用户名: 密码: 验证码:
程序性细胞死亡在大鼠心肌缺血/再灌注损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     心肌梗死是危害人类健康的主要疾病之一,尽早有效地恢复对缺血心肌的血液再灌注,是阻止缺血性心肌损伤的发展、减小心梗面积进而改善临床预后的根本措施。但是,缺血心肌在恢复血液灌注后可产生更为严重的损伤,即缺血/再灌注损伤,使得即使给予及时、适当的再灌注治疗,仍然有10%的心梗患者死亡,25%的心梗患者发生心力衰竭。因此,缺血/再灌注损伤成为阻碍缺血心肌从再灌注治疗中获得最佳疗效的主要难题。
     研究已知,心肌细胞死亡是缺血/再灌注损伤导致心梗患者预后不佳的主要原因。关于细胞死亡的分类目前并不统一,但普遍将受基因调控、高度有序、主动的细胞死亡形式称为程序性细胞死亡。因程序性细胞死亡具可调控性,抑制程序性细胞死亡的发生可能做到,故程序性细胞死亡在心肌缺血/再灌注损伤中的作用备受关注。在心肌缺血/再灌注损伤中,程序性细胞死亡的形式有哪些、它们之间的关系如何,已经成为寻找减轻心肌缺血/再灌注损伤机制的切入点之一。
     已知的程序性细胞死亡主要有三种形式:凋亡(apoptosis)、自噬(autophagy)与程序性坏死(necroptosis)。凋亡是指为维持内环境稳定,由基因控制的细胞自主的有序的死亡,天冬氨酸特异的半胱氨酸蛋白酶(caspase)在细胞凋亡的执行期发挥关键作用;自噬是亚细胞膜结构发生动态变化并经溶酶体介导对细胞内蛋白质和细胞器降解的过程,通过形成自噬体(autophagosome)降解其底物。在生理条件下,自噬主要的功能是调控长寿蛋白和细胞器的降解利用,参与细胞质的重建、维持细胞质的稳定及清除受损的细胞器,此时自噬是作为细胞存活的机制。如果自噬活性过强,破坏细胞胶质以及细胞器超过了某一界限,就会发生自噬性细胞死亡;程序性坏死是指具有坏死的细胞形态特点和自噬体生成,并且主动耗能的细胞死亡过程。
     自噬与程序性坏死都有自噬体形成,但其意义却不相同。由于自噬的过度活动可以导致细胞死亡,所以在自噬过程中出现的自噬体可能与自噬引起的细胞死亡有关;但在程序性坏死过程中出现的自噬体只是一种伴随现象,与程序性坏死引起的细胞死亡无关。
     虽然有研究发现,这三种程序性细胞死亡分别参与了心肌缺血/再灌注损伤,但这些研究多数是通过关注其中一种程序性细胞死亡的作用得出结论,而且已有的关于三种程序性细胞死亡形式之间的相互关系的结论,也主要来自细胞培养或其它离体模型,因此并不能很好地分析程序性细胞死亡在心肌缺血/再灌注损伤中的意义。
     近年的研究发现,三种程序性细胞死亡在体内并非孤立存在,而是彼此互相联系,互相影响。例如,阻断自噬可以促进细胞凋亡的发生,而阻断细胞凋亡又可促进程序性坏死。已有的研究不能很好地反映和比较每种程序性细胞死亡在心肌缺血/再灌注损伤中的作用大小,相互之间有无关系及关系如何等。若能选用恰当的动物模型,从在体水平阐明这三种程序性细胞死亡各自的发生发展规律,以及三者之间的相互关系,将会为临床筛选治疗的最佳时间点、明确相互之间的关系,最终为临床改善心肌缺血/再灌注损伤治疗措施的制定提供重要的实验依据。
     综上所述,本研究拟通过建立大鼠心肌/缺血再灌注模型进行以下研究:1.在同一个动物个体上观察三种程序性死亡在心肌/缺血再灌注过程中各自发生的时间规律;2.运用三种程序性细胞死亡的抑制剂,观察三者在心肌/缺血再灌注过程中作用的相互关系;3.分析三种程序性细胞死亡在心肌/缺血再灌注损伤中的可能的贡献。
     第一部分三种程序性细胞死亡在大鼠心肌/缺血再灌注过程中各自发生的时间规律
     目的:
     本部分实验运用大鼠心肌缺血/再灌注模型,观察三种程序性细胞死亡形式在心肌/缺血再灌注过程中各自的动态变化规律。
     材料与方法:
     1.动物:
     雄性Wistar大鼠,体重:230±10 g。
     本实验共使用60只大鼠,死亡12只,实际用于实验研究48只。
     2.分组:
     (1)缺血组(n=6):结扎冠状动脉左前降支30 min;
     (2)再灌注1h组(n=6):结扎冠状动脉左前降支30 min,再灌注1h;
     (3)再灌注2h组(n=6):结扎冠状动脉左前降支30 min,再灌注2h;
     (4)再灌注3h组(n=6):结扎冠状动脉左前降支30 min,再灌注3h;
     (5)再灌注12h组(n=6):结扎冠状动脉左前降支30 min,再灌注12h;
     (6)再灌注24h组(n=6):结扎冠状动脉左前降支30 min,再灌注24h:
     (7)再灌注48h组(n=6):结扎冠状动脉左前降支30 min,再灌注48h;
     (8)伪手术组(n=6):手术过程同缺血组但不结扎冠状动脉。
     3.方法:
     建立大鼠心肌缺血/再灌注模型,留取心脏,以特异性较强的caspase-3活性测定法检测心肌细胞凋亡程度;以Western blot方法检测心肌组织微管相关蛋白轻链3 (MAP LC3-Ⅱ)的蛋白表达,观测自噬体形成,从而反映自噬和程序性死亡程度。
     结果:
     1.心肌缺血/再灌注期间,大鼠心肌组织caspase-3活性的动态变化规律
     Caspase-3是caspase依赖性细胞凋亡通路上的最后执行者,其活性可以反应细胞凋亡水平。
     实验结果显示,缺血30min心肌组织Caspase-3活性与伪手术组相比无明显改变;Caspase-3活性在再灌注1h升高至峰值(1.56±0.22vs.1.0±0.21,P<0.01);之后开始下降,再灌注24h恢复至伪手术组水平(图2)。
     2.心肌缺血/再灌注期间,大鼠心肌组织LC3-Ⅱ蛋白表达的动态变化规律
     LC3-Ⅱ是观察哺乳动物自噬体水平公认的生物学标记物。
     实验结果显示,与伪手术组相比,心肌缺血30min后心肌组织中LC3-Ⅱ的蛋白表达开始增加(P<0.05),再灌注期间(再灌注1h、2h、3h、12h)进一步增加,在再灌注24h达到高峰(P<0.01),随后明显减少,再灌注48h逐渐回复至再灌注3h水平(图3)。
     以上结果提示,心肌缺血未导致caspase依赖的心肌细胞凋亡,细胞凋亡主要发生在再灌注期间,再灌注1h达高峰,随后开始下降,再灌注24h降至正常;心肌缺血可导致心肌组织自噬体形成增加,再灌注期间自噬体形成进一步增加,再灌注24h达高峰,之后开始下降,但再灌注48h仍未恢复正常。
     小结(一)
     1.30min的心肌缺血未导致caspase依赖的心肌组织凋亡,凋亡发生在再灌注期间,而且以再灌注初期为主,再灌注1h即达高峰,随后开始下降,再灌注24h降至正常。
     2.30min的心肌缺血可导致心肌组织自噬体形成增加,再灌注期间自噬体形成进一步增加,再灌注24h达高峰,之后开始下降,但再灌注48h仍未恢复正常。
     由于自噬与程序性坏死都可以引起自噬体形成,所以在本研究中自噬体的来源、自噬与程序性坏死的变化规律有待进一步研究,将在第二部分实验中进一步阐明。
     第二部分三种程序性细胞死亡在大鼠心肌/缺血再灌注过程中的作用和相互关系
     目的:
     依据第一部分的实验结果,分别给予Caspase阻断剂Z-VAD-fmk、自噬阻断剂三甲基腺嘌呤(3-methyladenine,3-MA)和程序性坏死阻断剂Nec-1后,观察3种程序性细胞死亡的变化,进而分析3种程序性细胞死亡在大鼠心肌/缺血再灌注过程中的作用及其相互关系。
     材料与方法:
     1.动物:
     同第一部分。
     本实验共使用动物128只,死亡26只,实际用于实验研究102只。
     2.分组:
     (1)I30min+DMSO组(n=6):结扎冠状动脉左前降支30min;结扎前30min静脉注射DMSO(0.1%)0.6m1。
     (2)130min+Z-VAD-fmk组(n=6):结扎冠状动脉左前降支30min;结扎前30min静脉注射Z-VAD-fmk(1mg/kg,溶于DMSO)。
     (3)130min+Nec-1组(n=6):结扎冠状动脉左前降支30min;结扎前30min静脉注射Nec-1(0.6mg/kg,溶于DMSO)。
     (4)再灌注1h+DMSO组(n=6):结扎冠状动脉左前降支30min,再灌注1h;结扎前30min注射DMSO 0.6ml。
     (5)再灌注1h+Z-VAD-fmk组(n=6):结扎冠状动脉左前降支30min,再灌注1h;结扎前30min静脉注射Z-VAD-fmk(1mg/kg,溶于DMSO)。
     (6)再灌注1h+3-MA组(n=6):结扎冠状动脉左前降支30min,再灌注1h;结扎前30min静脉注射3-MA(15mg/kg,溶于DMSO)。
     (7)再灌注1h+Nec-1组(n=6):结扎冠状动脉左前降支30min,再灌注1h;结扎前30min静脉注射Nec-1 (0.6mg/kg,溶于DMSO)。
     (8)再灌注3h+DMSO组(n=6):结扎冠状动脉左前降支30min,再灌注3h;结扎前30min静脉注射DMSO 0.6ml。
     (9)再灌注3h+Z-VAD-fmk组(n=6):结扎冠状动脉左前降支30min,再灌注3h;结扎前30min静脉注射Z-VAD-fink (1mg/kg,溶于DMSO)。
     (10)再灌注3h+3-MA组(n=6):结扎冠状动脉左前降支30min,再灌注3h;结扎前30min静脉注射3-MA(15mg/kg,溶于DMSO)。
     (11)再灌注3h+Nec-1组(n=6):结扎冠状动脉左前降支30min,再灌注3h;结扎前30min静脉注射Nec-1(0.6mg/kg,溶于DMSO)。
     (12)再灌注12h+DMSO组(n=6):结扎冠状动脉左前降支30min,再灌注12h;结扎前30min静脉注射DMSO 0.6ml。
     (12)再灌注12h+Z-VAD-fmk组(n=6):结扎冠状动脉左前降支30min,再灌注12h;结扎前30min,再灌注8h(据Z-VAD-fmk半衰期确定药物追加时间)分别静脉注射Z-VAD-fmk(1mg/kg,溶于DMSO)。
     (14)再灌注12h+3-MA组(n=6):结扎冠状动脉左前降支30min,再灌注12h;结扎前30min静脉注射3-MA (15mg/kg,溶于DMSO).
     (15)再灌注12h+Nec-1组(n=6):结扎冠状动脉左前降支30min,再灌注12h;结扎前30min静脉注射Nec-1 (0.6mg/kg,溶于DMSO)。
     (16)再灌注24h+DMSO组(n=6):结扎冠状动脉左前降支30min,再灌注24h;再灌注前30min静脉注射DMSO 0.6ml。
     (17)再灌注24h+Nec-1组(n=6):结扎冠状动脉左前降支30min,再灌注24h;结扎前30min静脉注射Nec-1(0.6mg/kg,溶于DMSO)。
     3.方法:
     同第一部分
     结果:
     第一部分结果显示:LC3-Ⅱ蛋白表达在缺血期已增高,再灌注期间进一步增高,再灌注24h达高峰。故选择缺血30min、再灌注1h、2h、3h、12h和24h观察LC3-Ⅱ蛋白表达。
     2.1分别给予Nec-1、3-MA和Z-VAD-fink后,大鼠缺血/再灌注心肌组织中LC3-Ⅱ蛋白表达的变化。
     2.1.1给予Nec-1后,大鼠缺血/再灌注心肌组织中LC3-Ⅱ蛋白表达的变化。
     给予Nec-1后,与相应时间点DMSO组相比,缺血30min、再灌注1h、2h和3h心肌组织中LC3-Ⅱ表达无明显改变;而再灌注12h和24h心肌组织中LC3-Ⅱ蛋白表达明显减少(12h:1.13±0.15 vs.0.65±0.08,P<0.01;24h:1.415±0.08vs.0.82±0.20,P<0.01)(图4,5,6)。以上结果提示,再灌注3h之前的自噬体形成可能是由自噬引起的,而再灌注12h至24h的自噬体形成可能是由程序性坏死引起,但不能排除自噬也参与12h至24h的自噬体形成。同时也说明抑制程序性坏死可能对自噬无影响。
     2.1.2给予3-MA后,观察缺血/再灌注大鼠心肌组织中LC3-Ⅱ蛋白表达变化。
     给予3-MA后,与DMSO组相比,再灌注3h、12h心肌组织中LC3-Ⅱ蛋白表达均明显减少(3h:0.61±0.07vs.0.43±0.03,P<0.01;12h:1.125±0.15 vs.0.84±0.04,P<0.05)(图7,8,9)。这一结果提示,3-MA对自噬及程序性坏死的自噬体形成可都有抑制作用,但阻断自噬体的形成是否影响程序性坏死引起的细胞死亡有待进一步研究,将在第三部分进一步探讨。
     2.1.3给予z-VAD-fmk后,观察缺血/再灌注心肌组织中LC3-Ⅱ蛋白表达的变化
     有研究证实,应用广谱的Caspase抑制剂z-VAD-fmk阻断凋亡后,诱发程序性坏死,导致自噬体生成增多。因此,本实验中,我们在应用z-VAD-fmk后,观察缺血/再灌注过程中不同时间点心肌组织中LC3-Ⅱ的表达情况。根据研究结果2.1.1,选用再灌注3h为观察自噬时间点,再灌注12h观察程序性坏死的时间点。
     给予z-VAD-fmk后,观察心肌缺血30min、再灌注3h,12h心肌组织LC3-Ⅱ的蛋白表达。结果显示,与DMSO组相比,给予Z-VAD-fmk后,缺血30min心肌组织LC3-Ⅱ蛋白无改变,而心肌缺血再灌注3h,12h心肌组织中LC3-Ⅱ蛋白表达均明显增加(3h:0.61±0.07 vs.0.74±0.08,P<0.05;12h:1.125±0.15 vs.1.255±0.04,P<0.05)(图10,11,12)。第一部分结果提示缺血30min心肌组织中只有自噬体的改变而无Caspase-3活性的变化,此时给予z-VAD-fink后LC3-Ⅱ蛋白无改变,而再灌注3h、12h Caspase-3活性升高,给予z-VAD-fmk后LC3-Ⅱ蛋白表达增加。提示,z-VAD-fmk本身不影响LC3-Ⅱ蛋白表达,其使得再灌注3h、12h LC3-Ⅱ蛋白表达增加是通过阻断凋亡而起作用。如前结果所述再灌注3h自噬体的生成可能主要来源于自噬,再灌注12h自噬体的生成可能主要来源于程序性坏死,故提示阻断凋亡可能促进自噬与程序性坏死。
     2.2分别观察Caspase广谱抑制剂、细胞自噬特异性抑制剂以及程序性坏死特异性抑制剂对大鼠心肌缺血/再灌注后Caspase-3活性的影响
     因Caspase-3活性在再灌注1h达高峰,再灌注12h的自噬体形成有程序性坏死参与,故选择再灌注1h观察Z-VAD-fmk及3-MA对caspase-3活性的影响;再灌注12h观察Nec-1对caspase-3活性的影响。
     2.2.1给予Caspase广谱抑制剂(Z-VAD-fmk)后,再灌注1h大鼠心肌组织Caspase-3活性降低
     与DMSO组相比,给予Z-VAD-fmk后再灌注1h大鼠心肌组织Caspase-3活性明显下降(1.59±0.23vs.1.11±0.03,P<0.01)(图13)。
     2.2.2给予细胞自噬抑制剂3-甲基腺嘌呤(3-Methyladenine,3-MA)后,再灌注1h大鼠心肌组织Caspase-3活性增加。
     与DMSO组相比,给予3-MA后再灌注1h大鼠心肌组织Caspase-3活性显著升高(1.58±0.49vs.1.81±0.06,P<0.01)(图14)。以上结果提示,心肌缺血/再灌注期间,抑制心肌细胞自噬反而会增加心肌细胞凋亡。
     2.2.3给予程序性坏死特异性抑制剂(Necrostatin-1, Nec-1)后,再灌注1h大鼠心肌组织Caspase-3活性无影响。
     与相应DMSO组相比,给予Nec-1后再灌注1h、12h大鼠心肌组织Caspase-3活性无变化(图15)。这一结果提示,缺血/再灌注期间,抑制细胞程序性坏死对心肌细胞凋亡的影响不明显。
     小结(二)
     1.在大鼠心肌缺血/再灌注引起的三种程序性死亡中自噬发生的最早,缺血期即增高,再灌注期间进一步升高;之后细胞凋亡开始发生,在再灌注1h达高峰,随后开始下降;程序性坏死发生的最晚,大概在再灌注12h左右发生,24h达高峰,再灌注48h仍未恢复正常。
     2.在大鼠心肌缺血/再灌注中抑制凋亡可能促进自噬与程序性坏死,抑制自噬则可能促进凋亡,但抑制程序性坏死可能对另两种程序性死亡无明显影响。
     第三部分三种程序性细胞死亡在心肌/缺血再灌注损伤中的贡献
     目的:
     根据第一、二部分结果的提示,本实验给予三种程序性细胞死亡阻断剂(分别单独使用一种,两两联合应用,以及同时应用三种),检测三种程序性细胞死亡的水平及心梗面积、心功能改变,以观察三种程序性死亡在心肌/缺血再灌注损伤中的可能贡献。
     材料与方法:
     1.动物:
     同第一部分
     本实验共使用动物68只,死亡14只,实际用于实验研究54只。
     2.分组:
     (1) R48h+DMSO组(n=6):结扎冠状动脉左前降支30min,再灌注48h;结扎前30min静脉注射DMSO 0.6ml。
     (2) R48h+Z-VAD-fmk组(n=6):结扎冠状动脉左前降支30min,再灌注48h;结扎前30min、再灌注8h、16h、24h各静脉注射Z-VAD-fmk(1mg/kg,溶于DMSO)。
     (3)R48h+3-MA组(n=6):结扎冠状动脉左前降支30min,再灌注48h;结扎前30min静脉注射3-MA (15mg/kg,溶于DMSO)。
     (4)R48h+Nec-1组(n=6):结扎冠状动脉左前降支30min,再灌注48h;结扎前30min静脉注射Nec-1 (0.6mg/kg,溶于DMSO)。
     (5) R48h+Z-VAD-fmk+3-MA组(n=6):结扎冠状动脉左前降支30min,再灌注48h;静脉注射Z-VAD-fink如第2组,3-MA如第3组。
     (6) R48h+Z-VAD-fmk+Nec-1组(n=6):结扎冠状动脉左前降支30min,再灌注48h;静脉注射Z-VAD-fmk如第2组,Nec-1如第4组。
     (7) R48h+3-MA+Nec-1组(n=6):结扎冠状动脉左前降支30min,再灌注48h;静脉注射3-MA如第3组,Nec-1如第4组。
     (8) R48h+Z-VAD-fmk+Nec-1+3-MA组(n=6):结扎冠状动脉左前降支30min,再灌注48h;静脉注射Z-VAD-fmk如第2组,3-MA如第3组;Nec-1如如第4组。
     (9)伪手术组(n=6):手术过程同手术组但不结扎冠状动脉。
     3.方法:
     建立大鼠心肌缺血/再灌注模型,在体监测各项心功能指标、以Evanse blue和TTC复染法检测缺血/再灌注后大鼠心肌梗死面积。
     结果:
     由第一、二部分结果可知在大鼠心肌缺血/再灌注中,三种程序性细胞死亡发生最晚的程序性坏死于再灌注24h达高峰,随后下降。再灌注48h,三种程序性死亡基本达到稳态,故选择再灌注48h观测在体心功能和心梗面积。
     3.1心肌缺血再灌注48h心肌细胞凋亡、细胞自噬以及程序性坏死对心梗面积的影响。
     3.1.1观察分别单独应用z-VAD-fmk、3-N(?)A和Nec-1对心梗面积的影响。
     经测定,各组大鼠危险区面积与左心室面积比值(AAR/LV)无统计学意义,说明模型建立手术手法一致,排除了由此而造成的误差。
     与DMSO组比较,单独给予Z-VAD-fmk后,心梗面积明显缩小(44.08±2.84 vs.28.13±2.45,P<0.01)(图16,17,22,23);单独给予3-MA后,心梗面积明显缩小(44.08±2.84vs.32.23±1.90,P<0.01)(图16,17,22,23);单独给予Nec-1后,心梗面积明显缩小(44.08±2.84vs.30.07±2.63,P<0.01)(图16,17,22,23)。以上实验结果显示,单独阻断任一种程序性坏死,均可有效地减小心梗面积,提示每一种程序性坏死在缺血/再灌注中均发挥其致损伤作用。
     本实验结果还显示,单独给予z-VAD-fmk心梗面积较单独给予3-MA明显缩小(P<0.01);但单独给予z-VAD和单独给予Nec-1组比,以及单独给予3-MA与单独给予Nec-1相比,心梗面积无统计学差异(P>0.05)。如第二部分结果所示,给予z-VAD-fmk阻断凋亡可促进自噬与程序性坏死,但仍以给予z-VAD-fmk后心梗面积缩小最为明显,这一结果提示,在心肌缺血/再灌注过程中凋亡的致心肌损伤作用较自噬可能更明显一些。三种阻断剂中单独给予3-MA缩小心梗面积的作用最差,一方面可能是由于阻断自噬可能促进凋亡的缘故,另一方面说明阻断自噬体的形成可能并不影响程序性坏死导致的细胞死亡。
     3.1.2观察两两联合使用z-VAD-fmk、3-MA和Nec-1对心梗面积的影响。
     与DMSO组相比,联合使用z-VAD-fmk与3-MA、联合使用z-VAD-fmk与Nec-1以及联合使用3-MA与Nec-1均使再灌注48h的心梗面积显著减小(z-VAD-fmk+3-MA: 44.08±2.84 vs.25.41±3.04, P<0.01; z-VAD-fmk+Nec-1:44.08±2.84vs.25.833.04, P<0.01; 3-MA+Nec-1:44.08±2.84 vs.26.90±2.90, P<0.01);但联用两种抑制剂各组心梗面积两两之间比较无统计学差异;而联用两种抑制剂各组心梗面积与单独使用3-MA相比均明显减小(P<0.01),与单独给予Nec-1相比心梗面积均明显缩小(P<0.05)(图18,19,22,23)。
     3.1.3观察同时联合使用z-VAD-fmk、3-MA和Nec-1对心梗面积的影响。
     联合使用三种抑制剂(z-VAD-fmk+3-MA+Nec-1,23.28±3.10)(图20,21,22,23),与单独使用z-VAD-fmk (P<0.05)、3-MA (P<0.01)及Nec-1 (P<0.01)相比,心梗面积明显减小;与联用3-MA和Nec-1组相比,心梗面积也明显缩小(P<0.05,图23)。
     以上实验结果提示,心肌缺血/再灌注后心梗面积的大小受到心肌细胞凋亡、自噬以及程序性坏死的共同影响。其中心肌细胞凋亡可能是影响心梗面积最主要的因素,而心肌细胞自噬和程序性坏死可能只发挥了相对较小的作用。由于单独阻断一种程序性细胞死亡可能促进另一种程序性细胞死亡,故同时阻断三种程序性细胞死亡可更明显地减小心梗面积。
     3.2 z-VAD-fmk、3-MA和Nec-1对心肌缺血再灌注48h心功能的影响。
     3.2.1 z-VAD-fmk、3-MA和Nec-1对心肌缺血/再灌注48h+dp/dtmax的影响。
     +dp/dtmax为左心室压力上升最大变化速率,可反映在体心脏收缩功能,该指标数值越小,心脏收缩功能越差。
     与伪手术组相比,心肌缺血/再灌注48h+DMSO组+dp/dtmax明显降低(878.00±57.12vs.416.00±27.517,P<0.01);与DMSO组相比,联用三种抑制剂可以明显改善心肌缺血/再灌注48h在体心脏收缩功能(416.00±27.517vs.527.83±12.73,P<0.01);与DMSO组相比,单独给予Z-VAD-fmk、3-MA以及Nec-1均对心功能损伤的改善不明显,虽有好转趋势,。但无统计学意义(图24,25,26,27)。
     3.2.2 z-VAD-fmk、3-MA和Nec-1对心肌缺血再灌注48h-dp/dtmax的影响。
     -dp/dtmax为左心室压力下降最大变化速率,可反映在体心脏舒张功能,该指标数值越小,心功能越差。
     实验结果显示,与伪手术组相比,心肌缺血/再灌注48h+DMSO组的-dp/dtmax明显降低(744.17±34.61vs.408.00±22.8,P<0.01)。与DMSO组相比,联用三种抑制剂(Z-VAD-fmk +3-MA+Nec-1)可以明显改善心肌缺血再灌注48h在体心脏舒张功能(408.00±22.80vs496.00±36.25,P<0.01);单独给予Z-VAD-fmk、3-MA以及Nec-1均对心功能损伤的改善影响不明显,虽有好转趋势,但无统计学意义(图28,29,30,31)。
     小结(三)
     1.单用三种阻断剂均可明显减小心梗面积,提示三种程序性细胞死亡在大鼠心肌/缺血再灌注损伤中均发挥重要作用;其中给予z-VAD-fink缩小心梗面积最为明显,提示在大鼠心肌/缺血再灌注损伤中细胞凋亡的作用可能最大,自噬与程序性坏死的作用大小则无明显区别。
     2.分别联合阻断两种程序性死亡后心梗面积较单独阻断自噬或程序性坏死均明显缩小。
     3.联合阻断细胞凋亡、自噬及程序性坏死则可明显减小心梗面积。
     4.只有联合阻断凋亡、自噬及程序性坏死三种程序性死亡可使大鼠心肌/缺血再灌注后48h心功能明显改善;但两两联合或单独应用一种阻断剂仅有改善心功能损伤的趋势。
     结论:
     1.在大鼠心肌缺血/再灌注过程中发生的三种程序性细胞死亡中,自噬发生得最早,随后为细胞凋亡的发生,程序性坏死发生得最晚;
     2.在大鼠心肌缺血/再灌注过程中,抑制细胞凋亡有可能促进自噬与程序性坏死的发生;抑制自噬可能促进细胞凋亡的发生;抑制程序性坏死则对另两种程序性细胞死亡形式无明显影响;
     3.三种程序性细胞死亡在大鼠心肌缺血/再灌注损伤中可能均发挥重要作用,其中细胞凋亡的作用可能最大;
     4.大鼠心肌缺血/再灌注过程中联合阻断细胞凋亡、自噬及程序性坏死三种程序性细胞死亡较单独阻断一种程序性细胞死亡可更明显地减小心梗面积并改善心功能。
Background
     The ischemic heart disease is the leading cause of death worldwide, and 3.8 million men and 3.4 million women die of the disease each year. After an acute myocardial infarction, early and successful myocardial reperfusion is the most effective strategy for reducing the size of a myocardial infarct and improving the clinical outcome. However, numerous studies have shown that reperfusion itself may enhance the injury, resulting in extension of infarct size after ischemia (ie, ischemia-reperfusion [IR] injury). Despite optimal myocardial reperfusion, the rate of death after an acute myocardial infarction approaches to 10%, and the incidence of cardiac failure after an acute myocardial infarction is almost 25% of myocardial reperfusion. So,the most difficult problem is how to gain the best efficacy from reperfusion in ischemic myocardium.
     Myocardial IR injury causes four types of cardiac dysfunction.①Myocardial stunning:the myocardium usually recovers from this reversible form of injury after several days or weeks.②No-reflow phenomenon:while the recovery of the blood perfusion of the organs, but the perfusion area organizations have emerged the phenomenon of non-reperfusion.③Reperfusion arrhythmias:refers to that the blood flow in acute ischemic myocardium can be restored once again appeared in a few seconds which may lead to a brief acceleration of idioventricular rhythm, ventricular tachycardia, atrioventricular or bundle branch block suddenly disappeared or a transient sinus bradycardia, sinoatrial block, etc. These arrhythmias, especially ventricular arrhythmias, can often lead to patient's hemodynamic change which is one of the causes of death broken and is potentially harmful, but effective treatments are available.④Lethal reperfusion injury:refers to reperfusion leading the survival of cardiac cell to death. Lethal reperfusion injury independently mediated cardiac cell death, and increased the size of myocardial infarction,which was the most serious type in myocardial ischemia/reperfusion injury, so it prompted us to study the myocardial ischemia/reperfusion injury-related cell death.
     The programmed cell death is a kind of gene regulation, highly ordered, active cell death process and thus programmed cell death is considered controllable. So, programmed cell death may be inhibited. Therefore, programmed cell death in myocardial ischemia/reperfusion injury attracts everyone's attention.
     1. Single-use blocking agents against each of the three kinds of programmed cell death can be significantly reduced infarct area. This shows that all three kinds of programmed cell death in rat myocardium/ischemia-reperfusion injury play an important role. Among them, using z-VAD-fmk can most obviously reduced infarct size of myocardial infarction, indicating that apoptosis may play the most an important role, roles of autophagy and necroptosis have no significant difference.
     2. There was no statistical difference of the myocardial infarct area between respectively combined blocking two kinds of programmed cell death and separated blocking apoptosis, but there was a trend to further reduce myocardial infarction size.
     3. Joint blocking apoptosis, autophagy and necroptosis can significantly reduce infarct size.
     4. Joint blocking apoptosis, autophagy and necroptosis can significantly improve the cardiac function in 48 hours after rat myocardium ischemia/reperfusion, but the remaining blocker group had improved cardiac function trend.
     Conclusion:
     1. The occurring of autophagy is the earliest of the three types of programmed cell death caused by rat myocardial ischemia/reperfusion injury. In the period of ischemia it increased, and further increased during reperfusion; in the early period of reperfusion, apoptosis occurred. It reached the peak at 1 hour after reperfusion, then began to decline. Necroptosis is the latest, and it happened about 12 hours after reperfusion,24 hours later reached the peak,48 hours after the reperfusion still did not return to the normal.
     2.In myocardial ischemia/reperfusion of rats, the inhibition of apoptosis may contribute to autophagy and necroptosis; inhibiting autophagy may promote apoptosis; inhibiting necroptosis might had no significant effect on the other two kinds of programmed cell death.
     3. Three kinds of programmed cell death all play important role in rat myocardium/ ischemia-reperfusion injury, and the role of apoptosis may be the most important. The roles of autophagy and necroptosis have no significant difference.
     4. Jointing blocking of apoptosis, autophagy and necroptosis can reduce infarct size and improve cardiac function in the rat myocardium/ischemia-reperfusion more effectively than the single blocking of one programmed cell death of them.
引文
1.Andrew Moran, Dong Zhao, Dongfeng Gu, et al. The future impact of population growth and aging on coronary heart disease in China:projections from the Coronary Heart Disease Policy Model-China. BMC Public Health 2008,8:394.
    2. WHO. World Health Statistic 2008.
    3. Lisheng Liu. Cardiovascular diseases in China.Biochem.cell Biol.Vol.85,2007
    4. X-H Zhang, Z L Lu, L Liu. Coronary heart disease in China. Heart 2008;94:1126-1131
    5.张海澄,郭继鸿.冠心病流行病学与一级预防.中国实用内科杂志2002年8月第22卷第8期:499-451.
    6.朱妙章.心血管病生理学与临床,高等教育出版社.2004:293-303.
    7.Kazutaka Ueda; Hiroyuki Takano; Hiroshi Hasegawa; et al. Granulocyte Colony Stimulating Factor Directly Inhibits Myocardial Ischemia-Reperfusion Injury Through Akt-Endothelial NO Synthase Pathway. Thromb. Vasc. Biol.2006; 26;e108-e113
    8. Derek M. Yellon, D. Sc., and Derek J. Hausenloy, Ph.D. N. Myocardial Reperfusion Injury. N Engl J Med 2007; 357:1121-35.
    9. Zhi-Qing Zhao and Jakob Vinten-Johansen. Postconditioning:Reduction of reperfusion-induced injury. Cardiovasc Res, May 2006; 70:200-211.
    10. P. R. HANSEN.Myocardial reperfusion injury:experimental evidence and clinical relevance. Eur. Heart J., Jun 1995; 16:734-740.
    11. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction:a quantitative review of 23 randomisedtrials. Lancet 2003;361:13-20.
    12. Derek M. Yellon, D. Sc., and Derek J. Hausenloy, Ph.D. N. Myocardial Reperfusion Injury. N Engl J Med 2007; 357:1121-35.
    13.王显红再灌注心律失常的研究进展国外医学内科学分册2004,11, (31):470-477
    14. Jaroslaw Zalewski, Anetta Undas, Jacek Godlewski et al. No-Reflow Phenomenon After Acute Myocardial Infarction Is Associated With Reduced Clot Permeability andSusceptibility to Lysis. Arterioscler Thromb Vasc Biol.2007;27:2258-2265.
    15. Kevin Kit Parker, James A. Lavelle, L. et al. Stretch-induced ventricular arrhythmias during acuteischemia and reperfusion. J Appl Physiol 97:377-383,2004.
    16. Alejandro N. Mazzadi, Xavier Andre'-Foue"t, Mechanisms leading to reversible mechanical dysfunction in severe CAD:alternatives to myocardial stunning, Am J Physiol Heart Circ Physiol 291:H2570-H2582,2006[7].
    17. G Kroemer*, L Galluzzil, P Vandenabeele et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009 January; 16(1):3-11.
    18. Richard S. Hotchkiss, M.D., Andreas Strasser, Ph.D, et al. Cell Death, n engl j med 361;16 nejm.org october 15,2009.
    19. Theresa J. Reape, Elizabeth M. Molony and Paul F. McCabe. Programmed cell death in plants:distinguishing between different modes. Journal of Experimental Botany 2008 59(3):435-444
    20. Linda E. Broker, Frank A.E. Kruyt, and Giuseppe Giaccorie. Cell Death Independent of Caspases:A Review. Clin. Cancer Res., May 2005; 11:3155-3162.
    21. Hayat Mahmud, Benjamin Dalken, and Winfried S. Wels. Induction of programmed cell death in ErbB2/HER2-expressing cancer cells by targeted delivery of apoptosis-inducing factor. Mol. Cancer Ther., Jun 2009; 8:1526-1535.
    22. Jing Yin, Josephine Howe, and Kevin SW Tan. Staurosporine-Induced Programmed Cell Death in Blastocystis Occurs Independently of Caspases and Cathepsins and is Augmented by Calpain Inhibition. Microbiology, Jan 2010; 10.1099
    23. Shibayama, and D. Guillermo Perez Ishiwara. Programmed cell death in Entamoeba histolytica induced by the aminoglycoside G418. Microbiology, Nov 2007; 153:3852-3863.
    24. Ana Rogulja-Ortmann, Karin Luer, Janina Seibert. Programmed cell death in the embryonic central nervous system of Drosophila melanogaster. Development, Jan 2007; 134:105-116
    25. Sergey Shabala. Salinity and programmed cell death:unravelling mechanisms for ion specific signaling. J. Exp. Bot., Mar 2009; 60:709-712.
    26. A. FACOETTI, E. RANZA, and R. NANO. Proliferation and Programmed Cell Death:Role of p53 Protein in High and Low Grade Astrocytoma. Anticancer Res, Jan 2008; 28:15-19.
    27. DANIEL K. GLADISH, JIPING XU, and TERUO NIKI. Apoptosis-like Programmed Cell Death Occurs in Procambium and Ground Meristem of Pea (Pisum sativum) Root Tips Exposed to Sudden Flooding. Ann. Bot., May 2006; 97:895-902.
    28. Sandrine Barbier, Laurent Chatre, Marlene Bras. et al. Caspase-independent type Ⅲ programmed cell death in chronic lymphocytic leukemia:the key role of the F-actin cytoskeleton.Haematologica, Apr 2009; 94:507-517.
    29. K Mani. Programmed cell death in cardiac myocytes:strategies to maximize post-ischemic salvage. Heart Fail Rev, Jun 2008; 13(2):193-209.
    30. T Lovekamp-Swan, M Glendenning, and DA Schreihofer. A high soy diet reduces programmed cell death and enhances bcl-xL expression in experimental stroke. Neuroscience, Sep 2007; 148(3):644-52.
    31. KA Kuenzler, LG Arthur, and MZ Schwartz. A possible mechanism for prevention of intestinal programmed cell death after ischemia-reperfusion injury by hepatocyte growth factor pretreatment. J Pediatr Surg, Dec 2002; 37(12):1696-9.
    32. JA Wallace, S Alexander, EY Estrada, C Hines. et al. Tissue inhibitor of metalloproteinase-3 is associated with neuronal death in reperfusion injury. J Cereb Blood Flow Metab, Nov 2002; 22(11):1303-10.
    33. Takahiro Noda, Ryuichi Iwakiri, Kazuma Programmed cell death induced by ischemia-reperfusion in rat intestinal mucosa. Am J Physiol Gastrointest Liver Physiol, Feb 1998; 274:270.
    34. Jennifer J. Marden, Yulong Zhang, Fredrick D. Oakley, et al.. JunD Protects the Liver from Ischemia/Reperfusion Injury by Dampening AP-1 Transcriptional Activation. J. Biol. Chem., Mar 2008; 283:6687-6695.
    35. SM Quadri, L Segall, M de Perrot,. Caspase inhibition improves ischemia-reperfusion injury after lung transplantation. Am J Transplant, Feb 2005; 5(2):292-9.
    36. R Cursio, J Gugenheim, JE Ricci,. Caspase inhibition protects from liver injury following ischemia and reperfusion in rats. Transpl Int, Jan 2000; 13 Suppl 1:S568-72.
    37. T Gori, M Lisi, and S Forconi. Ischemia and reperfusion:the endothelial perspective. A radical view. Clin Hemorheol Microcirc, Jan 2006; 35(1-2):31-4.
    38. H Zhang, Q Li, Z Li, Y Mei, and Y Guo. The protection of Bcl-2 overexpression on rat cortical neuronal injury caused by analogous ischemia/reperfusion in vitro. Neurosci Res, Oct 2008; 62(2):140-6.
    39. H Schlossberg, Y Zhang, L Dudus, and JF Engelhardt. Expression of c-fos and c-jun during hepatocellular remodeling following ischemia/reperfusion in mouse liver. H Schlossberg, Y Zhang, L Dudus, and JF Engelhardt
    40. H Itoh, M Yagi, S Fushida, et al. Activation of immediate early gene, c-fos, and c-jun in the rat small intestine after ischemia/reperfusion. Transplantation, Feb 2000; 69(4):598-604.
    41. Sun and Z-L Peng. Programmed cell death and cancer. Postgrad. Med. J., Mar 2009; 85:134-140.
    42. Marlene Bras, Victor J. Yuste, Gael Roue. Drp1 Mediates Caspase-Independent Type Ⅲ Cell Death in Normal and Leukemic Cells. Mol. Cell. Biol., Oct 2007; 27:7073-7088.
    43. Michael Lenardo.Autophagic programmed cell death by selective catalase degradation. PNAS, Mar 2006; 103:4952-4957.
    44. DE Christofferson and J Yuan. Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol, Dec 2009.
    45. Ting-Jun Fan, Li-Hui Han, Ri-Shan Cong, and Jin Liang. Caspase Family Proteases and Apoptosis. Acta Biochim Biophys Sin, Nov 2005; 37:719-727.
    46. Sharad Kumar and David L. Vaux. APOPTOSIS:A Cinderella Caspase Takes Center Stage. Science, Aug 2002; 297:1290.
    47. J Wang and MJ Lenardo. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J. Cell Sci., Mar 2000; 113:753-757.
    48. Antti Saraste and Kari Pulkki. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res, Feb 2000; 45:528-537.
    49. Armin Haunstetter and Seigo Izumo. Apoptosis:Basic Mechanisms and Implications for Cardiovascular Disease. Circ. Res., Jun 1998; 82:1111-1129.
    50. Michael Hengartner. APOPTOSIS:Death by Crowd Control. Science, Aug 1998; 281:1298-1299.
    51. S Ghavami, M Hashemi, S R Ande, et al. Apoptosis and cancer:mutations within caspase genes. J. Med. Genet., Aug 2009; 46:497-510.
    52. Steven M Harwood, Muhammad M Yaqoob, and David A Allen. Caspase and calpain function in cell death:bridging the gap between apoptosis and necrosis. Ann Clin Biochem, Nov 2005; 42:415-431.
    53. Eric C. C. Cheung and Ruth S. Slack. Emerging Role for ERK as a Key Regulator of Neuronal Apoptosis. Sci. STKE, Sep 2004; 2004:pe45.
    54. Asa B. Gustafsson and Roberta A. Gottlieb. Autophagy in Ischemic Heart Disease, Circ. Res. 2009;104;150-158.
    55. Wim Martinet and Guido R.Y. De Meyer. Autophagy in Atherosclerosis:A Cell Survival and Death Phenomenon With Therapeutic Potential. Circ. Res., Feb 2009; 104:304-317.
    56. Sophie Pattingre and Beth Levine. Bcl-2 Inhibition of Autophagy:A New Route to Cancer? Cancer Res., Mar 2006; 66:2885-2888.
    57. Sudharsan Periyasamy-Thandavan, Man Jiang, Patricia Schoenlein, and Zheng Dong. Autophagy:molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol, Aug 2009; 297:F244-F256.
    58. Noboru Mizushima. Autophagy:process and function. Genes & Dev., Nov 2007; 21:2861-2873.
    59. Takahiro Shintani and Daniel J. Klionsky.. Autophagy in Health and Disease:A Double-Edged Sword. Science, Nov 2004; 306:990-995.
    60. Tianhong Pan, Seiji Kondo, Weidong Le, and Joseph Jankovic. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain, Aug 2008; 131:1969-1978.
    61. Daniel J. Klionsky. The molecular machinery of autophagy:unanswered questions. J. Cell Sci,Jan 2005;118:7-18.
    62. Beverly A. Rothermel and Joseph A. Hill. Autophagy in Load-Induced Heart Disease. Circ. Res., Dec 2008; 103:1363-1369.
    63. Alexei Degterev, Zhihong Huang, Junying Yuan, Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury, Nature.1 (2005) 112-119.
    64. DE Christofferson and J Yuan. Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol, Dec 2009.
    65. L Galluzzi and G Kroemer. Necroptosis:a specialized pathway of programmed necrosis. Cell, Dec 2008; 135(7):1161-3.
    66. RA Gottlieb, KO Burleson, RA Kloner, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest, Oct 1994; 94(4):1621-8.
    67. Chu Chang Chua, Kao-Wei Chua, Jinping Gao. Necroptosis is involved in cardiac cell death induced by chemical ischemia. FASEB J, Mar 2008; 22:1238.24.
    68. DM Rosenbaum, A Degterev, J David, et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res, Dec 2009;.
    69. Hang Yin, Lee Chao, and Julie Chao. Kallikrein/Kinin Protects against Myocardial Apoptosis after Ischemia/Reperfusion via Akt-Glycogen Synthase Kinase-3 and Akt-Bad-14-3-3 Signaling Pathways. J. Biol. Chem., Mar 2005; 280:8022-8030.
    70. Chi-Hsiao Yeh, Yu-Min Lin, Yi-Cheng Wu, et al. Nitric oxide attenuates cardiomyocytic apoptosis via diminished mitochondrial complex I up-regulation from cardiac ischemia-reperfusion injury under cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg., Aug 2004;128:180-188.
    71. Paul W.L. Thimister, Leo Hofstra, Ing Han Liem, et al. In Vivo Detection of Cell Death in the Area at Risk in Acute Myocardial Infarction. J. Nucl. Med., Mar 2003; 44:391-396.
    72. Antti Saraste, Kari Pulkki, Markku Kallajoki, et al. Apoptosis in Human Acute Myocardial Infarction. Circulation, Jan 1997; 95:320-323.
    73. Jun Misao, Yukihiro Hayakawa, Michiya Ohno, et al. Expression of bcl-2 Protein, an Inhibitor of Apoptosis, and Bax, an Accelerator of Apoptosis, in Ventricular Myocytes of Human Hearts With Myocardial Infarction. Circulation, Oct 1996; 94:1506-1512
    74. G Olivetti, F Quaini, R Sala, Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol, Sep 1996; 28(9):2005-16.
    75. LP Zhang, HJ Ma, HM Bu, et al. Polydatin attenuates ischemia/reperfusion-induced apoptosis in myocardium of the rat. Sheng Li Xue Bao, Aug 2009; 61(4):367-72.
    76. N Maulik, T Yoshida, and DK Das. Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. Free Radic Biol Med, Mar 1998; 24(5):869-75.
    77. Z.-Q. Zhi-Qing Zhao, Cullen D. et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc Res, Jul 2003; 59:132-142.
    78. Robert M. Osipov, Cesario Bianchi, Richard T. Clements, Thrombin Fragment (TP508) Decreases Myocardial Infarction and Apoptosis After Ischemia Reperfusion Injury. Ann. Thorac. Surg., Mar 2009; 87:786-793.
    79. Francois Roubille, Stephane Combes, Juani Leal-Sanchez, et al. Myocardial Expression of a Dominant-Negative Form of Daxx Decreases Infarct Size and Attenuates Apoptosis in an In Vivo Mouse Model of Ischemia/Reperfusion Injury. Circulation, Dec 2007; 116:2709-2717.
    80. Kazuo Kato, Hang Yin, Jun Agata, et al. Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am J Physiol Heart Circ Physiol, Oct 2003; 285:H1506-H1514.
    81. Y Matsui, S Kyoi, H Takagi, et al. Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy, May 2008; 4(4): 409-15.
    82. H Takagi, Y Matsui, and J Sadoshima. The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal, Sep 2007; 9(9): 1373-81.
    83. A Hamacher-Brady, NR Brady, SE Logue, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ, Jan 2007; 14(1):146-57.
    84. J Sadoshima. The role of autophagy during ischemia/reperfusion. Autophagy, May 2008; 4(4):402-3.
    85. Patricia Boya, Rosa-Ana Gonza'lez-Polo, Noelia Casares et al. Inhibition of Macroautophagy Triggers Apoptosis. Molecular and Cellular Biology, Feb.2005, p. 1025-1040.
    86. Luigia Longo, Francesca Platini, Anna Scardino, et al. Autophagy inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma. Mol. Cancer Ther., Aug 2008; 7: 2476-2485.
    87. Kevin A Davi, Savita Bhalla, Sheila Prachand, Andrew M Evens. Inhibition of Autophagy with 3-Methyladenine Synergistically Enhances Cellular Apoptosis Induced by the Histone Deacetylase Inhibitor PCI 24781 in Non-Hodgkin's Lymphoma Cells. Blood (ASH Annual Meeting Abstracts), Nov 2008; 11.2:3625.
    88. Xiang, Ana Maria Cuervo, and Mark J. Czaja. Loss of Macroautophagy Promotes or Prevents Fibroblast Apoptosis Depending on the Death Stimulus. J. Biol. Chem., Feb 2008; 283:4766-4777.
    89. S Huang and FA Sinicrope. Celecoxib-induced apoptosis is enhanced by ABT-737 and by inhibition of autophagy in human colorectal cancer cells. Autophagy, Feb 2010; 6(2):
    90. Brian J. Altman, Jessica A. Wofford, Yuxing Zhao, Autophagy Provides Nutrients but Can Lead to Chop-dependent Induction of Bim to Sensitize Growth Factor-deprived Cells to Apoptosis. Molecular Biology of the Cell Vol.20,1180-1191, February 15,2009
    91. K Kunchithapautham and B Rohrer. Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy, Sep 2007; 3(5):433-41.
    92. Lorenzo Galluzziand Guido Kroeme. Necroptosis:A Specialized Pathway of Programmed Necrosis, Cell 135, December 26,2008.
    93. S Swerdlow, K McColl, Y Rong, Apoptosis inhibition by Bcl-2 gives way to autophagy in glucocorticoid-treated lymphocytes. Autophagy, Jul 2008; 4(5):612-20.
    94. BH Oh, S Ono, E Gilpin, and J Ross, Altered left ventricular remodeling with beta-adrenergic blockade and exercise after coronary reperfusion in rats. Circulation, Feb 1993; 87:608-616.
    95. CJ Van Noorden. The history of Z-VAD-FMK, a tool for understanding the significance of caspase inhibition. Acta Histochem, Jul 2001; 103(3):241-51.
    1. Xie, Z. and Klionsky, D.J. Autophagosome formation:core machinery and adaptations. Nat. Cell Biol.2007,9:102-1119.
    2. Levine, B. and Kroemer, G Autophagy in the pathogenesis of disease. Cell 2008,132: 27-42.
    3. Eskelinen, E-L. and Saftig, P. Autophagy:a lysosomaldegradation pathway with a central role in health and disease. Biochim. Biophys. Acta Mol. Cell Res.2008, DOI: 10.1016/j.bbamcr.
    4. Mizushima, N. et al. Autophagy fights disease through cellular self-digestion. Nature.2008, 451:1069-1075.
    5. Schmid, D. and Munz, C. Innate and adaptive immunity throughautophagy. Immunity 2007,27:11-21.
    6. Massey, A. et al. Pathophysiology of chaperone-mediatedautophagy. Int. J. Biochem. Cell Biol.2004,36:2420-2434.
    7. Qing, G. et al. Hsp90 inhibition results in autophagy-mediatedproteasome-independent degradation of IkB kinase (IKK). Cell Res.2006,16:895-901.
    8. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol.2005,169:425-434.
    9. Massey, A.C. et al.Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. U. S. A.2006,103:5805-5810.
    10. Kaushik, S. et al. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol. Biol. Cell.2008:19,2179-2192.
    11. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet.2004, 36:585-595.
    12. Sarkar, S. et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and a-synuclein. J. Biol. Chem.2007,282:5641-5652.
    13. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem.2007,282:24131-24145.
    14. Kuusisto, E. et al. Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem. Biophys. Res. Commun. 2001,280:223-228.
    15. Komatsu,M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell.2007,131:1149-1163.
    16. Rattan, S.I. Ageing-a biological perspective. Mol. Aspects Med.1995,16:443-508.
    17. Terman, A. and Brunk, U.T. Oxidative stress, accumulation of biological "garbage", and aging. Antioxid. Redox Signal.2006,8:197-204.
    18. Vijg, J. The role of DNA damage and repair in aging:new approaches to an old problem. Mech. Ageing Dev.2008,129:498-502.
    19. Harman, D. Aging:a theory based on free radical and radiation chemistry. J. Gerontol. 1956,11:298-300.
    20. Terman, A. and Brunk, U.T. Lipofuscin. Int. J. Biochem. Cell Biol.2004,36:1400-1404.
    21. Bergamini, E. Autophagy:a cell repair mechanism that retards ageing and age-associated diseases and can be intensified pharmacologically. Mol. Aspects Med.2006,27:403-410.
    22. Cuervo, A.M. Autophagy and aging:keeping that old broom working. Trends Genet.2008, 24:604-612.
    23. Vellai, T. Autophagy genes and ageing. Cell Death Differ.2009,16:94-102.
    24. Grune, T. et al. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and "aggresomes" during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol.2004,36:2519-2530.
    25. Yen, W.L. and Klionsky, D.J. How to live long and prosper:autophagy, mitochondria, and aging. Physiology (Bethesda) 2008,23:248-262.
    26. Terman, A. and Brunk, U.T. Aging as a catabolic malfunction. Int. J. Biochem. Cell Biol. 2004,36:2365-2375.
    27. Burnell, A.M. et al. Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans. Exp. Gerontol.2005,40:850-856;
    28. Braeckman, B.P. and Vanfleteren, J.R. Genetic control of longevity in C. elegans. Exp. Gerontol.2007,42:90-98.
    29. Daitoku,H. and Fukamizu, A. FOXO transcription factors in the regulatory networks of longevity. J. Biochem.2007,141:769-774.
    30. Melendez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003,301:1387-1391
    31. Hars, E.S. et al. Autophagy regulates ageing in C. elegans. Autophagy.2007,3:93-95
    32. Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet.2008,4:e24.
    33. Kang, C. et al. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev.2007,21:2161-2171
    34. Cohen, E. et al. Opposing activities protect against age-onset proteotoxicity. Science. 2006,313:1604-1610
    35. Cuervo, A.M. and Dice, J.F. Age-related decline in chaperonemediated autophagy. J. Biol. Chem.2000,275:31505-31513
    36. Zhang, C. and Cuervo, A.M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med.2008,14:959-965
    37. Kiffin, R. et al. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J. Cell Sci.2007,120:782-791
    38. Bandyopadhyay, U. et al. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol. Cell. Biol.2008,28: 5747-5763
    39. Soti, C. and Csermely, P. Aging and molecular chaperones. Exp. Gerontol.2003,38: 1037-1040
    40. Nardai, G. et al. Chaperone function and chaperone overload in the aged. A preliminary analysis. Exp. Gerontol.2002,37:1257-1262.
    41. Imai, J. et al. The molecular chaperone hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J.2003,22:3557-3567
    42. Bergamini, E. et al. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed. Pharmacother.57,203-208
    43. Murakami, S. Stress resistance in long-lived mouse models. Exp. Gerontol.2006,41: 1014-1019.
    44. Cypser, J.R. et al. Hormesis and aging in Caenorhabditis elegans. Exp. Gerontol. 2006,41:935-939
    45. Yorimitsu, T. and Klionsky, D.J. Autophagy:molecular machinery for self-eating. Cell Death Differ.2005,12:1542-1552.
    46. Pattingre, S. et al. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie.2008,90:313-323.
    47. Zhao, J. et al. FoxO3 coordinately activates protein degradation by autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab.2007,6:472-483.
    48. Xiao, G. Autophagy and NF-kB:fight for fate. Cytokine Growth Factor Rev. 2007,18:233-243.
    49. Tasdemir, E. et al. Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol.2008,10: 676-687.
    50. Lee, I.H. et al. A role for the NAD-dependent deacetylase Sirtl in the regulation of autophagy. Proc. Natl. Acad. Sci. U. S. A.2008,105:3374-3379.
    51. Arsham, A.M. and Neufeld, T.P. Thinking globally and, acting locally with TOR. Curr. Opin. Cell Biol.2006,18:589-597.
    52. Yorimitsu, T. et al. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 2006,281:30299-30304.
    53. Yorimitsu, T. and Klionsky, D.J. Eating the endoplasmic reticulum:quality control by autophagy. Trends Cell Biol.2007,17:279-285.
    54. Levine, B. et al. Bcl-2 family members. Dual regulators of apoptosis and autophagy. Autophagy.2008,4:600-606.
    55. Kondo, Y. and Kondo, S. Autophagy and cancer therapy. Autophagy.2006,2:85-90.
    56. Hartford, C.M. and Ratain, M.J. Rapamycin:something old, something new, sometimes borrowed and now renewed. Clin. Pharmacol. Ther.2007,82:381-388.
    57. Ferraro, E. and Cecconi, F. Autophagic and apoptotic response to stress signals in mammalian cells. Arch. Biochem. Biophys.2007,462:210-219.
    58. Boyault, C. et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev.2007,21:2172-2181.
    59. Djavaheri-Mergny, M. et al. NF-kB activation represses tumor necrosis factor-a-induced autophagy. J. Biol. Chem.2006,281:30373-30382.
    60. Schlottmann, S. et al. Prolonged classical NF-kB activation prevents autophagy upon E. coli stimulation in vitro:a potential resolvingmechanismof inflammation.Mediators Inflamm.2008,725854
    61. Perkins, N.D. Integrating cell-signaling pathways with NF-kB and IKK function. Nat. Rev. Mol. Cell Biol.2007,8:49-62.
    62. Dan, H.C., and Baldwin, A.S. Differential involvement of IkB kinases a and b in cytokine-and insulin-induced mammalian target of rapamycin activation determined by Akt. J. Immunol.2008,180:7582-7589.
    63. Lee, D.F. et al. IKKb suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell.2007,130:440-455.
    64. Massey, A.C. et al. Lysosomal chat maintains the balance. Autophagy.2006,2:325-327.
    65. Michan, S. and Sinclair, D. Sirtuins in mammals:insights into their biological function. Biochem.J.2007,404:1-13.
    66. Sadoul, K. et al. Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie.2008,90:306-312.
    67. Pandey, U.B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature.2007,447:859-863.
    68. Iwata, A. et al. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem.2005,280:40282-40292.
    69. Sandri, M. et al. FoxO transcription factors induce the atrophyrelated ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell.2004,117:399-412.
    70. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007,6:458-471.
    71. Feng, Z. et al. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. U. S. A.2005,102:8204-8209.
    72. Matheu, A. et al. The Arf/p53 pathway in cancer and aging. Cancer Res.2008,68: 6031-6034.
    73. Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature.2007,448:375-379.
    74. Feng, Z. et al. Declining p53 function in the aging process:a possible mechanism for the increased tumor incidence in older populations. Proc. Natl. Acad. Sci. U. S. A.2007:104, 16633-16638.
    75. Cheng, H.L. et al.Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. U. S. A.2003,100:10794-10799
    76. Bergamini, E. et al. The role of autophagy in aging:its essential part in the anti-aging mechanism of caloric restriction. Ann. N. Y. Acad. Sci.2007,1114:69-78
    77. Jia, K. and Levine, B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 2007,3:597-599.
    78. Swindell, W.R.Comparative analysis of microarray data identifies common responses to caloric restriction among mouse tissues. Mech. Ageing Dev.2008,129:138-153.
    79. Bishop, N.A. and Guarente, L. Genetic links between diet and lifespan:shared mechanisms from yeast to humans. Nat. Rev. Genet.2007,8:835-844.
    80.80 Bordone, L. et al. (SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007,6:759-767.
    81. Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008,22:1753-1757
    82. Salminen, A. et al. SIRT1 longevity factor suppresses NF-kBdriven immune responses: regulation of aging via NF-kB acetylation. Bioessays 2008,30:939-942.
    83. Salminen, A. et al. Activation of innate immunity system during aging:NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res. Rev.2008,7:83-105.
    84. Cherra, S.J. and Chu, C.T. Autophagy in neuroprotection and neurodegeneration:a question of balance. Future Neurol.2008,3:309-323.
    85. Boland, B. et al. Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease. J. Neurosci.2007,28: 6926-6937.
    86. Chen, D. and Guarente, L. SIR2:a potential target for calorie restriction mimetics. Trends Mol.Med.2007,13:64-71
    87. Arstila, A.U. and Trump, B.F. Autophagocytosis:origin of membrane and hydrolytic enzymes. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.1969,2:85-90.
    88. Salminen, A. et al. Interaction of aging-associated signaling cascades:inhibition of NF-kB signaling by longevity factors FoxOs and SIRT1. Cell. Mol. Life Sci.2008,65:1049-1058
    89. Schreck, R. et al. Nuclear factor kB:an oxidative stressresponsive factor of eukaryotic cells (a review). Free Radic. Res. Commun.1992,17:221-237.
    90. Salminen, A. et al. NEMO shuttle:a link between DNA damage and NF-kB activation in progeroid syndromes? Biochem. Biophys. Res. Commun.2008,367:715-718
    91. Blagosklonny, M.V. Aging. ROS or TOR. Cell Cycle 2008,7:3344-3354
    92. Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.2007,26:1749-1760
    93. Budanov, A.V. and Karin, M. p53 target genes Sestrinl and Sestrin2 connect genotoxic stress and mTOR signaling. Cell.2008,134:451-460
    94. Bonawitz, N.D. et al. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab.2007,5:265-277
    95. Tsang, C.K. et al. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov. Today 2003,12:112-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700