新型限制几何构型茂金属化合物的试合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用不同的方法合成了5种富烯,尝试以6,6-二苯基富烯、6,6-二甲基富烯为原料一锅法合成新型(sp3-C1)桥联CGC。合成产物通过1H NMR、MS、IR进行了分析,发现产物中有目标络合物存在,即{[(η5-C5H4)(C6H5)2C(η1-NCMe3)]ZrCl2(C1),[(η5-C5H4)-(CH3)2C(η1-N(C6H5))]TiCl2(C2),[(η5-C5H4)(CH3)2C(η1-N(C6H11))]TiCl2(C3)}。以6,6-二苯基富烯为原料采用一锅法合成(sp3-C1)桥联CGC络合物C1,没有发现叔丁胺基锂与富烯环外双键加成时发生α-攫氢反应。利用6,6-二甲基富烯与大位阻胺基锂(PhNHLi、C6H11NHLi)反应合成C2和C3,质谱及核磁结果表明反应过程中有胺基锂与少量富烯发生α-攫氢反应,最终产物中含有二氯二(异丙烯基环戊二烯基)钛化合物。在合成C2时考察了加料反应温度、溶剂、时间对产率的影响;当以混合溶剂Hexane-THF(4:1),在加料温度-78℃反应2 h,自然升至室温,反应72h,产率最高可达67%。
     尝试以甲氧乙基环戊二烯为原料通过简单的一步法合成侧链含氧型CGC,没有成功。对产物进行了1H NMR、13C NMR、HRMS、IR表征和结构解析,发现得到了2个取代二茂络合物{[(η5-C5H4CH2CH20CH3)]2TiCl2(C4), [(η5-C5H4CH2CH20CH3)]2ZrCl2 (C5)}。在合成络合物C4和C5时,发现当CH30CH2CH2CpNa与TiCl4物质的量比例小于等于2时反应产物为C4;同样的条件下配体的钠盐与ZrCl4反应得到C5。
Five fulvene were synthesized by different method in this paper. Attempted to synthesize novel (sp3-C1)-bridged CGC compounds by starting compounnds of 6,6-diphenylfulvene and 6,6-dimethylfulvene. Complexes were characterized and analyzed by 1H NMR, MS and IR, The results indicated that the products contained the expected complex respectively {[(η5-C5H4)(C6H5)2C(η1-NCMe3)]ZrCl2(C1),[(η5-C5H4)(CH3)2C-(η1-N(C6H5))]TiCl2(C2);[(η5-C5H4)(CH3)2C(η1-N(C6H11))]TiCl2(C3)}. It was found that in the process of one pot synthesizing (sp3-C1)-bridged CGC (C1), the reaction ofα-H removing in 6,6-diphenyl-fulvene didn't happened. C2 and C3 were synthesized by 6,6-dimethylfulvene reacting with bulky aminolithium(PhNHLi, C6H11NHLi), The result of MASS and 1H NMR indicated that a small part of dichlorid di(iso-propenylcyclopentadienyl)titanocene was formed because ofα-H removing reaction. The effect of feeding reaction temperature, solvent and time on yield for C2 were studied, optimum reaction condition was obtained:when solvent was hexane/ THF(4:1), the feeding temperature was -78℃for 2 hours, then the temperature rised to r.t.naturally, reaction time was 72 hours, the highest yield was 67%.
     Attempted to synthesize the type of titanium(zirconium) oxygen heterocyclic CGC compounds by simple one step synthetic method using methoxyethylcyclopentadien was unsuccessful. The products were well characterized by 1H NMR,13C NMR, HRMS and IR, and results showed that two substituted dicyclopentadienyl complexes{[(η5-C5H4CH2CH2O-CH3)]2TiCl2(C4)、[(η5-C5H4CH2CH2OCH3)]2ZrCl2 (C5)} were obtained. When the ratio of CH3OCH2CH2CpNa and TiCl4 was less than or equal 2:1, the product was C4. C5 was obtained in the same condition by CH3OCH2CH2CpNa reacting with ZrCl4.
引文
[1]S A Miller, J A Tebboth, J F Tremaine. Dicyclopentadienyliron[J]. J Chem Soc,1952, 74(3):632-635.
    [2]T J Kealy, P L Pauson. A New Type of Organ-Iron Compound[J]. Nature,1951,168, 1039-1040.
    [3]E O Fischer. Sudwestdeutsche Dozententagung in Freiburg/Br[J]. Angew Chem.1952, 64(22):620.
    [4]G Wilkinson, M Rosenblum, M C Whiting, R B Woodward. The structure of iron Bis-cyclopentadienyl[J]. J Am Chem Soc,1952,74(8):21-25.
    [5]G Wilkinson, P L Pauson, J M Birmingham, F A Cotton. Bis-cyclopentadienyl derivatives of some transition elements [J]. J Am Chem Soc,1953,75(4):1011-1012.
    [6]G Wilkinson, J M Bermingham. Bis-cyclopentadienyl compounds of Ti/Zr/V and Ta[J]. J Am Chem Soc,1954,76(17):4281-4284.
    [7]B L Summer, R H Uloth, A Holmes. Diaryl Bis-(cyclopentadienyl)-titanium compounds [J]. J Am Chem Soc,1955,77(13):3604-3606.
    [8]R D Gorsich. Cyclopentadienyltitanium trichloride[J]. J Am Chem Soc,1958,80(17): 4744.
    [9]G Natta, P Pino, G Mazzanti, U Giannini. A crystallizable organometallic complex containing titanium and aluminum[J]. J Am Chem Soc,1957,79(11):2975-2976.
    [10]D S Breslow, N R Newburg. Bis-(cylclopentadienyl)-titanium dichloride alkylaluminum complexes as catalysts for the polymerization of ethylene[J]. J Am Chem Soc,1957, 79(18):5072-5073.
    [11]K H Reichert, K R Meyer. Kinetics of the low pressure polymerization of ethylene by soluble Ziegler catalysts[J]. Makromol Chem,1973,169,163.
    [12]H Sinn, W Kaminsky. Ziegler-Natta Catalysis[J]. Adv Organomet Chem,1980,18, 99-149.
    [13]H Sinn, W Kaminsky. "Living Polymers"on Polymerization with Extremely Productive Ziegler Catalysts[J]. Angew Chem Int Ed Engl,1980,19(5):390-392.
    [14]W Kaminsky. New polymers by metallocene catalysis[J]. Macromol Chem Phys,1996, 197(12):3907-4281.
    [15]J A Ewen. Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts[J]. J Am Chem Soc,1984, 106(21):6355-6364.
    [16]W Kaminsky, K Kulper, H H Brintzinger. Polymerization of Propene and Butene with a Chiral Zirconocene and Methylaumoxane as Cocatalyst[J]. Angew Chem Int Ed Engl, 1985,24(6):507-508.
    [17]许胜.新型构型限制双桥双核茂金属化合物的合成、结构及烯烃聚合研究[D].华东理工大学博士论文,2006,36-40.
    [18]Mcknight, A L Waymouth. R W Group 4 ansa-cyclopentadieyl-amido catalysts for olefin polymerization[J]. Chem Rev,1998,98(7):2587-2598.
    [19]杨立娟.茂金属催化剂负载化研究进展[J].辽宁化工,2010,39(6):635-639.
    [20]黄葆同,陈伟.茂金属催化剂及其烯烃聚合物[M].化学工业出版社,2000,94-95.
    [21]P J Shapiro, E Bunel, J E Bercaw. [{(η5-C5Me4)Me2Si(η1-NCMe3}(PMe3)ScH]2:A Unique Example of a Single-Component a-Olefin Polymerization Catalyst [J]. Organo-metallics,1990,9(3):867-869.
    [22]J C Stevens, D R Neithamer. Metal complex compounds, process for preparation and method of use[P].1990, EP 0418044B1.
    [23]B Holger, M B Frank. Constrained geometry complexes-Synthesis and application [J]. Coordination Chem Rev,2006,250(21-22):2691-2720.
    [24]W E Piers, P J Shapiro, E E Bunel, J E Bercaw. Synlett,1990,74.
    [25]P J Shapiro, W D Cotter, W P Schaefer, J A Labinger, J E Bercaw. Model Zielger-Natta α-Olefin Polymerization Catalysts Derived from [{(η5-C5Me4) Me2Si(η1-NCMe3} (PMe3)Sc(μ2-H)]2 and [{(η5-C5Me4)Me2Si(η1-NCMe3}Sc(μ2-CH2CH2CH3)][J]. J Am Chem Soc,1994,116(11):4623-4640.
    [26]J Okuda. Synthesis and Complexation of Linked Cyclopentadienyl Amido Ligands[J]. Chem Ber.1990,123,1649-1651.
    [27]D D Devore, F J Timmers, D L Hasha, R K Rosen, T J Marks, P A Deck, C L Stern. Constraine-d-Geometry Titanium(Ⅱ) Diene Complexes. Structural Diversity and Olefin Polymerization Activity[J]. Organometallics,1995,14(7):3132-3134.
    [28]J A M Canich. Monocyclopentadienyl metal compounds for ethylene-alpha-olefin copolymer production catalysts[P].1996, WO96/00244.
    [29]R Kleinschmidt, Y Griebenow, G Fink. Stereospecific propylene polymerization using half-sandwich metallocene/MAO systems a mechanistic insight[J]. J Mol Catal A-Chem,2000,157(1-2):83-90.
    [30](1)F Amor, K EduPlooy, T P Spaniol, J Okuda. Zirconium and hafnium mono(alkyl) complexes containing a tridentate linked amido-tetramethylcyclopentadienyllig and Molecular structureof-Hf-(η5:η1:η1-C5Me4SiMe2NCH2CH2OCH3)Cl2[J]. J Organomet Chem,1998,558(1-2):139-146. (2)J Okuda, T Eberle, T P Spaniol. V Piquet-Faure Complexes of titanium and zirconium containing a tridentate linked amido-cyclopentadienyl ligand with a soft donor group synthesis structure and ethylene polymerization catalysis[J]. J Organomet Chem,1999,59(2):127-137.
    [31]S Ciruelos, T Cuenca, R Gomez, P Gomez-Sal, A Manzanero, P Royo. Synthesis and Reactivity of [(Amidosilyl)cyclopentadienyl]titanium and zirconium Complexes. X-ray Molecular Structure of [Zr{η5:η1-C5H4SiMe2(μ-O)}Cl2{H2N(CHMe)Ph}]2 [J]. Organo-metallics,1996,15(26):5577-5585.
    [32]K Kunz, G Erker, G Kehr, R Frohlich, H Jacobsen, H Berke, O Blacque. Formation of Cyclodimeric(sp2-C,)-Bridged Cp/-Oxido("CpC,O" MIVX2)Group4 Metal Ziegler-Natta Catalyst Systems-How Important is the "Constraned Geometry"Effect [J]. J Am Chem Soc,2002,124(13):3316-3326.
    [33](1)Y X Chen, P F Fu, C L Stern, T J Marks. A Novel Phenolate "Constrained Geometry"Catalyst System. Efficient Synthesis Structural Characterization, and Olefin Polymerization Catalysis [J]. Organometallics,1997,16(26):5958-5963. (2)W A Herrmann, M J A Morawietz, T Priermeier. Doubly Bridged rac-Metallocenes of Zirconium and Hafnium[J]. Angew Chem Int Ed Engl,1994,33(19):1946-1949.
    [34]E Gielens, J Y Tiesnitsch, B Hessen, J H Teuben. Titanium Hydrocarbyl Complexes with a Linked Cyclopentadienyl-Alkoxide Ancillary Ligand Participation of the Ligand in an Unusual Activation of a (Trimethylsilyl)methyl Group[J]. Organometallics,1998, 17(9):1652-1654.
    [35]K Kunz, G Erker, S Doring, R Frohlich, G Kehr. Generation of Homogeneous (sp3-C1)-Bridged Cp/Amido and Cp/Phosphido Group 4 Metal Ziegler-Natta Catalyst Systems[J]. JAm Chem Soc,2001,123(25):6181-6182.
    [36]G Altenhoff, G Erker, G Kehr, O Kataeva, R Frohlich. Structural Features of Me2Si-Bridged Cp/Phosphido Group 4 Metal Complexes "CpSiP" Constrained- Geometry Ziegler-Natta Catalyst Precursors[J]. Organometallics,2002,21(20):4084-4089.
    [37]S Bredeau, G Altenhoff, K Kunz,, S Grimme, G Kehr, G Erker. Synthesis of Alkylidene-Bridged Cp/Phosphido Group 4 Metal Complexes-Precursors of the "(CpCPR)M-Constrained-Geometry" Catalyst Family[J]. Organometallics,2004,23(8):1836-1844.
    [38]M Kunz, G Erker, S Doring, S Bredeau, G Kehr, R Frohlich. Formation of (sp3-C1)-Bridged Cp/Amido Titanium and Zirconium"CpCN"Constrained-Geometry Ziegler-Natta Catalyst Systems[J]. Organometallics,2002,21(6):1031-1341.
    [39]C Wang, G Erker, G Kehr, R Frohlich. Synthesis Structural Features and Formation of Organometallic Derivates of C1-Bridged Cp/Amido Titanium and Zirconium "CpCN-Constrained Geometry" Systems [J]. Organometallics,2005,24(20):4760-4773.
    [40]P J Sinnema, L vanderVeen, A L Spek, N Veldman, J H Teuben. Titanium Dichloro Bis(carbyl) Aryne and Alkylidene Complexes Stabilized by Linked Cyclopentadienyl-Amido Auxiliary Ligands[J]. Organometallics,1997,16(20):4245-4247.
    [41]D van Leusen, D J Beetstra, B Hessen, J H Teuben. Ethylene-Bridged Tetramet-hylcyclopentadienylamide Titanium Complexes Ligand Synthesis and Olefin Polymerization Properties[J]. Organometallics,2000,19(20):4084-4089.
    [42]P T Gomes, M L H Green, A M Martins. Ansa-bridged η5-cyclopentadienyl imido derivatives of titanium zirconium and molybdenum[J]. J Organomet Chem,1998, 551(1-2):133-138.
    [43]D J Cho, C J Wu, S Sujith, W S Han, S O Kang, B Y Lee. o-Phenyl-Bridged Cp/Amido Titanium Complexes for Ethyl ene/1-Hexene Copolymerizations[J]. Organometallics, 2006,25(9):2133-2144.
    [44]V VKotov, D A Lemenovskii. Alkyl(amino)-and Alkyl(chloro)phosphanyl Substituted Cyclopenta- dienyl Complexes of Titanium and Zirconium[J]. Eur J Inorg Chem,2002, (3):678-691.
    [45](1)H Braunschweig, F M Breitling, C von Koblinski, A J P White, D J Williams. Synthsis and structure of boron-bridged constrained geometry complexes of Titanium[J]. Dalton Trans,2004, (6):938-943. (2)H Braunschweig, F M Breitling, K Radacki, F Seeler. Synthesis and molecular structure of boron-bridged constrained geometry complexes of zirconium and hafnium[J]. Organomet Chem,2005,690(21-22):5000-5005.
    [46]E Kang, S K Kim, T J Kim, J H Chung, J S Hahn, J Ko S O Kang. Structure Catalytic Activity Relationship in Bridging Silacycloalkyl Ring Conformations of Constrained Geometry Titanium Complexes[J]. Eur J Inorg Chem,2008, (13):2214-2224.
    [47]F Amor, J Okuda. Link amido-indenyl complexes of titanium[J]. J Organomet Chem, 1996,520(1-2):245-248.
    [48]J Okuda, T Eberle, T P Spaniol. Link Benzyl amido-Cyclopentadienyl Ligand Synthesis and Characterization of Alkyl Titanium Complexes[J]. Chem Ber/Recl,1997,130, 209-215.
    [49]H G Alt, K Fottinger, W Milius. Synthese Charakte risierung and Polymeriation seigens-chaften verbruckter Halbsandwichkomplexes des Titans Zirconiums und Hafniums Die Molekulstruktur von [C13H8-SiMe2-NtBu]ZrCl2[J]. J Organomet Chem,1999,572: 21-30.
    [50]A L McKnight, R M Waymouth, D A Straus. Selectivity in Propylene Polymerization with Group 4 Cp-Amido Catalysts[J]. Organometallics,1997,16(13):2879-2885.
    [51]J Klosin, W J Kruper, P N Nickias, G R Roof, K A Abboud. Heteroatom Substied Constrained Geometry Complexes Dramatic Substituent Effect on Catalyst Efficiency and Polymer Molecular Weight[J]. Organometallics,2001,20(13):2663-2665.
    [52]Sentil, Nirio, Peunier, J C Gallucci, J D Schloss, L A Paquette. Stereoselective Access to New Half-Sandwich Complexes Containing an Isodicyclopentadienyl Ligand [J]. Organometallics,2000,19(20):4169-4172.
    [53]C Grandini, Camurati, S Guidotti, N Mascellani, L Resconi. Heterocycle-Fused Indenyl Silyl Amido Dimethyl Titanium Complexes as Catalysts for High. Molecular Weight Syndiotactic Amorphous Polypropylene[J]. Organometallics,2004,23(3):344-360.
    [54]L J Irwin, J H Reibenspies, S A Miller. A Sterically Expanded"Constrained Geometry Catalyst" for Highly Active Olefin Polymerization and Copolymerization An Unyielding comonomer Effect[J]. J Am Chem Soc,2004,126(21):6716.
    [55]A J Ashe, X G Fang, J W Kampf. Boratabenzene Analogues of the Constrained Geometry Polymerzation Catalysts[J]. Organometallics,1999,18(8):1363-1365.
    [56]S J Brown, X L Gao, D G Harrison, G P A Yap. Bridged Phospholyl-Amido Titanium Catalysts For Ethylene Polymerization[J]. Organometallics,1998,17(25):5445-5447.
    [57]L T Li, M V Metz, M C Chen, T J Marks. Catalyst/Cocatalysts Nuclearity Effects in Single-Site Polymerization Enhanced Polyethylene Branching and Olefin comonomer Enchainment in Polymerizations Mediated by Binuclear Catalysts and Cocatalysts via a New Enchainment Pathway[J]. J Am Chem Soc,2002,124(43):12725-12741.
    [58]J X Wang, HBLi, N Guo, C L Stern, T J Marks. Covalently Linked Heterobimetallic Catalysts for Olefin Polymerization[J]. Organometallics,2004,23(22):5112-5114.
    [59]N Guo, L T Li, T J Marks. Bimetallic Catalysis for Styrene Homopolymerization and Ethylene-Styrene Copolymerization. Exceptional Comonomer Selectivity and Insertion Regiochemistry[J]. J Am Chem Soc,2004,126(21):6542-6543.
    [60]H G Alt, R Ernst, I K Bohmer. Dinuclear ansa zirconocene complexes containing a sandwich and a half-sandwich moiety as catalysts for the polymerization of ethylene[J]. J Organomet Chem,2002,658(1-2):259-265.
    [61]S K Noh, J Lee, D H Lee. Syntheses of dinuclear titanium constrained geometry complexes with polymethylene bridges and their copolymerization properties[J]. J Organomet Chem,2003,667(1-2):53-60.
    [62]G Jimenez, P Royo, T Cuenca, E Herdtweck. Cyclopentadienyl-Amido Ligands with a Pendant "-NHR" Amido Functionality in Titanium Chemistry. Molecular Structure of [Ti{η5-C5H4SiMe2-η-N(CH2)2-η-NHCHMe2}Cl2][J]. Organometallics,2002,21(11): 2189-2195.
    [63]J Cano, P Royo, H Jacobsen, E Herdtweck. Neutral and Cationic [Bis(η1-amidosilyl)-η5-cyclopentadienyl]titanium and zirconium Complexes Synthesis X-ray Molecular Structures and DFT Calculations[J]. Eur J Inorg Chem,2003,2003(13):2463-2474.
    [64]J Cano, M Sudupe, P Royo, M E G Mosquera. Insertion Reactions into the Metal-Alkyl and Metal-Amido Bonds of 1,3-Di(silyl-η-amido)cyclopentadienyl Titanium and Zirconium Complexes[J]. Organometallics,2005,24(10):2424-2432.
    [65]J Cano, M Sudupe, P Royo, M E G Mosquera. Evidence of Fluoride Transfer from the Anion of [Zr{C5H3[SiMe2(η1-NtBu)]2}]+[RB(C6F5)3]-Complexes to the Zirconocenium Cation[J]. Angew Chem Int Ed,2006,45(45):7572-7574.
    [66]M G Fereres, T Koch, E Hawkins, M S Eisen. Synthesis and olefin polymerization using supported and non-supported geometry constrained titanium complexes[J]. J Organomet Chem,1999,580(1):145-155.
    [67]H Juvaste, T T Pakkanen, E I Iiskola. Heterogeneous Constrained-Geometry Zirconium Catalysts[J]. Organometallics,2000,19(9):1729-1733.
    [68]K Q Yu, M W McKittrick, C W Jones. Role of Amine Structure and Site Isolation on the Performance of Aminosilica-Immobilized Zirconium CGC-Inspired Ethylene Polymerization Catalysts[J]. Organometallics,2004,23(17):4089-4096.
    [69]M Konemann, G Erker, R Frohlich, E U Wurthwein. Structure and Chemical Behavior of an η5-(1-Azapentadienyl)lithium Derivative Generated by Deprotonation Reactions Starting from 9-(N-tert-Butylaminomethyl)fluorene or 6-(tert-Butylamino) dibenzo-fulvene[J]. J Am Chem Soc,1997,119(46):11155-11164.
    [70]R F Jordan, C S Bajgur, W E Dasher, A L Rheingold. Hydrogenation of cationic dicyclopentadienylzirconium(IV) alkyl complexes Characterization of cationic zircon-ium(IV) hydrides[J]. Organometallics,1987,6(5):1041-1051.
    [71]R F Jordan, P K Bradley, R E Lapointe. Beta-Agostic interactions in [(C5H4Me)2Zr (CH2CH2R)(PMe3)]+complexes[J]. J Am Chem Soc,1990,112(3):1289-1291.
    [72]G A Luinstra, J H Teuben, Lead dichloride:a mild reagent for the oxidation of tervalent titanium compounds (η2-C5Me5)2 TiR to monochloride derivatives (η5-C5Me5)2TiR(Cl) [J]. J Chem Soc Chem Commun,1990, (21):1470-1471.
    [73]F Amor, J Okuda. Linked amido-indenyl complexes of titanium[J]. J Organomet Chem, 1996,520:245.
    [74]D W Carpenetti, L Kloppenburg, J L Petersen. Application of Amine Elimination for the Efficient Preparation of Electrophilic ansa-Monocyclopentadienyl Group 4 Complexes Containing an Appended Amido Functionality Structural Characte-rization of [(C5H4)SiMe2(N-t-Bu)]ZrCl2(NMe2H)[J]. Organometallics,1996,15 (6):1572-1581.
    [75]D Balboni, I Camurati, G Prini, L Resconi, S Galli, P Mercandelli. A Sironi. Group4 Dimethyl-methylmetallocenes:Improved Synthesis and Reactivity Studies[J]. Inorg Chem,2001,40(26):6588-6597.
    [76]L Resconi, I Camurati, C Grandini, M Rinaldi, N Mascellani, O Traverso. Indenyl-amido titanium and zirconium dimethyl complexes:improved synthesis and use in propylene polymerization[J]. J Organomet Chem,2002,664(1-2):5-26.
    [77]P J Sinnema, L vanderVeen, A L pek, N Veldman, J H Teuben. Titanium-Dichloro Bis(carbyl) Aryne and Alkylidene Complexes Stabilized by Linked Cyclopentadienyl-Amido Auxiliary Ligands[J]. Organometallics,1997,16(20):4245-4247.
    [78]L Duda, G Erker, R Frohlich. Formation of a Constrained-Geometry Ziegler Catalyst System Containing a C1 Instead of the Usual Si1 Connection Between the Cyclopenta-dienyl and Amido Ligand Components[J]. Eur J Inorg Chem,1998, (8):1153-1162.
    [79]M Kunz, G Erker, S Doring, S Bredeau, G Kehr, R Frohlich. Formation of (sp3-C1)-Bridged Cp/Amido Titanium and Zirconium "CpCN" Constrained Geometry Ziegler-Natta Catalyst Systems[J]. Organometallics,2002,21(6):1031-1041.
    [80]J Okuda, F J Schattenmann, S Wocadlo, W Massa. Synthesis and Characterization of Zirconium Complexes Containing a Linked Amido-Fluorenyl Ligand [J]. Organo-metallics,1995,14(2):789-795.
    [81]S G Feng, J Klosin, W J Kruper, M H McAdon, J T Patton, D R Wilson, K A Abboud, C L Stern. Synthesis and Characterization of Cyclohexadienyl Based Constrained Geometry Complexes[J]. Organometallics,1999,18(7):1159-1167.
    [82]A J Ashe, X G Fang, J W Kampf. Boratabenzene Analogues of the Constrained Geometry Polymerization Catalysts [J]. Organometallics,1999,18(8):1363-1365.
    [83]P J Sinnema, L vanderVeen, A L Spek, N Veldman, J H Teuben. Titanium Dichloro, Bis(carbyl) Aryne and Alkylidene Complexes Stabilized by Linked Cyclopentadienyl-Amido Auxiliary Ligands[J]. Organometallics,1997,16(20):4245-4247.
    [84]A K Hughes, S M B Marsh, P S Ford. Lewis base functionalised cyclopenta-dienyl complexes of titanium[J]. J Organomet Chem,1997,528(1-2):195-198.
    [85]J H Wang, C Zheng, J A Maguire, N S Hosmane. A New Class of Constrained Geometry Metallocenes:Synthesis and Crystal Structure of a Carboranyl-Thiol Appended Half Sandwich Titanocene and Its Conversion to Halotitanocene [J]. Organometallics,2003, 22(24):4839-4841.
    [86]H Braunschweig, C von Koblinski, U Englert. Synthesis and structure of the first boron-bridged constrained geometry complexes[J]. Chem Commun,2000, (12):1049-1050.
    [87]Y Mu, W E Piers, D C MacQuarrie, M J Zaworotko, V Gyoung. Use of Alkane Elimination in the One-Step Synthesis of Oganoscandium Complexes Containting a New Multidentate Cyclopentadienyl Ligand[J]. Organometallics,1996,15(12):2720-2726.
    [88]Y X Chen, T J Marks. "Constrained Geometry"Dialkyl Catalysts. Efficient Syntheses, C-H Bond Activation Chemistry, Monomer-Dimer Equilibration, and a-Olefin Polymerization Catalysis[J]. Organometallics,1997,16(16):3649-3657.
    [89]J Cano, P Royo, M Lanfranchi, M A Pellinghelli, A Tiripicchio. A New Type of Doubly Silylamido-Bridged Cyclopentadienyl Group 4 Metal Complexes[J]. Angew Chem -Int Ed,2001,40(13):2495-2497.
    [90]J Cano, P Royo, H Jacobsen, E Herdtweck. Neutral and Cationic [Bis(η1-amidosily1)-η5-cyclopentadienyl] titanium and zirconium Complexes:Synthesis, X-ray Molecular Structures and DFT Calculations[J]. Eur J Inorg Chem,2003, (13):2463-2474.
    [91]P T Gomes, M L H Green, A M Martins, P Mountford. Ansa-bridged η-cyclopenta-dienyl imido and amido derivatives of titanium, zirconium, niobium and molybde-num[J]. J Organomet Chem,1997,541(1-2):121-125.
    [92]P T Gomes, M L H Green, A M Martins. Ansa-bridged η-cyclopentadienyl imido and amido derivatives of titanium, zirconium and molybdenum [J]. J Organomet Chem, 1998,551(1-2):133-138.
    [93]J R Ascenso, A R Dias, J A Fernandes, A M Martins, S S Rodrigues. Syntheses and dynamic NMR studies on 3-(1'-indenyl)propyl-N,N-bis(trimethylsylil) amine metal derivatives[J]. Inorg Chim Acta,2003,356,279-287.
    [94]马志宏,林进.富烯的合成及其应用研究进展[J].有机化学,2008,28(10):1707-1714.
    [95]J L Kice, F Taymoorian. The Reaction of Free Radicals with Non-benzenoid Aromatic Hydrocarbons Ⅱ 6-Alkylfulvenes and Benzofulvenes[J]. J Org Chem,1960,25(10): 1786-1789.
    [96]W B Smith, C Gonzalez. The Condensation of Acetone with Dimethylfulvene[J]. J Org Chem,1963,28(12):3541-3542.
    [97]K J Stone, R D Little. An exceptionally simple and efficient method for preparation of a wide variety of fulvenes. J Org Chem,1984,49(11):1849-1853.
    [98]陈寿山.富烯合成的研究[J].河北工学院学报,1987,(1):89-93.
    [99]Khalil. An improved pathway to 6,6-disubstituted fulvenes[J]. Tetrahedron Letters, 2004, (45):6741-6744.
    [100]杨晓霞,黄吉玲.新型6,6-取代芳基富烯的合成[J].有机化学,2006,26(4):542-545.
    [101]M Ogasa, D T Mallin, D W Macomber, M D Rausch, RD Rogers, A N Rollins. Synthetic and structural studies on new vinylcyclopentadienyl derivatives of titanium, iron and thallium [J]. J Orgamet Chem,1991,405(1):41-52.
    [102]陈寿山,姚文庆.6,6-二烷基富烯与有机锂的反应——双(取代环戊二烯基)钛、锆衍生物的合成[J].化学学报,1990,48(5):494-500.
    [103]陈寿山,姚文庆.大位阻取代环戊二烯基钛、锆衍生物[J].无机化学学报,1991,7(3):267-270.
    [104]阎修维.茂金属催化剂催化乙烯-辛烯共聚物[D].华东理工大学硕士论文,2010,17-23.
    [105]陈寿山,张正之等.金属有机化合物合成手册[M].化学工业出版社,1986,36.
    [106]陈寿山,张正之等.金属有机化合物合成手册[M].化学工业出版社,1986,30.
    [107]刘希杰.双亚甲基芳香桥双核茂金属化合物的合成及其催化乙烯聚合研究[D].浙江大学博士论文,2005,38.
    [108]H Rubin, D Robbert. Zirconocene Immobilization and Activation on MgCl2 Based Supports:FactorsAffectingEthylenePolymerizationActivity[J]. Macromolecules,2008, 41(3):579-590.
    [109]Y Qing, M P McDaniel, J L Martin. Polymerization catalysts for producing polymers with low melt elasticity[P]. US2009088543A1.
    [110]Huang qicheng, Qian yanlong. Synthesis of New Chiral Cyclopentadienes Suited for Chelation[J]. Synthetic Communications,1987,10,910-912.
    [111]Qian yanlong. Synthesis and crystal structure of (2-Methoxyethyl)-cyclopentadienyl titanium complexes[J]. Transition Met Chem,1990,15(6):483-485.
    [112]R Fandos, A Meetsma, J H Teuben. Intramolecular C-X activation as a synthetic route to bidentate cyclopentadienyl-alkoxide ligands:preparation and molecular structure of [3-(2,3,4,5-tetramethylcyclopentadienyl) propoxy titanium dichloride [J]. Organome-tallics,1991,10(1):59-60.
    [113]G Trouve, D A Laske, A Meetsma, J H Teuben. Synthesis of Group 4 metal compounds containing cyclopentadienyl ligands with a pendant alkoxide function[J]. J Organomet Chem,1996,511(1-2):255-262.
    [114]E Gielens, J Y Tiesnitsch, B Hessen, J H Teuben. Titaium Hydrocarbyl Complexes with a Linked Cyclopentadienyl-Alkoxide Ancillary Ligand;Participation of the Ligand in an Unusual Activation of a(Trimethylsilyl)methyl Group[J]. Organomatallics,1998, 17(9):1652-1654.
    [115]S D R Christie, K W Man, R J Whitby. Novel Routes to Bidentate Cyclopentadienyl-Alkoxide Complexes of Titanium:Synthesis of (η5-σ-C5R14CHR2CH2CR3R4O)TiCl2 [J]. Organometallics,1999,18(3):348-359.
    [116]R Andrzej, M Sumit, P Maren. Exchange Coupling Mediated Through-Bonds and Thro-ugh Space in Conformationally Constrained Polyradical Scaffolds:Calix[4] arene Nitr-oxide Tetraradicals and Diradical[J]. J Am Chem Soc,2006,128(41):13497-13507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700