近日节律基因per1和per2的非生物钟效应的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     近日节律基因不但能通过自身表达和调控产生自激振荡而产生生物节律,同时还参与其他方面的调控。研究发现mPer1表达变化与小鼠的药物依赖存在明显的相关性,mPer2与肿瘤的发生发展密切相关,因此有必要对这两个基因进行直接深入的研究。通过调节节律基因减轻动物对毒品的依赖,增加节律基因在肿瘤细胞中的表达抑制肿瘤细胞的生长,研究近日节律基因在生物节律振荡以外的功能,研究近日节律基因信号传出的通路、机制。研究节律基因Period1在药物精神依赖形成中的作用,寻求药物成瘾的基因治疗方法。研究节律基因Period2对肿瘤细胞的生长抑制及诱导分化凋亡的作用。
     方法与结果
     1、mPer1与药物依赖关系及其基因治疗研究
     方法 设计以节律基因Period1转录产物mRNA为切割靶点的核酶per1RZ,构建以真核表达质粒pcDNA 3.1为基础的核酶per1RZ表达质粒pcDNA 3.1—per1RZ。体外转录切割反应证实质粒pcDNA 3.1—per1RZ的转录产物核酶per1RZ具有切割Period1转录产物mRNA的能力。建立动物精神依赖模型,脑室注射pcDNA 3.1—per1RZ,研究核酶per1RZ阻断节律基因Period1表达对BALB/C小鼠精神依赖形成的影响。
ObjectiveInvestigate the signal transmission way and new function of circadian gene by experiments that interfering the circadian gene expression to attenuate animal's drug dependence and raise the circadian gene product level to suppress tumor growth. Investigate the role of circadian gene Period1 on drug reward to find a gene therapy method to drug addiction. Investigate the role of circadian gene Period2 on tumor proliferation and apoptosis.Method and Result1、 Research of relationship between mper1 gene and drug dependenceMethod 1、. Plasmid pcDNA 3.1-per1RZ contains coding sequence of ribozyme per1RZ, a hammerhead ribozyme that can selectively cleave the Period1 mRNA, based on eukaryotic expression vector pcDNA 3.1 was constructed. In vitro cleavage experiment prove the target cleave Period1 mRNA ability of per1RZ. Conditional place preference(CPP) paradigm used to investigate the effect of Intracerebroventricular (ICV) injection of pcDNA 3.1-per1RZ on drug reward in mice.Result Quantitative analysis of in vitro cleavage experiment shows the efficacy of ribozyme per1RZ; about 60% of the Period1 mRNA was cleaved by ribozyme per1RZ. CPP test display the block of drug reward in
    pcDNA 3.1-per1RZ ICV injection group. Period1 expression in brain was attenuated of pcDNA 3.1—per1RZ ICV injection group demonstrated by western blot.2、 Research of relationship between mper2 gene and tumor developmentMethod Transfect the eukaryotic mPeriod2 expression vector (pcDNA 3.1 -mPer2) based on pcDNA 3.1 into the in vivo cultured Lewis tumor cell by liposome method. Immunohistochemistry and flowcytometry were used to detect the expression of mPeriod2 in transfected Lewis tumor cell. Flowcytometry was used to examine the proliferation and apoptosis of Lewis tumor cell.Result Expression of PERIOD2 protein in pcDNA 3.1-mper2 transfected Lewis tumor cell was proved by immunohistochemistry and flowcytometry. Flowcytometry results of mPeriod2 expression Lewis tumor cell show less proliferation and high rate of apoptosis.ConclusionInterfere the Period1 expression in brain could attenuate the psychological dependence of drug in mammals. Period2 expression could suppress the proliferation of tumor cell and increase the apoptosis.
引文
[1].金戈.生物节律的分子生物学研究进展.国外医学遗传学分册.1999,22(4):194-198
    [2].翟启慧.昆虫分子生物学的一些研究进展:生物钟的基因.昆虫学报.1996,39(3) 321-329
    [3] D. Klein, R. Y. Moore, S. M. Reppert, Suprachiasmatic Nucleus: The Mind's Clock, Oxford University Press, New York, 1991, 50-87.
    [4] R. Y. Moore, R. Silver, Suprachiasmatic nucleus organization, Chronobiol. Int. 1998; 15: 475-487.
    [5] E. Filipski, V. M. King, X. Li, T. G. Granda, M. C. Mormont, X. Liu, B. Claustrat, M. H. Hastings, F. Levi, Host circadian clock as a control point in tumor progression, J. Natl. Cancer Inst. 2002; 94: 690-697.
    [6] M. R. Ralph, R. G. Foster, F. C. Davis, M. Menaker, Transplanted suprachiasmatic nucleus determines circadian Period, Science 1990; 247: 975-978.
    [7] R. Refinetti, C. M. Kaufman, M. Menaker, Complete suprach-iasmatic lesions eliminate circadian rhythmicity of body temPerature and locomotor activity in golden hamsters, J. Comp. Physiol. 1994; 175: 223-232.
    [8] R. Silver, J. LeSauter, P. A. Tresco, M. N. Lehman, A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms, Nature 1996; 382: 810-813.
    [9] J. C. Dunlap, Molecular bases for circadian clocks, Cell 1999;96 :271-290.
    [10] S.M. Reppert, D.R. Weaver, Molecular analysis of mammalian circadian rhythms, Annu. Rev. Physiol. 2001 ;63 : 647-676.
    [11] M.W. Young, S.A. Kay, Time zones: a comparative genetics of circadian clocks, Nat. Rev. Genet. 2001 ;2 : 702-715.
    [12] Bell PD. Understanding circadian rhythmicity in Neurispora crassa:from behavior to genes and back again[J]. Fung Genet Biol,2000,29(1):1-18
    [13] Badiu C. Genetic clock of biologic rhythms. J Cell Mol Med. 2003;7(4):408-16
    [14] Kaneko M, Helfrich-Forster C, Hall J C. Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J Neurosci, 1997,17(17):6745-6760
    [15] King Dp, Takahashi JS. Molecular genetics of circadian rhythms in mammalian [J]. Annu Rev Neurosic, 2000;23:713-742
    [16] Gekakis N, Staknis D, Nguyen HB ,et al. Role of the clock protein in the mammalian circadian mechanism [J].Science, 1998;280 (5369):1564-1569
    [17] Vitaterna MH, King Dp, Chang AM,et al. Mutagenesis and mapping of a mouse gene, clock,essential for circadian behavior[J].Science, 1994;264(5159):719-725
    [18] Shearman LP, Sriram S, Weaver DR,et al.Interacting molecular loops
     in the Mammalian circadian clock[J]. Science, 2000;288 (5468):1013-1019
    [19] Hastings MH, Field MD, Maywood ES,et al. Differential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: new insights into a core clock mechanism [J].J Neurosci Online,1999;19(12):RCll
    [20] Hida A, Hirose M, Koike N,et al.The human and mouse periodl genes: fine well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription [J]. Genomics, 2000; 65(3): 224-233
    [21] Kriegsfeld LJ, Demas GE, Lee Se Jr, et al. Circadian analysis of male mice lacking the gene for neuronal nitric oxide synthase (nNos-1-)[J]. J Biol Rhythms, 1999; 14(1): 20-27
    [22] Takahashi J S. Molecular neurobiology and genetics of circadian rhythms in mammals [J]. Annu Rev Neurosci, 1995; 18: 531-553
    [23] Allada R, White N E, Venus S W, et al. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless [J]. Cell, 1998; 93(5): 791-804
    [24] Oishi K, Fukui H, Ishida H. Rhythmic expression of BMALI mRNA is altered in clock mutant mice: differential regulation in the suprachiasmatic nucleus and peripheral tissues [J]. Biochem Biophys Res Comman, 2000; 268(1): 164-171
    [25] Kume K, Zylka MJ, Sriram S, et al. mCRY 1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop [J].Cell, 1999; 98(2):193-205NA
    [26] Martin Reick, Joseph A.Garcia, Carol Dudley,Steven L.McKnight
     NPAS2:An Analog or Clock Operative in the Mammalian Forebrain Science ,2001 ; 293: 20
    [27] Harmer SL, Panda S, Kay SA. Molecular bases of circadian rhythms. Annu Rev Cell Dev Biol. 2001; 17:215-53.
    [28] Lee K, Loros JJ, Dunlap JC.Interconnected feedback loops in the Neurospora circadian system. Science 2000; 289:107-10
    [29] Glossop NR,Lyons LC,Hardin PE. Interlocked feedback loops within the Drosophila circadian oscillator. Science 1999; 286:766-768
    [30] E .A. Griffin Jr., D. Staknis, C.J. Weitz, Light-independent role of CRY1 and CRY2 in the mammalian circadian clock, Science 1999; 286: 768-771.
    [31] K. Kume, M.J. Zylka, S. Sriram, L.P. Shearman, D.R. Weaver, X. Jin, E.S. Maywood, M.H. Hastings, S.M. RepPert, mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop, Cell 1999; 98: 193-205.
    [32] Darlington, T. K.; Wager-Smith, K.; Ceriani, M. F.; Staknis, D.; Gekakis, N.; Steeves, T. D. L.; Weitz, C. J.; Takahashi, J. S.; Kay, S. A.: Closing the circadian loop: CLOCK-induced transcription of its own inhibitors Per and tim. Science1998; 280: 1599-1603,.
    [33] H. Onishi, S.Yamaguchi, K.Yagita, Y. Ishida, X. Dong, H. Kimura, Z. Jing, H. Ohara, H. Okamura, Rev-erbalpha gene expression in the mouse brain with special emphasis on its circadian profiles in the suprachiasmatic nucleus, J. Neurosci. Res. 2002; 68: 551-557.
    [34] N. Preitner, F. Damiola, L. Lopez-Molina, J. Zakany, D. Duboule, U.
     Albrecht, U. Schibler, The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator, Cell 2002; 110: 251-260.
    [35] H .R. Ueda, W. Chen, A. Adachi, H. Wakamatsu, S. Hayashi, T. Takasugi, M. Nagano, K. Nakahama, Y. Suzuki, S. Sugano, M.Iino, Y. Shigeyoshi, S. Hashimoto, A transcription factor response element for gene expression during circadian night, Nature 2002;418: 534-539.
    [36] G. Tosini, M. Menaker, Circadian rhythms in cultured mammalian retina, Science 1996; 272: 419-421.
    [37] M J. Zylka, L.P. Shearman, D.R. Weaver, S.M. RepPert, Three Period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain, Neuron 1998; 20: 1103-1110.
    [38] A. Balsalobre, S.A. Brown, L. Marcacci, F. Tranche, C. Kellendonk, H.M. Reichardt, G. Schutz, U. Schibler, Resetting of circadian time in Peripheral tissues by glucocorticoid signaling, Science 2000; 289: 2344-2347.
    [39] M .P. Pando, D. Morse, N. Cermakian, P. Sassone-Corsi, Phenotypic rescue of a Peripheral clock genetic defect via SCN hierarchical dominance, Cell 2002; 110: 107-117.
    [40] K. Sakamoto, T. Nagase, H. Fukui, K. Horikawa, T. Okada, H. Tanaka, K. Sato, Y. Miyake, O. Ohara, K. Kako, N. Ishida, Multitissue circadian expression of rat Period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain, J. Biol. Chem. 1998; 273: 27039-27042.
    [41] F. Damiola, N. Le Minh, N. Preitner, B. Kornmann, F. Fleury-Olela, U. Schibler, Restricted feeding uncouples circadian oscillators in Peripheral tissues from the central pacemaker in the suprachiasmatic nucleus, Genes Dev. 2000; 14: 2950-2961.
    [42] Panda, S. Coordinated transcriptionof key pathways in the mouse by the circadianclock. Cell 2002; 109: 307-320
    [43] A. Hida, N. Koike, M. Hirose, M. Hattori, Y. Sakaki, H. Tei, The human and mouse Period 1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPerl transcription, Genomics 2000; 65: 224-233.
    [44] S. Kawara, R. Mydlarski, A.J. Mamelak, I. Freed, B. Wang, H. Watanabe, G. Shivji, S.K. Tavadia, H. Suzuki, G.A. Bjarnason, R.C Jordan, D.N. Sauder, Low-dose ultraviolet B rays alter the mRNA expression of the circadian clock genes in cultured human keratino cytes, J. Invest. Dermatol. 2002; 119: 1220-1223.
    [45] T .D. Steeves, D.P. King, Y. Zhao, A.M. Sangoram, F. Du, A.M. Bowcock, R.Y. Moore, J.S. Takahashi, Molecular cloning an characterization of the human CLOCK gene: expression in suprachiasmatic nuclei, Genomics 1999; 57: 189-200.
    [46] S .B. Zanello, D.M. Jackson, M.F. Holick, Expression of the circadian clock genes clock and Period 1 in human skin, J. Invest.Dermatol. 2000; 115:757-760.
    [47] Andretic R, Chaney S, Hirsh J. Requirement of circadian genes for
     cocaine sensitization in Drosophila. Science. 1999; 13; 285(5430): 1066-8.
    [48] Laurence Canaple, Tomoko Kakizawa, Vincent Laudet. The days and nights of cancer cells. Cancer Research. 2003; 63: 7545-7552.
    [49] Filipski, E. et al. Host circadian clock as a control point in tumour progression. J. Natl Cancer Inst 2002; 94: 690-697.
    [50] Hansen, J. Increased breast cancer risk among women who work predominantly at night. Epidemiology. 2001 12: 74-77.
    [51] Davis, S., Mirick, D.K., Stevens, R.G. Night shift work, light at night, and risk of breast cancer. J. Natl. Cancer Inst. 2001; 93 (20): 1557-1562.
    [52] Schernhammer, E.S., Laden, F., Speizer, F.E., Willett, W.C., Hunter, D.J., Kawachi, I., Colditz, G.A. Rotating night shifts and risk of breast cancer in women participating in the nurses- health study. J. Natl. Cancer Inst. 2001; 93 (20): 1563-1568.
    [53] Rafneeon, V., Tulinius, H., Jonasson, J. G. & Hrafnkelsson, J. Risk of breast cancer in female flight attendants: a population-based study (Iceland). Cancer Causes Control. 2001; 12: 95-101.
    [54] Anderson L. E., Morris J. E., Sasser L. B., Stevens R. G Effect of constant light on DMBA mammary tumorigenesis in rats. Cancer Lett. 2000; 148: 121-126.
    [55] Hrushesky, W.J. Tumor chronobiology. J. Controlled Release. 2001; 74: 27-30.
    [56] Levi, F. From circadian rhythms to cancer chronotherapeutics. Chronobiol. Int. 2002; 19: 1-19.
    [57] Yong Zhu, Heather N. Brown, Yawei Zhang, Richard G. Stevens, and Tongzhang Zheng. Period3 structural variation: a circadian biomarker associated with breast cancer in young women. Cancer Epidemiol Biomarkers Prev. 2005;14(1): 268-270.
    [58] Penas, E. M. M.; Cools, J.; Algenstaedt, P.; Hinz, K.; Seeger, D.; Schafhausen, P.; Schilling, G.; Marynen, P.; Hossfeld, D. K.; Dierlamm, J. A novel cryptic translocation in a secondary acute myeloid leukemia results in a fusion of the ETV6 gene and the antisense strand of the PER1 gene. Genes Chromosomes Cancer 2003; 37: 79-83.
    [59] Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature. 1999; 400(6740): 169-73.
    [60] Fu L, Pelicano H, Liu J, et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002; 111(1): 41-50.
    [61] Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell. 2001; 105(5):683-94.
    [62] Zhu H, Nowrousian M, Kupfer D, Colot HV, Berrocal-Tito G, Lai H, Bell-Pedersen D, Roe BA, Loros JJ, Dunlap JC. Analysis of expressed sequence tags from two starvation, time-of-day-specific libraries of Neurospora crassa reveals novel clock-controlled genes. Genetics. 2001;157(3):1057-65.
    [63] Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor.
    [63] Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer. 2003; 3: 350-61.
    [64] King DP, Takahashi JS. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci. 2000; 23: 713-42.
    [65] Sancar A. Regulation of the mammalian circadian clock by cryptochrome. J Biol Chem. 2004: 34079-82.
    [66] 杨国栋,周文华.药物依赖研究的最新进展——记58届全美药物依赖年会.中国药物滥用防治杂志,3:3-6,1997
    [67] Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci. 2001; 2(10): 695-703.
    [68] Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci. 2001; 2(2): 119-28.
    [69] Nestler EJ, Alreja M, Aghajanian GK. Molecular and cellular mechanisms of opiate action: studies in the rat locus coeruleus. Brain Res Bull. 1994; 35(5-6): 521-8.
    [70] Benham F, Hart K, Crolla J, Bobrow M, Francavilla M, Goodfellow PN. A method for generating hybrids containing nonselected fragments of human chromosomes. Genomics. 1989; 4(4): 509-17.
    [71] Carmi N, Balkhi SR, Breaker RR. Cleaving DNA with DNA. Proc Natl Acad Sci U S A. 1998; 95(5): 2233-7.
    [72] Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997; 94(9): 4262-6.
    [73] Milligan JF, Matteucci MD, Martin JC. Current concepts in antisense drug design.J Med Chem. 1993;36(14): 1923-37.
    [74] Sun LQ, Cairns MJ, Saravolac EG, Baker A, Gerlach WL. Catalytic nucleic acids: from lab to applications. Pharmacol Rev. 2000; 52(3):325-47.
    [75] Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993; 261(5124):1004-12.
    [76] Birikh KR, Heaton PA, Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997 ;245(1):1-16.
    [77] Doherty EA, Doudna JA. Ribozyme structures and mechanisms. Annu Rev Biochem. 2000; 69:597-615.
    [78] Burke JM. Hairpin ribozyme: current status and future prospects. Biochem Soc Trans. 1996; 24(3): 608-15.
    [79] Suzuki T, Funada M, Narita M, Misawa M, Nagase, Suzuki H Morphine-induced place preference in the CXBK mouse: characteristics of μ-opioid receptor subtypes. Brain Res, 1993; 602:45-52.
    [80] Mistry AM, Swick AG, Romsos DR. Leptin rapidly lowers food intake and elevates metabolic rates in lean and ob/ob mice. J Nutr, 1997; 127:2065-2072.
    [81] Hastings MH., Field MD., Maywood ES Differential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: new insights into a core clock mechanism. J. Neurosci. 1999; 19, RC11.
    [82] Lee C, Bae K, & Edery I. The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the
     PER-TIM complex. Neuron 1998; 21:857-867.
    [83] Tzschentke TM Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 1998; 56:613-672.
    [84] WANG Zheng-rong, WANG Ling, WAN Chao-min. Circadian Rhythm of Gene Expression of Myocardial Contractile Protein, Left Venricular Pressure and Contractility. Space Medicine & Medical Engineering 1999; 12(6): 1-4
    [85] Wager-Smith K, Kay SA. Circadian rhythm genetics: from flies to mice to humans.Nat Genet. 2000;26(1):23-7.
    [86] Forger DB, Peskin CS A detailed predictive model of the mammalian circadian clock. Proc Natl Acad Sci USA 2003; 100: 14806-14811.
    [87] Andretic R, Chaney S, Hirsh J. Requirement of circadian genes for cocaine sensitization in Drosophila. Science, 1999; 285: 1066-1068.
    [88] Abarca C, Albrecht U, Spanagel R. Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci USA 2002; 99: 9026-9030.
    [89] Spanagel R, Wess F. The dopamine hypotheses of reward: past and current status. Trends Neurosci 1999; 22: 521-527.
    [90] Vanderschuren LJ, Kalivas PW. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 2000; 151: 99-120.
    [91] Cornish JL, Kalivas PW. Cocaine sensitization and craving: differing
     roles for dopamine and glutamate in the nucleus accumbens. J Addict Dis 2001; 20: 43-54.
    [92] McClung, C, Hirsh, J. The trace amine tyramine is essential for sensitization to cocaine in Drosophila. Curr. Biol 1999; 9: 853-860.
    [93] Field, M.D.; Maywood, E.S.; O'Brien, J.A.; Weaver, D.R.; Reppert, S.M.; Hastings, M.H. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 2000; 25: 437-447.
    [94] Takumi, T.; Matsubara, C; Shigeyoshi, Y.; Taguchi, K.; Yagita, K.; Maebayashi, Y; Sakakida, Y; Okumura, K; Takashima, N; Okamura, H. A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes to Cells 1998; 3: 167-176.
    [95] Yan, L.; Takekida, S.; Shigeyoshi, Y.; Okamura, H. Perl and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neurosci 1999; 94:141-150.
    [96] Haseloff, J.; Gerlach, W.L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 1988; 334: 585-591.
    [97] Amarzguioui, M.; Prydz, H. Hammerhead ribozyme design and application. Cell. Mol. Life Sci 1998; 54: 1175-1202.
    [98] Lane-Ladd, S.B.; Pineda, J.;Boundy, V.A.; Pfeuffer, T.; Krupinski, J.; Aghajanian, GK.;Nestler, E.J. CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence. J. Neurosci 1997; 17: 7890-7901.
    [99] Suzuki, T.; Funada, M; Narita, M.; Misawa, M.; Nagase, H.
     Morphine-induced place preference in the CXBK mouse: characteristics of opioid receptor subtypes. Brain Res 1993; 602:45-52.
    [100] Suzuki, T.; Ikeda, H.; Tsuji, M.; Misawa, M.; Narita, M.; Tseng, L.F. Antisense oligodeoxynucleotide to 8 opioid receptors attenuates morphine dependence in mice. Life Sci 1997; 61: 165-170.
    [101] Hastings MH, Field MD, Maywood ES, Weaver DR, Reppert SM. Differential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: new insights into a core clock mechanism. J Neurosci 1999;19:RC11.
    [102] Yan L, Takekida S, Shigeyoshi Y, Okamura H . Perl and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 1999; 94:141-150.
    [103] Takumi T, Matsubara C, Shigeyoshi Y, Taguchi K, Yagita K, Maebayashi Y .A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells 1998; 3: 167-176.
    [104] Field MD, Maywood ES, O'Brien JA, Weaver DR, Reppert SM, Hastings MH. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 2000; 25: 437-447.
    [105] Masashi A, Yasuko K, Satomi T, Hisanori W, Takahiro M, Miyuki M, et al. T inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J Neurosci 1999; 19:1115-1121.
    [106] Abarca C, Albrecht U, Spanagel R.Cocaine sensitization and reward
     are under the influence of circadian genes and rhythm. Proc Natl Acad Sci USA 2002; 99:9026-9030.
    [107] Gaytan O, Lewis C, Swann A, Dafhy N . Diurnal differences in amphetamine sensitization. Eur J Pharmacol 1999; 374:1-9.
    [108] Gaytan O, Yang P, Swann A, Dafhy N. Diurnal differences in sensitization to methylphenidate. Brain Res 2000; 864:24-39.
    [109] Storch KF, Lipan O, Leykin I, et al. Extensive and divergent circadian gene expression in liver and heart. Nature. 2002; 417: 78-83
    [110] Anderson L. E., Morris J. E., Sasser L. B., Stevens R. G Effect of constant light on DMBA mammary tumorigenesis in rats. Cancer Lett. 2000; 148: 121-126.
    [111] Hrushesky, W.J. Tumor chronobiology. J. Controlled Release. 2001; 74: 27-30.
    [112] Levi, F. From circadian rhythms to cancer chronotherapeutics. Chronobiol Int. 2002; 19: 1-19.
    [113] Yong Zhu, Heather N. Brown, Yawei Zhang, Richard G. Stevens, and Tongzhang Zheng. Period3 structural variation: a circadian biomarker associated with breast cancer in young women. Cancer Epidemiol Biomarkers Prev. 2005; 14(1): 268-270.
    [114] Fu L, Pelicano H, Liu J, et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo [J]. Cell. 2002; 111(1): 41-50.
    [115] Grundschober C, Delaunay F, Puhlhofer A、 Triqueneaux G, Laudet V, Bartfai T, Nef P Circadian regulation of diverse gene products revealed by
     mRNA expression profiling of synchronized fibroblasts. J Biol Chem. 2001 Dec 14; 276(50): 46751-8.
    [116] Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002 May 3; 109(3): 307-20.
    [117] F. Delaunay, V. Laudet. Circadian clock and microarrays: mammalian genome gets rhythm. Trends Genet. 2002 Dec; 18(12): 595-7
    [118] S. Davis, D.K. Mirick, R.G. Stevens. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst. 2001; 93(20): 1557-62
    [119] Crooke ST. Molecular mechanisms of action of antisense drugs. Biochim BiophysActa. 1999; 1489(1): 31-44.
    [120] Chiang MY, Chan H, Zounes MA, Freier SM, Lima WF, Bennett CF. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem. 1991; 266(27): 18162-71.
    [121] Birikh KR, Heaton PA, Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997; 245(1): 1-16.
    [122] Doherty EA, Doudna JA. Ribozyme structures and mechanisms. Annu Rev Biochem. 2000; 69: 597-615.
    [123] Burke JM. Hairpin ribozyme: current status and future prospects. Biochem Soc Trans. 1996; 24(3): 608-15.
    [124] Tang J, Breaker RR. Structural diversity of self-cleaving ribozymes. Proc Natl Acad Sci U S A. 2000;97(11):5784-9.
    [125] Pley HW, Flaherty KM, McKay DB. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994; 372(6501): 68-74.
    [126] Dahm SC, Uhlenbeck OC. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry. 1991; 30(39): 9464-9.
    [12 7] Sean P. Ryder and Scott A. Strobel. Comparative analysis of hairpin ribozyme structures and interference data Nucleic Acids Research, 2002; 30(6): 1287-1291
    [128] Hampel A, Tritz R, Hicks M, Cruz P. 'Hairpin' catalytic RNA model: evidence for helices and sequence requirement for substrate RNA.Nucleic Acids Res. 1990;18(2):299-304.
    [129] Kumar PK, Suh YA, Miyashiro H, Nishikawa F, Kawakami J, Taira K, Nishikawa S. Random mutations to evaluate the role of bases at two important single-stranded regions of genomic HDV ribozyme.Nucleic Acids Res. 1992; 20(15): 3919-24.
    [13 0] Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA.Chem Biol. 1994;1(4):223-9.
    [131] Santoro SW Joyce GF. A general purpose RNA-cleaving DNA enzyme.Proc Natl Acad Sci U S A. 1997; 94(9): 4262-6
    [13 2] Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991; 254(5037): 1497-500.
    [13 3] Weiler J, Gausepohl H, Hauser N, Jensen ON, Hoheisel JD. Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nucleic Acids Res. 1997; 25(14): 2792-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700