草鱼4个补体基因克隆表达和连锁及与细菌性败血症的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草鱼(Ctenopharyngodon idellus)是我国最主要淡水养殖对象,其产量一直位居我国和世界养殖鱼类第一。在养殖过程中草鱼病害频繁发生,各种传染性疾病的暴发每年都给草鱼养殖业带来了巨大的经济损失。开展草鱼免疫相关基因的功能研究,阐明其与抗病力的相关性,将为草鱼抗病分子育种提供重要的理论基础。本研究拟从克隆获得的草鱼补体Bf/C2、C6和C7基因入手,对其进行结构、连锁和组织表达分析,初步了解其生物学功能,并检测它们内部的基因多态性,进行不同基因型或单倍型与草鱼细菌性败血症的关联分析,以期筛选出有育种指导价值的优势基因型,取得的结果如下:
     1.草鱼4个补体基因的克隆与表达
     根据EST拼接成的连接群或斑马鱼的cDNA序列设计引物,从草鱼基因组中克隆到补体Bf/C2A、Bf/C2B、C6、C7基因的部分序列。采用RACE方法获得了4个补体基因的cDNA全长序列,并推导出相应的氨基酸序列,与其它物种的相同基因序列进行了比较分析。这4个基因cDNA序列已提交到GenBank数据库,登录号分别为JF47038,JF47039,HQ416903,JN655169。
     采用Real-time PCR技术检测了补体Bf/C2A、Bf/C2B、C6、C7基因在健康草鱼成体组织、诱导后不同时点组织和不同发育时期的表达情况。结果显示,补体Bf/C2A、Bf/C2B、C6基因在所检测的12个组织中都有所表达,其中肝和脾中的表达量最高,但C7只有在头肾、中肾、皮肤、脾、心脏和肠中进行了表达。经福尔马林灭活嗜水气单胞菌诱导后,Bf/C2A、Bf/C2B、C6、C7基因在所检测的组织中出现了显著上调。补体C6mRNA在未受精的卵中转录。孵化1d C6mRNA转录显著上升,到第10d又开始下降,这表明补体C6在草鱼胚胎和鱼苗早期起到免疫保护的作用。
     2.草鱼补体C6、C7基因的连锁分析
     对补体C6、C7基因在作图家系4个亲本中进行多态性位点筛选,在补体C6基因第4号外显子上获得了1个SNP位点,在补体C7基因第5号内含子上发现了1个SNP位点。将这两个位点在两个作图家系192个子代中进行了基因分型,通过连锁分析发现补体C6、C7基因都位于草鱼第3号连锁群上,而且彼此紧密连锁,分布在微卫星标记CID0050和CID0190之间。
     3.草鱼补体C6、C7基因的多态性与细菌性败血症的关联分析
     采用人工感染嗜水气单胞菌的方法,建立了草鱼易感群体(186尾)和抗病群体(191尾),用于连锁分析。使用基因组步移法获得了补体C6、C7基因的启动子序列,分别为1130bp和1107bp。使用PCR方法获得了补体C6、C7基因组DNA全长分别为9288bp和7068bp,都包括18个外显子和17个内含子。
     在草鱼C6基因中共发现了9个潜在的SNPs位点,其中编码区的1个同义突变位点,其余8个都分布在内含子上。对其中的8个位点在易感群体和抗病群体中进行了等位基因频率检测,没有发现单个SNP位点与败血症抗性有关联。连锁不平衡分析表明,其中G2638A、G2804C、A3519C、T3591C4个位点之间处于高度连锁状态(r2>80)。单倍型分析显示,共发现了13个单倍型,其中单倍型GCCC与细菌性败血症易感性显著相关(p <0.05,OR=1.45)。
     在草鱼C7基因中共发现了7个潜在的SNPs位点,其中编码区的1个同义突变位点,启动子区1个突变位点,其余5个都分布在不同内含子上。对其中的6个位点在易感群体和抗病群体中进行了等位基因频率检测,发现SNP位点C1931T与败血症抗性显著相关(p=0.045和p=0.028)。连锁不平衡分析表明,其中A-69C、T819C、A2456T3个位点之间处于高度连锁状态(r2>85)。单倍型分析显示,共发现了8个单倍型,没有发现单倍型与细菌性败血症显著相关(p>0.05)。
Grass carp is one of the most impotant fresh aquaculture fishes in China. The yield andoutput value of grass carp are ranked first one of all aquaculture fishes in China and Inthe world. Grass carp is easy to be infected by many pathogens. Various diseases cancause heavy losses in grass carp aquaculture every year. So functional studies on itsimmune factors affecting resistance to diseases were carried out to understand theirrelationship with disease resistance, then will provide the theoretical base for molecularbreeding of grass carp. In this thesis, the grass carp complement Bf/C2, C6and C7genes were cloning and characterized, and the linkage and expression were analyzed tounderstand their biological function. The polymorphisms of complement C6and C7were investigated, and genetype and haplotype were associated with resistance tohemorrhagic disease in grass carp.
     1. Molecular cloning and expression of four complement gene in grass carp
     The primers were designed according to the contigs or zebrafish cDNA sequences. Thepart of the full-length fragments of four grass carp complement genes were isolated, andthe four genes were Bf/C2A、Bf/C2B、C6、C7. RACE method was used to clone four genesin grass carp. The amino acid sequences of the four genes were deduced and comparedwith some of other species close genetically. The full-length cDNA sequences of thisfour genes were submitted to GenBank, and the accession numbers are JF47038,JF47039, HQ416903, JN655169.
     Real time PCR method was used to investigate the four grass carp genesexpression patterns in various tissues of healthy fish, at different developmental stages,after challenge with Aeromonas hydrophila bacterium. The results show that Bf/C2A,Bf/C2B, C6genes were expressed in a wide range of grass carp tissues, with the highestlevel of expression of these genes detected in the liver and spleen, but C7geneexpression was detected in the trunk kidney, liver, head kidney, skin, spleen, heart and intestine. In response to Aeromonas hydrophila injection, their expressions weresignificantly up-regulated in observed tissues. The expression level of gcC6was high atthe unfertilized egg stage. It was significantly increased at1day post-hatching, but itwas decreased at10days post-hatching. Taken together, our data provided a betterunderstanding of the physiological function of complement C6in vertebrates.
     2. Linkage analysis of complement C6and C7genes in grass carp
     Four parental individuals from two families were used to screen the polymorphisms ofcomplement C6and C7genes. A single nucleotide polymorphism loci were found in theforth exon in C6, and another single nucleotide polymorphism loci were obtained in thefifth intron. Finally these two SNPs were used for genetyping the two mapping familiescomprising192individues. The grass carp C6and C7genes were located adjacent toeach other within the chromosome3linkage group between two markers, CID0050andCID0190.
     3. The polymorphisms of complement C6and C7and their association with resistanceto bacterial hemorrhagic disease in grass carp
     After the challenge with Aeromonas hydrophila, A resource population consisting of186infected individuals and191unfected individuals was constructed. Genomicwalking method was used to obtain the promoter sequences of these two genes, and thesequence length of complement C6and C7were1130bp and1107bp, respectively. Thegenomic sequences of complement C6and C7were9288bp and7068bp, respectively,all consisting of18exons and17introns.
     Nine SNPs were identified in the genomic sequence of C6. One SNP in exon weresynonymous mutation. Eight of them were sited in introns. We selected the eight SNPsand analyzed the genotype and sllele distribution in susceptible and resistant groups.The statistical results indicated that there was lack of association between C6SNPs anddisease resistance in grass carp. The four SNPs were highly linked each other includingG2638A、G2804C、A3519C、T3591C (r2>80). There were thirteen haplotypes inresource population that generated with the four associated SNPs. haplotype GCCC wassignificantly associated with susceptability to bacterial hemorrhagic disease (p <0.05).
     Seven SNPs were identified in the genomic sequence of C7. One SNP in exon weresynonymous mutation. One SNP was found in promoter region. Five of them were sited in introns. We selected the six SNPs and analyzed the genotype and sllele distribution insusceptible and resistant groups. The statistical results indicated that C1931T was foundto be associated with disease resistance in grass carp ((p=0.045and p=0.028)). Thethree SNPs were highly linked each other including A-69C、T819C、A2456T (r2>85).There were eight haplotypes in resource population generated with the three SNPs. Nohaplotypes were strongly associated with resistance to hemorrhagic disease (p>0.05).
引文
[1] FAO yearbook. Fisheries and Aquaculture statistic.2006.
    [2]李思发.主要养殖鱼类的种质资源研究进展.水产学报,1993,17(4):344~358.
    [3]李思忠,方芳.鲢、鳙、青、草鱼地理分布的研究.动物学报,1990,36(3):244~250.
    [4] Welcomme R L. International introductions of inland aquatic species. FAOFisheries Department.1998.
    [5]李思发,周碧云,倪重匡等.长江、珠江、黑龙江鲢、鳙和草鱼原种种群形态差异.动物学报,1989,35(4):390~398.
    [6]田见龙,王东.长江野生草鱼可量性状分析.淡水渔业,1990,(2):33~38.
    [7] Ojima Y, Hayashi M, Ueno K. Cytogenetic studies in lower vertebrates. X.Karyotypes and DNA studies in15species of Japanese Cyprinidae. Jpn J Genet,1972,47(6):431~440.
    [8] Ojima Y, Ueno K, Hayashi M. A review of the chromosome numbers in fishes.Chromosome,1976,2(1):19~47.
    [9]刘凌云.草鱼染色体组型的研究.动物学报,1981,26(2):126~131.
    [10]杨慧一.草鱼和团头鲂的核型及其C带带型的研究.中国科技大学学报,1990,20(4):478~485.
    [11]杨慧一.草鱼和团头鲂染色体G带带型研究.动物学报,1991,37(4):431~437.
    [12]吴力钊,王祖熊.草鱼同工酶发育遗传学研究, Ⅰ.不同组织器官的同工酶分析.遗传学报,1987,14(4):278~286.
    [13]吴力钊,王祖熊.草鱼同工酶发育遗传学研究, Ⅱ.早期发育过程中的同工酶分析.遗传学报,1987,14(5):387~394.
    [14]姜建国,熊全沫,姚汝华.草鱼同工酶的组织分布及遗传结构分析.华南理工大学学报(自然科学版),1997,25(12):105~110.
    [15]吴力钊,王祖熊.草鱼同工酶基因座位多态性的初步研究.水生生物学报,1988,12(2):116~124.
    [16]李思发,王强,陈永乐.长江、珠江、黑龙江三水系的鲢、鳙、草鱼原种种群的生化遗传结构与变异.水产学报,1986,10(4):354~372.
    [17]吴力钊,王祖熊.长江中游草鱼天然种群的生化遗传结构及变异.遗传学报,1992,19(3):221~227.
    [18]薛国雄,刘棘,刘洁.三江水系草鱼种群RAPD分析.中国水产科学,1998,5(1):1~5。
    [19]张四明,邓怀,汪登强等.长江水系鲢和草鱼遗传结构及变异性的RAPD研究.水生生物学报,2001,25(4):324~330.
    [20]张四明,汪登强,邓怀等.长江中游水系鲢和草鱼群体mtDNA遗传变异的研究.水生生物学报,2002,26(2):142~147.
    [21]谭书贞,董仕,边春媛等.长江流域3个群体草鱼mtDNA D-loop区段的PCR—RFLP分析.南开大学学报(自然科学版),2007,40(3):106~112.
    [22]宋晓,李思发,王成辉等.草鱼中国土著群体与欧美日移居群体遗传差异的线粒体序列分析.水生生物学报,2009,33(4):709~716.
    [23]张志伟,曹哲明,杨弘等.草鱼野生和养殖群体间遗传变异的微卫星分析.动物学研究,2006,27(2):189~196.
    [24]张志伟,曹哲明,周劲松等.不同种群草鱼遗传结构的TRAP分析.农业生物技术学报,2006,14(4):517~521.
    [25] Chen Q, Wang C, Lu G, et al. Analysis of genetic variation in grass carp(Ctenopharyngodon idellus) from native and colonized regions using ISSR markers.Biochem Syst Ecol,2009,37:549-555.
    [26]廖小林,俞小牧,谭德清等.长江水系草鱼遗传多样性的微卫星DNA分析.水生生物学报,2005,29(2):113~119.
    [27] Liu F, Xia J, Bai Z, et al. High genetic diversity and substantial populationdifferentiation in grass carp (Ctenopharyngodon idella) revealed by microsatelliteanalysis. Aquaculture,2009,297:51~56.
    [28]张德春,余来宁,方耀林.草鱼自然群体和人工繁殖群体遗传多样性的研究.淡水渔业,2004,34(4):5~7.
    [29] Li J, Zhu Z, Wang G, et al. Isolation and characterization of17polymorphicmicrosatellites in grass carp. Mol Ecol Notes,2007,7(6):1357~1359.
    [30]马海涛,鲁翠云,于冬梅等.草鱼基因组中微卫星分子标记的制备及筛选.上海水产大学学报,2007,16(4):389-393.
    [31]孙效文,鲁翠云,梁利群.磁珠富集法分离草鱼微卫星分子标记.水产学报,2005,29(4):482~486.
    [32] Gregory TR. Animal genome size Database.2005.
    [33] Xia J H, Liu F, Zhu Z Y, et al. A consensus linkage map of the grass carp(Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics,2010,11:135.
    [34] Liu F, Wang D, Fu J, et al. Identification of immune-relevant genes by expressedsequence tag analysis of head kidney from grass carp (Ctenopharyngodon idella).Comp Biochem Phys D,2010,5(2):116~123.
    [35]张学俊.草鱼肠道组织cDNA文库构建及部分ESTs分析.四川:四川大学,2007.
    [36]苏建明.草鱼肠道组织消减cDNA文库的构建及免疫相关基因的克隆与表达分析.湖南:湖南农业大学,2007.
    [37]王丽坤.草鱼肝肾cDNA文库构建及部分功能基因的序列分析.江西:南昌大学,2008.
    [38]丁炜东,曹丽萍,曹哲明.草鱼种质相关SRAP及SCAR的分子标记.动物学报,2008,54(3):475~481.
    [39]徐愤.补体研究的进展.生理科学进展.1979,10(3):207~216.
    [40] Claire M H, Lambris J D. The complement system in teleosts. Fish ShellfishImmunol,2002,12:399~420.
    [41] Sakai D K. Repertoire of complement in immunological defensemechanisms of fish. Annu Rev Fish Dis,1992,233~247.
    [42] Volanakis J E. The complement system. Immunol Res,1984,3:202~216.
    [43] Dodds A W, Day A J. The phylogeny and evolution of the complementsystem. Immunol Med,1993,20:39~44.
    [44] Sakai D K. Opsonization by fish antibody and complement in the immunephagocytosis by peritoneal exudates cells isolated from salmonid fishes. J Fish Dis,1984,7:29~38.
    [45] Cooper N R. The classical complement pathway: activation and regulation of thefirst complement. Adv Immunol,1985,37:151-158.
    [46] Dempsey P W, Allison M E, Akkaraju S, et al. C3d of complement as a molecularadjuvant: bridging innate and acquired immunity. Science,1996,271:348.
    [47] Fearon D T, Locksley R M. The instructive role of innate immunity in the acquiredimmune response. Science,1996,272:50~53.
    [48] Nakao M, Osaka K, KatoY, et al. Molecular cloning of complement Clr/Cls/MASP2-like serine proteases form the common carp (Cyprinus carpio).Immunogenetics,2001,52:255~263.
    [49] Endo Y, Takahashi M, Nakao M, et al. Two linegea of mannose-binding lection2associated serine protease (MASP) in vertebrates. J Immunol,1998,161:4924~4930.
    [50] Sunyer J O, Lambris J D. Evolution and diversity of the complement system ofpoikilothemic vertebrates. Immunol Rev,1998,166:39~57.
    [51] Magnadóttir B. The spontaneous haemolytic activity of cod serum: heatinsensitivity and other characteristics. Fish Shellfish Immunol,2000,10:731~735.
    [52] Magnadóttir B, Jónsdóttir H, Helgason S, et al. Humoral immune parameters inAtlantic cod (Gadus morhua L.) Ⅰ. The effects of environment temperature. CompBiochem phys,1999,122:173~180.
    [53] Magnadóttir B, Jónsdóttir H, Helgason S, et al. Humoral immune parameters inAtlantic cod (Gadus morhua L.) Ⅱ: The effects of size and gender under differentenvironmental conditions. Comp Biochem phys,1999,122:181~188.
    [54] Magnadóttir B, Bambir S H, Pilstrêm L, et al. The susceptibility and immuneresponse of Atlantic cod (Gadus morhua L.) injected by different routes withAeromonas salmonicida ssp. achromogenes. Dis Aquat Organ,2001,11:1995~1999.
    [55] Nonaka M, Takahashi M, Sasaki M. Molecular cloning of alamprey homologue ofthe mammalian MHC class Ⅲ gene, complement factor B. J Immunol,1994,152(5):2263~2269.
    [56] Nonaka M, Fujii T, Kaidoh T, et al. Purification of a lamprey complement proteinhomologous to the third component of the mammalian complement system. JImmunl,1984,133(6):3242~3249.
    [57] Cooper N R. The classical complement pathway: activation and regulation of thefirst complement. Adv Immunol,1985,37:151~158.
    [58] Fujita T. Evolution of lectin-complement pathway and its role in innate immunity.Nature,2002,2:347~353.
    [59] Vitved L, Holmskov U, Koch C, et al. The homologue of mannose-binding lectinin the carp family Cyprinidae is expressed at high level in spleen, and the deducedprimary structure predicts affinity for galactose. Immunogenetics,2000,51(11):955~964.
    [60] Ai Q H, Mai K S, Tan B, et al. Effects of dietary vitamin C on survival, growth,and immunity of large yellow croaker, Pseudosciaena crocea. Aquaculture,2006,261:327~336.
    [61] Panigrahi A, Kiron V, Satoh S, et al. Immune modulation and expression ofcytokine genes in rainbow trout Oncorhynchus mykiss upon probiotic feeding. DevComp Immunol,2007,31:372~382.
    [62] Kumari J, Sahoo P K. Effects of cyclophosphamide on the immune system anddisease resistance of Asian catfish Clarias batrachus. Fish Shellfish Immunol,2005,19:307~316.
    [63] BarnesA C, Ellis A E. Role of capsule in serotypic differences and complementfixation by Lactococcus garvieae. Fish Shellfish Immunol,2004,16:207~214.
    [64] Lorenzen N, Olesen N J, Koch C. Immunity to VHS virus in rainbow trout.Aquaculture,1999,172:41~61.
    [65] Yano T. The nonspecific immune system: humoral defense. In: Iwama G&Nakanishi T (Eds.), The Fish Immune System: Organism, Pathogen, andEnvironment. San Diego, CA: Academic Press.1996,105~157.
    [66] Iida T, Wakabayashi H. Chemotactic and leukocytosisinducing activities of eelcomplement. Fish Pathol,1988,23:55~58.
    [67] Boshra H, Peters R, Li J, et al. Production of recombinant C5a from rainbow trout(Oncorhynchus mykiss): role in leucocytechemotaxis and respiratory burst. FishShellfish Immunol,2004,17:293~303.
    [68] Kato Y, Nakao M, Shimizu M, et al. Purification and functional assessment of C3a,C4a and C5a of the common carp (Cyprinus carpio) complement. Dev CompImmunol,2004,28:901~910.
    [69] Boshra H, Li J, Sunyer J O. Recent advances on the complement system of teleostfish. Fish Shellfish Immunol,2006,20:239~262.
    [70] Zapata A G, Chiba A, Varas A. Cells and tissues of the immune system of fish. In:Iwama G&Nakanish T (Eds.), The Fish Immune System: Organism, Pathogen, andEnvironment. San Diego, USA: Academic Press.1996,1~62.
    [71] Llanos R J, Whitacre C M, Miceli D C. Potential involvement of C3complementfactor in amphibian fertilization. Comp Biochem Physiol A,2000,127:29~38.
    [72] Kimura Y, Madhavan M, CallM K, et al. Expression of complement3andcomplement5in newt limb and lens regeneration. J Immunol,2003,170:2331~2339.
    [73] Bohana K O, Ziporen L, Donin N, et al. Cell signals transduced by complement.Mol Immunol,2004,41:583~597.
    [74] Chrast R, Verheijen M H G, Lemke G. Complement factors inadult peripheralnerve: a potential role in energy metabolism. Neurochem Int,2004,45:353~359.
    [75] Seeger A, Mayer W E, Klein J. A complement factor B-like cDNA clone from thezebrafish (Brachydanio rerio). Mol Immunol,1996,33(6):511~520.
    [76] Gongora R, Figuema F, K1ein J. Independent dup lications of Bf and C3complement genes in the Zebrafish. Scand J Immunol, l998,48:651~658.
    [77] Kuroda N, Wada H, Naruse K, et al. Molecular cloning and linkage analysis of theJapanese medaka fish complement Bf/C2gene. Immunogenetics,1996,44:459~467.
    [78] Wei W, Wu HZ, Xu HY, et al. Cloning and molecular characterization of twocomplement Bf/C2genes in large yellow croaker (Pseudosciaena crocea). FishShellfish Immunol,2009,27:285~295.
    [79] Sunyer J O, Zarkadis I, Sarrias M R, et al. Cloning, structure, and function of tworainbow trout Bf molecules. J Immunol,1998,161(8):4106~4114.
    [80] Nonaka M, Yamaguchi N, Natsuume S, et al. The complement system of rainbowtrout (Salmo gairdneri) I. Identification of the serum lytic system homologous tomammalian complement. J Immunol,1981,126:1489~1494.
    [81] Boshra H, Bosch N, Sunyer J O. Purification, generation of antibody andfunctional characterization of trout C3-1, C3-3, C3-4, C4-1, C4-2, C5, factor B andfactor D complement molecules. In proceedings of5th Nordic symposium on P29swdvollen; Norway,2001, Fish Immunology.
    [82] Nakano M, Fushitani Y, Fujiki K, et al. Two diverged complement factor B/C2-like Cdna sequences from a teleost, the common carp (Cyprinus carpio). JImmunol,1998,161(9):4811~4818.
    [83] Nakano M, Matsumoto M, Nakazawa M, et al. Diversity of complement factorB/C2in the common carp (Cyprinus carpio): three isotypes of B/C2-A expressedin different tissues. Dev Comp Immunol,2002,26(6):553~541.
    [84] Marie L, Terje K, Hani B, et al. Maternal transfer of complement componentsC3-1, C3-3, C3-4, C4, C5, C7, Bf and Df to offspring in rainbow trout(Oncorhynchus mykiss). Immunogenetics,2006,58:168~179.
    [85] Sunyer J O, Zarkadis I K, Sahu A, et al. Multiple forms of complement C3in trout,that differ in complement activators. P Nat Acad Sci USA,1996,93:8546~8551.
    [86] Gongora R, Figueroa F, Klein J. Independent duplications of Bf and C3complement genes in the zebrafish. Scand J Immunol,1998,48(6):651~658.
    [87] Nakao M, Mutsuro J, Obo R, et al. Molecular cloning and protein analysis ofdivergent forms of the complement component C3from a bony fish, the commoncarp (Cyprinus carpio): presence of variants lacking the catalytic histidine. Eur JImmunol,2000,30:858~866.
    [88]昌鸣先,聂品.草鱼补体C3基因的克隆及在感染大中华蚤草鱼个体的表达情况.自然科学进展,2004,14(8):870~881.
    [89] Lange S, Bambir S, DoddsAW, et al. The ontogeny of complement component C3in Atlantic cod (Gadus m orhua L.)-an immunohistochemical study. Fish ShellfishImmunol,2004,16:359~367.
    [90] Lange S, Slavko H B, AlisterW D, et al. Complement component C3transcriptionin Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Fish Shellfish Immunol,2006,20:285~294.
    [91] Abelseth T K, Stensvag K, Espelid S, et al. The spotted wolfish (Anarhichasminor Olafsen) complement component C3: isolation, characterization and tissuedistribution. Fish Shellfish Immunol,2003,15:13~27.
    [92] Ellingsen T, Strand C, Monsen E, et al. The ontogeny of complement componentC3in the spotted wolfish (Anarhichas minor Olafsen). Fish Shellfish Immunol,2005,18:351~358.
    [93] Franchini S, Zarkadis I K, Sfyroera G, et al. Cloning and purification of therainbow trout fifth component (C5). Dev Comp Immunol,2001,25:419~430.
    [94] Kato Y, NakaoM, Mutsuro J, et al. The complement component C5of the commoncarp (Cyprinus carpio): cDNA cloning of two distinct isotypes that differ in afunctional site. Immunogenetics,2003,54:807~815.
    [95] Nakao M, Uemura T, Yano T. Terminal components of carp complementconstituting a membrane attack complex. Mol Immunol,1996,33:933~937.
    [96] Uemura T, Yano T, Shiraishi H, et al. Purification and characterization of theeighth and ninth component of carp complement. Mol Immunol,1996,33:925~932.
    [97] Chondrou M P, Mastellos D, Zarkadis I K. cDNA cloning and phylogeneticanalysis of the six complement component in rainbow trout. Mol Immunol,2006,43:1080~1087.
    [98] Zarkadis I K, Duraj S, Chondrou M P. Molecular cloning of the seventhcomponent of complement in rainbow trout. Dev Comp Immunol,2005,29:95~102.
    [99] Papanastasiou A D, Zarkadis I K. Cloning and phylogenetic analysis of the alphasubunit of the eighth complement component (C8) in rainbow trout. Mol Immunol,2006,43:2188~2194.
    [100] Kazantzi A, Sfyroera G, Holland M C, et al. Molecular cloning of the betasubunit of complement component eight of rainbow trout. Dev Comp Immunol,2003,27(3):167~174.
    [101] Katagiri T, Hirono I, Aoki T. Molecular analysis of complement component C8beta and C9cDNAs of Japanese flounder Paralichthys olivaceus. Immunogenetics,1999,50:43~48.
    [102] Li L, Chang M X, Nie P. Molecular cloning, promoter analysis and inducedexpression of the complement component C9gene in the grass carpCtenopharyngodon idella. Vet Immunol Immunop,2007,118:270~282.
    [103] Stanley K K, Herz J. Topological mapping of complement component C9byrecombinant DNA techniques suggests a novel mechanism for its insertion intotarget membranes. The EMBO Journal,1987,6:1951~1957.
    [104] Hobart M J, Fernie B A, Discipio R G. Structure of the human C7gene andcomparison with C6,C8A, C8B, and C9genes. J Immunol,1995,154:5188~5194.
    [105] Volanakis J E, Yamauchi Y, Ishii Y. Structure, polymorphism, and regulation ofexpression of the C2gene. In: Cruse JN, Lewis JR, editers. Complement today.karger, Basel,1993.
    [106] Trowsdale J. Genomic structure and function in the MHC. Trends Genet,1993,9:119~122.
    [107] Bendtsen J D, Nielsen H, Heijne G, et al. Improved prediction of signalpeptides: SignalP3.0. J Mol Biol,2004,340:783~795.
    [108] Schultz J, Milpetz F, Bork P, et al. SMART, a simple modular architectureresearch tool: identification of signaling domains. Proc Natl Acad Sci USA,1998,95:5857~5864.
    [109] Finn R D, Mistry J, Schuster-Bockler B, et al. Pfam: clans, web tools andservices. Nucleic Acids Res,2006,34:247~251.
    [110] Hulo N, Bairoch A, Bulliard V, et al. The PROSITE database. Nucleic AcidsRes,2006,34:227~230.
    [111] Jeanmougin F, Thompson J D, Gouy M, et al. Multiple sequence alignmentwith Clustal X. Trends Biochem Sci,1998,23:403~405.
    [112] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionarygenetics analysis using maximum likelihood, evolutionary distance, and maximumparsimony methods. Mol Biol Evol,2011,28:2731~2739.
    [113] Proudfoot N J, Brownlee G G.3' non-coding region sequences in eukaryoticmessenger RNA. Nature,1976,263(5574):211~214.
    [114] Oglesby T J, Accavitti M A, Volanakis J E. Evidence for a C4b binding site onthe C2b domain of C2. J Immunol,1988,141:926~931.
    [115] Hourcade D E, Kim S, Matsumoto M, et al. Human complement factor B:cDNA cloning, nucleotide sequencing, phenotype conversion by site-directedmutagenetis and expression. Mol Immunol,1993,30:1587~1592.
    [116] Reid K B, Day A J. Structure-function relationships of the complementcomponents. Immunol Today,1989,10:177~180.
    [117] Laufer J, Katz Y, Passwell J H. Extrahepatic synthesis of complement proteinsin inflammation. Mol Immunol,2001,38:221~229.
    [118] Okuda T. Murine polymorphonuclear leukocytes synthesize and secrete thethird component and factor B of complement. Int Immunol,1991,3:293~296.
    [119] Zhou ZC, Liu H, Liu SK, et al. Alternative complement pathway of channelcatfish (Ictalurus punctatus): Molecular characterization, mapping and expressionanalysis of factors Bf/C2and Df. Fish Shellfish Immunol,2012,32:186~195.
    [120] Hobart M. The evolution of the terminal complement genes: ancient andmodern. Exp Clin Immunogenet,1998,15:235~243.
    [121] Discipio R G, Hugli T. The molecular architecture of human complmentcomponent C6. J Biol Chem,1989,264:16197~16206.
    [122] Kimura A, Nonaka M. Molecular cloning of the terminal complementcomponents C6and C8beta of cartilaginous fish. Fish Shellfish Immunol,2009,27:768~772.
    [123] Mikrou A, Zarkadis I K. Cloning of the sixth complement component andspatial and temporal expression profile of MAC structural and regulatory genes inchicken. Dev Comp Immunol,2010,34:485~490.
    [124] DiScipio R G, Linton S M, Rushmere N K. Function of the factor I modules(FIMS) of human complement component C6. J Biol Chem,1999,274:31811~31818.
    [125] Thai C T, Ogata R T. Complement components C5and C7: recombinant factorI modules of C7bind to the C345C domain of C5. J Immunol,2004,173:4547~4552.
    [126] Suzuki N M, Satch N, Nonaka M. C6-like and C3-like molecules from theCephalochordate amphioxus, suggest a cytolytic complement system ininvertebrates. J Mol Evol,2000,54:671~679.
    [127] Witzel-Schlomp K, Rittner C, Schneider P M. The human complement C9gene:structural analysis of the5' gene region and genetic polymorphism studies. Eur JImmunogenet,2001,28:515~522.
    [128] Lechniak D, Pers-Kamczyc E, Pawlak P. Timing of the first zygotic cleavage asa marker of developmental potential of mammalian embryos. Reprod Biol,2008,8:23~42.
    [129] Zhang J, Bai S, Tanase C, et al. The expression of tissue inhibitor ofmetalloproteinase2(TIMP-2) is required for normal development of zebrafishembryos. Dev Genes Evol,2003,213:382~389.
    [130] Liu F, Li J L, Yue G H, et al. Molecular cloning and expression analysis of theliver-expressed antimicrobial peptide2(LEAP-2) gene in grass carp. Vet ImmunolImmunopathol,2010,133:133~143.
    [131] Bossi F, Rizzi L, Bulla R, et al. C7is expressed on endothelial cells as a trapfor the assembling terminal complement complex and may exert anti-inflammatoryfunction. Blood,2009,113(15):3640~3648.
    [132] Wurzner R, Joysey V C, Lachmann P J. Complement component C7.Assessment of in vivo synthesis after liver transplantation reveals that hepatocytesdo not synthesize the majority of human C7. J Immunol,1994,152(9):4624~4629.
    [133] Discipio R G, Gagnon J. Characterization of human complement componentsC6and C7. Mol Immunol,1982,19(11):1425~1431.
    [134] Agah A, Montalto M C, Kiesecker C L, et al. Isolation, characterization, andcloning of porcine complement component C7. J Immunol,2000,165(2):1059~1065.
    [135] Chang M X, Nie P, Liu G Y, et al. Identification of immune genes in grass carpCtenopharyngodon idella in response to infection of the parasitic copepodSinergasilus major. Parasitol Res,2005,96(4):224~229.
    [136] Star B, Nederbragt AJ, Jentoft S, et al. The genome sequence of Atlantic codreveals a unique immune system. Nature,2011,477(7363):207-210.
    [137] Timmerhaus G, Krasnov A, Nilsen P, et al. Transcriptome profiling of immuneresponses to cardiomyopathy syndrome (CMS) in Atlantic salmon. BMC Genomics,2011,12:459~475.
    [138] Ravi V, Venkatesh B. Rapidly evolving fish genomes and teleost diversity. CurrOpin Genet Dev,2008,18(6):544~550.
    [139] Ewart K V, Belanger J C, Williams J, et al. Identification of genes differentiallyexpressed in Atlantic salmon (Salmo salar) in response to infection by Aeromonassalmonicida using cDNA microarray technology. Dev Comp Immunol,2005,29(4):333~347.
    [140] Sarma J V, Ward P A. The complement system. Cell Tissue Res,2011,343(1):227~235.
    [141] DiScipio R G. Formation and structure of the C5b-7complex of the lyticpathway of complement. J Biol Chem,1992,267(24):17087~17094.
    [142] Coto E, Martinez-Naves E, Dominguez O, et al. DNA polymorphisms andlinkage relationship of the human complement componen t C6, C7, and C9genes.Immunogenetics,1999,33(3):184~187.
    [143] Xia C, Ma Z H, Rahman M H, et al. PCR cloning and identification of thebeta-haemolysin gene of Aeromonas hydrophila from freshwater fishes in China.Aquaculture,2004,229:45~53.
    [144] Mahapatra K D, Gjerde B, Sahoo P, et al. Genetic variations in survival of rohucarp (Labeo rohita, Hamilton) after Aeromonas hydrophila infection in challengetests. Aquaculture,2008,279:29~34.
    [145] Odegard J, Olesen I, Dixon P, et al. Genetic analysis of common carp(Cyprinus carpio) strains. II: Resistance to koi herpesvirus and Aeromonashydrophila and relationship with pond survival. Aquaculture,2010,304:7~13.
    [146] Frazer K A, Ballinger D G, Cox D R, et al. A second generation humanhaplotype map of over3.1million SNPs. Nature,2007,449(7164):851~861.
    [147] Wang J, Wang W, Li R, et al. The diploid genome sequence of an Asianindividual. Nature,2008,456(7218):60~65.
    [148] Ganal M W, Altmann T, Roder M S. SNP identification in crop plants. CurrOpin Plant Bio,2009,12(2):211~217.
    [149] Barrett J C, Fry B, Maller J, et al. Haploview: analysis and visualization of LDand haplotype maps. Bioinformatics,2005,21:263~265.
    [150] Stephens M, Smith N J, Donnelly P. A new statistical method for haplotypereconstruction from population data. Am J Hum Genet,2001,68:978~989.
    [151] Breathnach R, Benoist C, O'Hare K, et al. Ovalbumin gene: evidence for aleader sequence in mRNA and DNA sequences at the exon-intron boundaries. ProcNatl Acad Sci,1978,75:4853~4857.
    [152] Hobart M J, Fernie B, Discipio R G. Structure of the human C6gene.Biochemistry,1993,32:6198~6205.
    [153] Maillard J C, Berthier D, Chantal I, et al. Selection assisted by a BoLA-DR/DQhaplotype against susceptibility to bovine dermatophilosis. Genet Sel Evol,2003,35:5193~5200.
    [154] Masoudi A A, Uchida K, Yokouchi K, et al. Marker-assisted selection forforelimb-girdle muscular anomaly of Japanese Black cattle. Animal Sci J,2007,78:672~675.
    [155] Jackson A N, Mclure C A, Dawkins R L, et al. Mannose binding lectin (MBL)copy number polymorphism in Zebrafish (D. rerio) and identification of haplotypesresistant to L. anguillarum. Immunogenetics,2007,59:861~872.
    [156] Rakus K L, Wiegertijes G F, Adamek M, et al. Resistance to common carp(Cyprinus carpio L) to Cyprinid herpesuvirus-3is influenced by majorhistocompatibility class II B gene polymorphism. Fish Shellfish Immunol,2009,26:737~743.
    [157] Swiderek W P, Bhide M R, Gruszczynska J, et al. Toll-like receptor genepolymorphism and its relationship with somatic cell sheep. Folia Microbiol,2006,51:647~652.
    [158] Nakamura S, Ooue O, Akiyama K, et al. Genetic polymorphism of complementC6and haplotype analysis of C6and C7in Japanese population. Hum Genet,1984,68:138~141.
    [159] Pasaje C F, Park B, Cheong H S, et al. Association analysis of C6variationsand aspirin hypersensitivity in Korean asthmatic patients. Hum Immunol,2012,72:973~978.
    [160] Nishimukai H, Nishimura K, Orimoto C, et al. Single nucleotidepolymorphisms in the human complement C6and C7genes. Legal Medicine,2003,5:198~200.
    [161] Satake H, Sasaki N. Comparative overview of roll-like receptors in loweranimals. Zool Sci,2010,27:154~161.
    [162] Sun T, Gao Y, Tan W, et al. A six-nucleotide insertion-deletion polymorphismin the CASP8promoter is associated with susceptibility to multiple cancers. NatGenet,2007,39:605~613.
    [163] Goto Y, Yue L, Yokoi A, et al. A novel single-nucleotide polymorphism in the3’-untranslated region of the human dihydrofolate reductase gene with enhancedexpression. Clin Cancer Res,2001,7:1952~1956.
    [164] Nabors L B, Gillespie G Y, Harkins L, et al. a RNA stability factor, is expressedin malignant brain tumors and binds to adenine-and uridine-rich elements withinthe3’ untranslated regins of cytokine and angiogenic factor mRNAs. Cancer Res,2001,61:2154~2161.
    [165] Hobart M J, Fernie B A, Discipio R G. Structure of the human C7gene andcomparison with the C6, C8A, C8B, and C9genes. J Immunol,154:5188~5194.
    [166] Kallio S P, Jakkula E, Purcell S, et al. Use of a genetic isolated to identify raredisease variants: C7on5p associated with MS. Hum Mol Genet,2009,18(9):1670~1683.
    [167] Barroso S, Lopez-Trascasa M, Merino D, et al. C7deficiency andMeningococcal infection susceptibility in two Spanish families. Clin Immunol,2010,72:38~43.
    [168] Kimchi-Sarfaty C, Oh J M, Kim L W, et al. A―silent‖polymorphism in theMDR1gene changes substrate specificity. Science,2007,315:525~528.
    [169] Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from internationalDNA sequence databases: status for the year2000. Nucleic Acids Res,2000,28:292.
    [170] Burgner D, Levin M. Genetic susceptibility to infectious disease: big isbeautiful, but will bigger be even better. Lancet infect Dis,2006,6(10):653~663.
    [171] Choi E H, Zimmerman P A, Foster C B, et al. Genetic polymorphisms inmolecules of innate immunity and susceptibility to infection with Wuchereriabancrofti in South India. Genes Immun,2001,2(5):248~253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700