility, body distribution and ability to complex and protect DNA[J]. Int J Pharm, 1999,178 (2):231-243.
    [63]Mao HQ, Roy K, Troung-Le VL, et al. Chitosan-DNA nanopaticles as gene carriers:synthesis, characterization and transfection efficiency[J]. Controlled Release,2001,70(3):399-421.
    [64]Tyagi S, Kxamer FR. Molecular beacons:probes that fluoresce on hybridization[J].Nat Biotechnol,1996,14:303-308.
    [65]Ambrosini G, Adida C, Aitieri DC. A novel anti-apoptosis gene, Survivin, expressed in cancer and lymphoma[J]. Nat Med,1997,3 (8):917-921.
    [66]汪杨,吴伟.隐形纳米粒的体内靶向性[J].中国药学杂志,2004,39(1):7-11.
    [67]Peraeehia M T, Fattal E, Desmacle D. Stealth PEGylalted polyeyanoaerylate nanoparticles for intravenous administration and splenic targeting[J]. J Controlled Release,1999,60:121-130.
    [68]蒋挺大.壳聚糖[M].化学工业出版社,北京,2001,3
    [69]Alexakis T, Boadi DK, Quong D, et al.Microeneapsulation of DNA within alginate microspheres and cross-linked chitosan membranes for in vivo application[J]. Appl Biochem Biotechnol,1995,50(1):93-106.
    [70]Mumper RJ, Wang J, Claspell JM, et al.In:Proc Intl Symp Controlled[J]. Rel Bioact Mater,1995,23:178.
    [71]Mohapatra SS. Mucosal gene expression vaccine:a novel vaccine strategy for respiratory syncytial virus [J]. Pediatr Inject Dis,2003, 22(2):S100-S104.
    [72]Iqbal M, Lin W, Jabbal-Gill I, et al. Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice [J]. Vaccine,2003,21(13-14):1478-1485.
    [73]Li YH, Fan MW, Bian Z, et al. Chitosan-DNA microparticles as mucosal delivery system:synthesis, characterization and release in vitro [J]. Clin Med J,2005,118 (11):936-941.
    [74]熊城东,王亚辉,袁明龙,等.聚乙二醇衍生物的合成研究进展[J].高分子通报.2000,13(1):5-6.
    [75]M. Moffitt, K Khougaz, A. Eisenberg, Micellization of ionic block copolymers[J], Acc Chem. Res.29 (1996) 95-102
    [76]Z. Tuzar, P. Kratochvil, Micelles of blocks and graft co-polymers in solutions[J], Surf. Colloid Sci.15 (1993) 1-83
    [77]C. Allen, D. Maysinger, A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery[J], Colloids Surf.16 (1999) 3-27
    [78]K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery:design, characterization and biological significance [J], Adv. Drug Deliv. Rev.47 (2001) 113-131
    [79]Y.K Park, Y.H Park, B.A Shin, et al, Galactosylated chitosan-graft-dextran as hepatocyte-targeting DNA carrier [J]. Journal of Control Release, 2000,69:97-108.
    [80]FC MacLaughlin, RJ Mumper, et al. Rolland Chitosan and depolymerized chitosan oligomers as condensing carriers in vivo plasmid delivery [J]. Journal of Control Release.1998,56:259-272.
    [81]李珍发.中南大学博士论文.2007.12:34.
    [82]Andreas Zimmer. Antisense oligonucleotide delivery with polyhexylcy-anoacrylated nanoparticles as carriers[J]. METHODS:A companion to methods in enzymology.1999,18:286-295
    [83]Rainov NG, Ren H. Clinical trials with retrovirus mediated gene therapy-what have we learned? J Neurooncol.2003;65(3):227-236
    [84]Watanabe T. Adenovirus-mediated CTLA4Ig gene therapy in cardiac xenotransplantation[J]. Hokkaido Igaku Zasshi.2004;79(1):47-53
    [85]Buning H, Nicklin SA, Perabo L, et al. AAV-based gene transfer[J]. Curr Opin Mol Ther.2003; 5(4):367-375.
    [86]Goins WF, Wolfe D, Krisky DM, et al. Delivery using herpes simplex virus: an overview[J]. Methods Mol Biol.2004; 246:257-299.
    [87]Marti WR, Schutz A, Oertli D, et al. Recombinant vaccinia viruses as efficient vector of biologically active, human B7 costimulation molecules[J]. Langenbecks Arch Chir Suppl Kongressbd.1998; 115 (SuPP11):131-136.
    [88]黄伟,崔光华,贺俊峰,等.壳聚糖纳米粒用作基因递送载体的初步研究[J]药学报,2002,37(12):981-985.
    [89]Nishikawa M, Yamauchi M, Morimoto K, et al. Hepatocytetargeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system [J] Gene Ther, 2000,7(7):548-555
    [90]Hirosue S, Muller BG, Mulligan RC, et al. Pasmid DNA encapsulation and released from solvent diffusion Nanospheres [J]. Controlled Release,2001, 70 (1-2):231-242.
    [91]杜仕国,施冬梅,韩其文.纳米颗粒的液相合成技术[J].粉末冶金技术,2000,18(1):46-50
    [92]Davis S.S. Biomedical application of nanotechnology implications for drug targeting and gene therapy [J].Trends in Biotech,1997,15 (2):217-224.
    [93]Lambert G, Fattal E, Couveur P. Nanoparticulate systems for the delivery of antisense oligonucleotides [J]. Adv Drugs Deliv Rev,2001,47(1):99-112.
    [94]Illum L, Jabbal Gill I, Hinchcliffe M, et al. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliver Rev,2001,51(1-3):81-96.
    [95]吴阶平,裘法祖.黄家驷外科学[M].第6版.北京,人民卫生出版社,2005,1223-1225.
    [96]Washington K. Mass of liver. In:Mills SE, eds. Steinberg's diagnostic surgical pathology[M].4th ed. Philadelphia:Lippincott Williams&Wilkins, 2004,1757
    [97]Steller H. Mechanisms and genes of ellularsuiocide[J]. Science,1995; 267(10),1445-1449.
    [98]Mattson M P. Apoptosis in neurodegenerative disorders[J]. Nat Rev Mol Cell Biol,2000,1:120-129.
    [99]Rathmell JC, Thompson C B. Pathways of apoptosis in lymphocyted evelopment, homeostasis, and disease[J]. Cell,2002,109 Suppl:97-107
    [100]Reed CJ. Apoptosis and canccv strategies for integratingp rogrammed cell death[J]. Semin Hematol,2000,37:9-16.
    [101]LaCasse EC, Baird S, Komeluk RG,et al. The inhibitors of apoptosis(IAPs)andtheir emerging role in cancer[J]. Oneogene,1998,17: 3247-3259.
    [102]Thompson CB. Apoptosis in the pathogenesis and treatment of disease[J]. Science,1995,267(10):1456-1462.
    [103]Aold Y, Cioca DP, Oidaira R, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol.2003; 30(1-2):96-102.
    [104]Wirth T, KuhneI F, Fleischmann-Mundt B, et al. Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1[J]. Cancer Res 2005,65(16):7393-7402.
    [105]Kuntzen C, Sonuc N, De Toni EN, et al. Inhibition of c-Jun-N-terminal-kinase sensitizes tumor cells to CD95-induced apoptosis and induces G2/M cell cycle arrest[J]. Cancer Res,2005,65(15): 6780-6788.
    [106]Alexander IE,Russell DW,Miller AD.DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J Virol,1994,68:8282-8287
    [107]Raymond E,Faivre S,Chaney S,et al.Cellular and molecula rpharmacology of oxaliplatin[J]. Mol Cancer Ther,2002,1(3):227-235.
    [108]Cassidy J. Review of oxaliplatin:an active platinum agent in colorectal cancer[J].Int J Clin Pract,2000,54(6):399-402
    [109]Rixe O, Ortuzar W, Alvarez M, et al. Oxaliplatin, tetraplatin, cisplatin and carboplatin:spectrum of activity in drug resistant celllines and in the celllines of the National Cancer Instiure's anticancer drug screen panel [J]. Biochem Pharmacol,1996,52(12):1855-1865.
    [110]Jean Francois H G, Douglas E R, Michael A C,et al. Chemoembolization of Hepatocellular Carcinoma[J].Am J Clin Oncol,2003,26(4):344-349.
    [111]Mqthe G,kidani Y.Segiguchi M,et al.Oxalatoplatinum or L-ohp,a third generation platinum complex[J].Cancer,1998,82(6):1003-1012.
    [112]马爱英,陈庆丰.肝动脉灌注奥沙利铂合并栓塞治疗晚期肝癌的临床观察[J].临床肿瘤学杂志,2005,10(4):377-381.
    [113]Li S, Niu ZX, Tian H, et al. Treatment of advanced hepatocellular carcinoma with gemcitabine plus oxaliplatin[J]. HEPATO-GASTROENTEROLOGY.2007,54 (73):218-223.
    [114]Li S, Lad J, Chen BP, et al. Genomic analysis of smooth muscle cells in3-dimensional collagen matrix[J]. FASEB J.2003,17(1):97-99.
    [115]Das kc, White CW. Activation of NF-kappa B by antineoplasitc agents. Role of protein kianse B[J]. J Biol Chem,1997,272:14914-14920.
    [1]Bosch FX, Ribes J, Cleries R, et al. Epidemiology of hepatocellular carcinoma[J], Clin Liver Dis.2005,9(2):191-211.
    [2]Vladimir Pisarev,Bin Yu, Raoul Salup, et al. Full-Length Dominant-Negative Survivin for Cancer Immunotherapy[J]. Clinical Cancer Research,2003,9: 6523-6533.
    [3]汤钊猷.肝癌研究进展[J].中国肿瘤,2001,10(1):37-40.
    [4]汤钊猷.从生物学角度看肝癌[J].医学研究杂志,2008,37(1):1-3.
    [5]彭志海,徐军明.小肝癌非手术治疗肝切除及肝移植的合理选择[J].中国实用外科杂志.2008,28(9):712-715.
    [6]严律南.肝脏外科学[M].人民卫生出版社,2002:452-454.
    [7]Moore A, Marecos E, Bogdanov A, et al. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model [J]. Radiology,2000,214(2):568.
    [8]陈旭艳,黄智铭.RNAi及其在肝癌治疗中的作用[J].国际消化病杂志.2007,27(2):129-133.
    [9]Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF /MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5[J]. Cancer Res,2006,66 (24):11851-11858.
    [10]Lovet J, Ricci S,Mazzaferro V, et al. Sorafenib imp roves survival in advanced hepatocellular carcinoma (HCC):Results of a phase III randomized placebocontrolled trial (SHARP trial) [J]. Journal of Clinical Oncology,2007, 25(18):LBA1.
    [11]Ramanathan R, Belani C, Singh D, et al. Phase Ⅱ study of lapatinib, a dual inhibitor of epidermal growth factor receptor(EGFR) tyrosine kinase 1 and 2 in patients with advanced biliary tree cancer (BTC) or hepatocellular cancer (HCC). A California Consortium (CCC-P) Trial[J]. Journal of Clinical Oncology,2006,24 (18):4010.
    [12]Schwartz JD, Schwartz M, Lehrer D, et al. Bevacizumab in hepatocellular carcinoma (HCC) in patients without metastasis and without invasion of the portal vein[J]. Journal of Clinical Oncology,2005,23 (16):4122.
    [13]Sun W, Haller DG, Mykulowycz K, et al. Combination of capecitabine, oxaliplatin with bevacizumab in treatment of advanced hepatocellular carcinoma (HCC):A phase Ⅱ study[J]. Journal of Clinical Oncology,2007, 25 (18):4574.
    [14]HEpfner M, Sutter AP, Huether A, et al. Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma [J]. J Hepatol, 2004,41 (6):1008-1016.
    [15]朱步东,袁守军,徐建明,等.易瑞莎对肝癌小鼠的抑癌作用[J].,中华医学杂志,2004,84(8):684-686.
    [16]Huether A, Hpfner M, Sutter AP, et al. Erlotinib induces cell cycle arrest and apoptosis in hepatocellular cancer cells and enhances chemosensitivity towards cytostatics[J]. J Hepatol,2005,43 (4):661-669.
    [17]Zhu AX, Stuart K, Blaszkowsky LS, et al. Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma [J].Cancer,2007,110 (3): 581-589.
    [18]邓放,王广义,梁舸,等.组蛋白去乙酰化酶抑制剂与5-FU合用对肝癌细胞HepG2的影响.中国免疫学杂志.2008,24:34-37
    [19]Kawata A, Une Y,Hosokawa M, et al. Adjuvant chemcoimmunotherapy for hepatocelluar carcinorma patients. Adriamycin, interleukin-2, and lymphokine-activated killer cells versus adriamycin alone[J]. Am J Clin Oncol,1995,18(3):257-262.
    [20]Sun HC, Tang zY, Wang L, et al. Postoperative interferon alpha treatment postponed recurltnce and improved overall survival in patients after curative resection of HBV-related hepatecellular carcinoma:a randomized clinical trial[J]. J Cancer Res Clin Oncol,2006,132(7):458-465.
    [21]Kubo S, Nishiguchi S, Hiruhashi Ko et al. Randomized clinical trial of long-term outcome after resection of hepatitis C virus--related hepatocellular carcinoms. by postoperative interferon therapy[J]. Br J Surg,2002,89(4): 418-422.
    [22]Dinney CP. Inhibition of basic fiborblast gorwth factor expression, angiogenesis, and gorwth of human bladder carcinoma in mice by systemic interferon-alpha administration[J]. Cancer Res,1998,58(4):808.
    [23]Geisler M, Mohr L, Dohler G, et al. Immnunotherapy directed against alpha-fetoprotein results in autoimmune liver disease during liver regeneration in mice[J]. Gastroenterology,2001,121:931-939.
    [24]Butterfied LH, Ribas A, Meng WS, et al. T-cell responses to HLA-A*0201 immnuodominant peptides derived form alpha-fetoprotein in patients with hepatocelluar cancer[J]. clin cancer Res,2003,9:5902-5908.
    [25]Butterfied LH, Ribas A, Dissette VB, et al. A phase Ⅰ/Ⅱ trial testing immunization of hepatocellular carcinoma patients with dedritic cells pulsed with four alpha-fetoprotein petide[J]. Clin cancer Res 2006,12:2817-2825.
    [26]Mita AC, Mita MM, Nawrocki ST,et al. Survivin:key regulator of mitosis and apoptosis and novel target for cancer therapeutics[J].Clin Cancer Res.2008 Aug15; 14(16):5000-5.
    [27]Lo HW, Day CP, Hung MC, et al. Cancer-specific gene therapy. Adv Genet.2005; 54:235-55.
    [28]吴冰,王燕.Survivin启动子的克隆及在HeLa细胞中的特异生物活性.中国肿瘤生物治疗杂志.2005;12(2):116-119.
    [29]Jacob D, Davis JJ, Zhang L, et al. Suppression of pancreatic tumor growth in the liver by systemic administration of the TRAIL gene driven by the hTERT promoter[J]. Cancer Gene Ther,2005,12(2):109-115.
    [30]Can L, Si,, Wang W, et al. Intracellular localization and sustained prodrug cell killing activity of TAT-HSVTK fusion protein in hepatocelullar carcinoma cells[J]. Mol Cells,2006,21:104-111.
    [31]Harada Y,+lwai M。Tanaka S, et al. Highly efficient suicide gene expression in hepatocellular carcinoma cells by epstein-barr virus-based plasmid vectors combined with polyamidoamine dendrimer[J]. Cancer Gene Ther,2000,7: 27-36.
    [32]Wang XW。Yuan JH, Zhang RG, et al. Antihepatoma effect of alpha-fetoprotein antisense phosphorothioate oligodeoxyribonacleotides in vitro and in mice[J]. World J Gastroenterol,2001,7:345-351.
    [33]Sun Y, Lin R, Dai J, et al. Suppression of tumor growth using antisense oligonucleotide against survivin in an orthotopic transplant model of human hepatocellular carcinoma in nude mice[J]. Oligonucleotides,2006,16: 365-374.
    [34]Jicai Z, Zongtao Y, Jun L. et al. Persistent infection of hepatitis B virus is involved in high rate of p16 methylation in hepatocellular carcinoma[J]. Mol Carcinog,2006,45:530-536.
    [35]Zhang YJ, Rossner P Jr, Chen Y, et al. Aflatoxin B1 and polyc-yclic aromatic hydrocarbon adducts, p53 mutations and p16 methylation in liver tissue and plasma of hepatocellular carcinoma patients[J]. Int J Cancer,2006,119: 985-991.
    [36]Okimoto T, Yahata H, Itou H, et al. Safely and growth supplessive effect of intm-hepatic arterial injection of ADomv-P53 combined with CDDP to rat liver metastatic tumor[J]. J Exp Clin Cancer Res,2003,22:399-406.
    [37]Huang JZ, Xia SS, Ye QF, et al. Effects of p16 gene on biological behaviours in hepatocellular carcinoma cells[J]. World J Gastroenterol,2003,9:84-88.
    [38]Lewis BC, Klimstra DS, Socel ND, et al. The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma[J]. Mol Cell Biol,2005,25(4):1228-1237.
    [39]Anderson SC, Johnson DE, Hafts MP,et al. p53 gene therapy in a rat model of Hepatocelular carcinoma:intra-arterial deilvery of a recombinant[J]. Clin Cancer Res,1998,4(7):1649-1695.
    [40]Asemissen AM, Scheibenbogen C, Letsch A, et al. Addition of histamine to interleukin-2 treatment augments T-cell responses in patients with melanoma in vivo:immunologic results from a randomized clinical trial of interleukin 2 with or without histamine(MP104) [J], Clin Cancer res.2005,11(1):290-297.
    [41]Mitchell MS. Immunotherapy as part of combinations for the treatment of cancer[J]. Int Immunopharmacology,2003,3(8):1051-1059.
    [42]Geissler M, Molar L, Ali MY,et al, Immunobiology and gene-based immunotherapy of hepatocellular carcinoma[J]. Gastroenterol,2003,41(11): 1101-1110.
    [43]Kroger A, Oartmann D, Krohne TU,et at. Growth suppression of hepatocellular carcinoma cell line Hepal-6 by all activatable interfer on regulatory factor-1 in mice[J]. Cancer Res,2001,61(6):2069-2074.
    [44]曹海利,孟巍,白彬.肝癌基因治疗研究新进展[J].介入放射学杂志.2008,17(5):375-378.
    [45]Noboru H, Mitsuo S, Shinji O, et al. IL-12 gene therapy is an effective therapeutic strategy for hepatocellular carcinoma in immunosuppressed mice[J]. J Immunol,2004,173:6635-6644.
    [46]Dranoff G. Cytokines in cancer pathogenesis and cancer therapy[J]. Nat Rev Cancer,2004,4(1):11-22.
    [47]Chang CY, Lee J, Kim EY, et al. Intratumoral delivery of IL-18 naked DNA induces T-cell activation and Thl response in a mouce hepatic cancer model[J]. BMC Cancer,2007,7:87.
    [48]Sangro B, Mazzolini G, Ruiz J, et al. Phase 1 Trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors[J]. J Clin Oncol,2004,22(8):1389-1397.
    [49]Johnson BD, Yan Xiao-cai, Schauer DW,et al. Dualexpression of CD80 and CD86 produces a tumor vaccinesuperior to single expression of either molecule[J]. cellular Immunol,2003,222:15-26.
    [50]Tatsumi T, Takehare T,kanto T, et al. B7-1(cd80)-gene transfer combined with interleukin-12 administration elicits pritective and therapeutic immunty against mouse hepatocellul arcarcinoma[J]. hepatology,1999,30(2):422-429.
    [51]曹海利,孟巍,白彬.肝癌基因治疗研究新进展[J].介入放射学杂志,2008,17(5):375-378.
    [52]Gu S, ku CJ, Qiao T, et al. Inhibitory effect of antisense vascular endothelial growth factor 165 eukaryotic expression vector on proliferation of hepatocellular carcinoma cells[J]. World J Gastroenterol,2004,10:535-539.
    [53]Wang L, Schmitz V, Perez-Mediavilla A, et al. Suppression of angiogenesis and tumor growth by adenoviral-mediated gene transfer of pigment epithelium-derived factor[J]. Mol Ther,2003,8(1):72-79.
    [54]Chen SH. Cban XH. Combination gene therapy for liver metastasis of colon carcinoma in vivo. Proc Natl Acad sci,2002,92:2577-2581
    [55]Rogulski KR, Zhang K, Kolozsvary A. PronouncedAntitumor Effects and Tumor Radiosensitization of Double Suicide. Gene Therapy Clin Cancer Res. 2004,3(11):2081-2088.
    [56]Zhao SC, Bancerjee D, Mineishi S. Post-transplant methotrexate administration leads to improved curability of mice bearing a mammary tumor transplanted with marrow transduced with a mutant human dihydrofolate reductase cDNA. Hum Gene Ther,1997; 8(8):903.
    [57]Gartel AL, Kandel ES. RNA interference in cancer. Biomol Eng,2006, 23(1):17-34.
    [58]Cejka D, Losert D, Wacheck V. Short interfering RNA (siRNA):tool or therapeutic? Clin Sci (Lond).2006,110(1):47-58.
    [59]Paul CP, Good PD, Winer, et al. Effective expression of small interfering RNAi in human cells. Nature Biotechnology,2002,20:505
    [60]Hammond SM, Bernstein E, BenchD, et al. AnRNA directed nuclease mediates post transcriptional gene silencing in Drosophilacells. Nature,2000, 404:293-296
    [61]Caplen NJ, Fleenor J, Fire A, et al. DsRNA-mediated gene silencing in cultured Drosophila cells:a tissue culture model for the analysis of RNA interference. Gene,2000,252:95-105
    [62]Nagy E Arndt-Jovin DJ, Jovin TM. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor(erbBl)and induce apoptosis in erbBl-overexpressing cells. Exp Cell Res,2003,285(1):39-49
    [63]Rahman MM, Miyamoto H, Lardy H, et al. Inactivation of androgen receptor coregulator ARA55 inhibits androgen receptor activity and agonist effect of antiandrogens in prostate cancer cells. Proe Natl Acad Sci USA,2003,100(9): 5124-5129
    [64]Sohail M, Doran G Riedemann J, et al. A simple and cost-effective method for producing small interfering RNAs with high efficacy. Nucleic Acids Res, 2003,31(7):e38
    [65]Cioca DP'Aoki Y'Kiyosawa K RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther,2003,10(2):125-133
    [66]Duxbury MS, Ito H, Zinner MJ, et al. EphA2:a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene,2004,23(7):1448-1456
    [67]Nieth C, Priebsch A, Stege A, et al. Modulation of the classical multidrug resistance (MDR)phenotype by RNA interference(RNAi). FEBS Lett,2003, 545(2-3):144-150
    [68]Aold Y, Cioca DP, OidairaRet al。RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol.2003; 30(1-2):96-102.
    [69]Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes[J]. Nature,2001,409:307-312
    [70]Chart DW, NQ IO. Knock-down of hepatitis B virus X Protein reduces the tumorigenicity of hepatocellular carcinoma cells[J]. J Pathol,2006,208(3): 3721
    [71]Xu Y, Wang YH, Gao JD, et al. Suppression of c-myc expression by interference RNA in HepG2 hepatocellular carcinoma cells[J]. Zhonghua Zhong Liu Za Zhi.2004,26(8):458-60.
    [72]Li H, Fu X, Chen Y, et al. Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocelhlar carcinoma[J].Gastroenterol-ogy.2005,128(7):2029-41.
    [73]Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature.2007, 445(7128):656-60.
    [74]Martinez LA, Naguibneva I, Lehrmann H, et al. Synthetic small inhibiting RNAs:efficient tools to inactivate oncogenic mutations and restore P53 pathways[J]. PNAS,2002,99(23):14849-54.
    [75]PANG RW, LEE TK, MAN K, et al. PIN1 expression eontributes to hepatic carcinogenesis[J].J Pathol,2006,210(1):191
    [76]Wang S, Lan F, Huang L, et al. Suppression of hLRH-1 mediated by a DNA vector-based RNA interference results in cell cycle arrest and induction of apoptosis in hepatocellular carcinoma cell BEL-7402[J]. Biochem Biophys Res Commun.2005,333(3):917-24.
    [77]Cheng SQ, Wang WL, Yan W, et al. Knockdown of survivin gene expression by RNAi induces apoptosis in human hepatocellular carcinoma call line SMMC-7721[J]. World J Gastroenterol.2005,11(5):756-9
    [78]Zhang PH, Zou L, Tu ZG. RNAi-hTERT inhibition hepatoceUular carcinoma cell proliferation via decreasing telomerase activity[J]. Surg Res.2006,131(1): 143-9.
    [79]Lu XD, Qin WX, Pan DN, et al. A DNA vector-based RNAi technology to inhibit the activity of the telomerase of cell line HCCLM3[J]. Zhonghua Yi Xue Za Zhi.2004,84(15):1381-5.
    [80]Zhang PH, Tu ZG, Yang MQ, et al. Experimental research of targeting hTERT gene inhibited in hepatocellular carcinoma therapy by RNA interference [J]. 2004,23(6):619-25
    [81]Wirth T, Kuhnel F, Fleischmann-Mundt B, et al. Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1[J]. Cancer Res 2005,65(16):7393-7402.
    [82]Kuntzen C, Sonuc N, De Toni EN, et al. Inhibition of c-Jun-N-terminal-kinase sensitizes tumor cells to CD95-induced apoptosis and induces G2/M cell cycle arrest[J]. Cancer Res,2005,65(15):6780-6788.
    [83]Salvi A, Arici B, De PeSo G, et al. Small interfering RNA urokinase siliencing inhibits a invasion and migration of huma hepatocellular carcinoma cells[J]. Molcancer Ther,2004,3(6):671.
    [84]Cheng J, Huo DH, Kuang DM, et al Human macrophages promote the motility and invasiveness of osteopontin-knockdown tumor cells. Cancer Res.2007, 67(11):5141-7
    [85]Salvi A, Arici B, Portolani N, et al. In vitro c-met inhibition by anti. rise RNA and plasmid-based RNAi down-modulates migration and invasion of hepatocellular cardnoma cells. Int J Oncol.2007,31(2):451-60.
    [86]Ikeda H, Sasaki Y, Kobayashi T, et al. The role of T-fimbrin in the response to DNA damage:silencing of T-fimbrin by small interfering RNA sensitizes human liver cancer cells to DNA-damaging agents. Int J Oncol.2005,27(4): 933-40
    [87]Huang QL, Yu YZ, Yang Y, et al. Construction of VEGF siRNA expression vector and its inhibition to VEGF in HepG2 cells[J].World Chinese Journal of Digestology,2009,17(2):186-189.
    [88]Yague E, Higgins CF, Raguz S. Complete reveral of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther 2004,11:1170-1174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700