Fe,Co,Ni金属在高压下的铁磁性和B掺杂的ZnO磁性的第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用基于密度泛函理论(DFT)的第一原理计算研究了Fe, Co, Ni金属在高压下铁磁态的稳定性。计算结果表明高压下Fe, Co, Ni金属的铁磁态是不同的,与晶体结构密切相关。对于Fe,在常压下呈现铁磁性的体心立方结构(bcc), GGA和GGA+U计算表明其分别在12和115Gpa由铁磁性的体心立方结构(bcc)转变为非磁性的六角(hcp)结构。对于金属Co, GGA计算发现在压力为107GPa附近,Co从铁磁性的hcp转变到非磁性的fcc结构。与Fe和Co不同,Ni在200Gpa的高压下也能保持面心立方(fcc)的铁磁态。计算的DOS表明,Fe, Co, Ni磁性的压力抑制是由于压力引起的费米能级附近的态密度下降造成的。
     采用第一原理计算研究了B掺杂ZnO的电子结构与磁性,GGA与GGA+U的计算表明替代Zn的B不产生磁性,替代O的B产生约3.0μB的磁矩,磁矩主要由替代的B和次近邻的O原子的2p轨道及其近邻Zn的2p与3d轨道产生,并且B的原子磁矩最大。总能量的计算表明B掺杂ZnO的基态是反铁磁的(AFM)。
The appearance of ferromagnetism in bcc Fe, hcp Co, and fcc Ni metals is one of the most fundamental questions in solid-state physics. Although a large number of experimental and theoretical studies have been carried out for a deeper understanding of the nature of magnetism in these metals, it is still not a trivial problem why ferromagnetism is stable in these 3d metals under ambient conditions. Therefore, we investigate the stability of the ferromagnetic (FM) state in Fe, Co, and Ni metals under high pressure using generalized gradient approximation (GGA) and GGA+U within the density functional theory (DFT). It is found that the ferromagnetic state under pressure is very different for Fe, Co, and Ni metals, and is closely associated with the crystal structure. In the case of Fe, a ferromagnetic bcc ground states obtained at ambient pressure and the GGA calculations show that the Fe metal undergoes structural phase transitions from the most stable phase FM bcc to NM hcp phase at around 12 GPa, while calculated phase transitions by GGA+U occurred around 115 GPa. Moreover, the calculations show that the bcc to hcp structure transition in Fe is accompanied by the disappearance of magnetism in the hcp Fe. For Co, the phase transition from a ferromagnetic hcp to a nonmagnetic fcc is found around 107 GPa for GGA. In contrast to Fe and Co, a ferromagnetic fcc state in Ni is maintained even at 200 GPa. The calculated results suggest that the suppression of ferromagnetism in Fe, Co, and Ni is due to pressure-induced decrease of the density of state at the Fermi level.
     Compared to conventional magnetic semiconductors, one obvious advantage of d0 ferromagnetism is that clusters or secondary phases formed by the dopant do not contribute to magnetism. However, the mechanism of d0 ferromagnetism is not well understood. A complete understanding of the physics of d0 ferromagnetism is essential for identifying robust DMS for practical applications. The structural, electrical and optical properties of B-doped ZnO films (ZnO:B), are widely studied. In order to explore possible magnetic properties of B-doped ZnO, the first-principles calculations are performed to study the electronic structures and magnetic properties of nonmagnetic B doped ZnO. Both generalized gradient approximation (GGA) and GGA+U calculations show that substitutional B atom at Zn site can not introduce magnetic moment in ZnO, while a substitutional B atom at O site in ZnO induces magnetic moment of about 3.0μB. The moment mainly comes from delocalized p orbitals of B atom and its second neighboring 0 atoms, and the p and d orbitals of its nearest neighboring Zn atoms. The addition of UZn lead to downward shift of the Zn 3d states, which weakens the hybridization of the Zn 3d and O 2p states, while the UO+UB correction enlarge splitting between the occupied and unoccupied 2p states of B and its second neighboring 0 atom. For three approximations, the impurity states near the Fermi level remains almost the same. Accordingly, the magnetic moment and its distribution calculated by the GGA, GGA+UZn and GGA+UO+UB are almost the same. Moreover, the AFM state is the ground state for B-doped ZnO. The calculated DOS and the spin density distribution show that long-range magnetic coupling between the magnetic moment of two B atoms are mediated by the overlap of the spin density.
引文
[1]ISHIMATUS N, MARRUYAMA H, KAWAMURA N, SUZKI M, OHISHI Y, AND SHAMOMURA O, Stability of Ferromagnetism in Fe, Co, and Ni Metals under High Pressure [J]. Phys. Soc. Jpn.,2007,76:064703-064709.
    [2]BlvGEI S, WEINERT M, AND DEDERICHS P H, Ferromagnetism and Antiferromagnetism of 3d-metals Overlayers on metals, [J]. Phys. Rev. Lett.1988, 60:1077-1080.
    [3]MAO H K, BASSETT W A, AND TAKAHASHI T, Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 kbar [J]. J. Appl. Phys.,1967, 38:272-2776.
    [4]JEPHCOAT A P, MAO H K, AND BELL P M, Static Compression of Iron to 78 GPa With Rare Gas Solids as Pressure-Transmitting Media [J]. Geophys. Res.1986, 91:4677-4684.
    [5]BASSETT W A, AND HUANG E, Mechanism of the Body-Centered Cubic-Hexagonal Close-Packed Phase Transition in Iron [J]. Science,1987, 238:780-782.
    [6]WANG F M, AND INGALLS R, Iron bcc-hcp transition:Local structure from x-ray-absorption fine structure [J]. Phys. Rev. B,1998,57:5647-5654.
    [7]MOYZIS J A, AND DRICHAMER H G, Effect of Pressure on the Isomer Shift of Fe57 in the bcc Phase [J]. Phys. Rev.,1968,171:389-392.
    [8]TAYLOR R D, PASTERNAK M P, AND JEANLOZ R, Hysteresis in the high pressure transformation of bcc-to hcp-iron [J]. Appl. Phys.,1991,69:6126-6128.
    [9]RUEFF J P, SHUKLAA, KAPROLAT A, KRISCH M, LORENZEN M, SETTE F, AND VERBENI R, Magnetism of Invar alloys under pressure examined by inelastic x-ray scattering [J]. Phys. Rev. B,2001,63:132409-132412.
    [10]MATHO O, BAUDELET F, ITIE J P, POLIAN A, D'ASTUO M, CHERVIN J C, AND PASCARELLI S, Dynamics of the Magnetic and Structural a-s Phase
    Transition in Iron, [J]. Phys. Rev. Lett.,2004,93:255503-255506.
    [11]BAUDELET F, PASCARELLI S, MATHON O, ITIE J P, POLIAN J P, D'ASTUO M, AND CHERVIN J C, X-ray absorption spectroscopy and x-ray magnetic circular dichroism simultaneous measurements under high pressure:the iron bcc-hcp transition case [J]. Phys.:Condens. Matter,2005,17:S957-S966.
    [12]YOO C S, CYNN H, SODERLIND P, AND IOTA V, New p(fcc)-Cobalt to 210 GPa [J]. Phys. Rev. Lett.,2000,84:4132-4135.
    [13]YOUNG D A, Phase Diagrams of the Elements (University of California Press, 1991)p.182.
    [14]IOTA V, KIEPEIS J H P, YOO CH SH, LANG J, HASKEL D, AND SRAJER G, Electronic structure and magnetism in Compressed 3d transition metals, [J]. Appl. Phys. Lett.2007,90:042505-042507.
    [15]MORUZZI V L, Singular Volume Dependence of Transition Metal Magnetism, [J] Phys. Rev. Lett.,1986,57:2211-2214.
    [16]MORUZZ V L, MARCUS P M, SCHWARZ K, AND MOHN P, Ferromagnetic phase of bcc and fcc Fe, Co and Ni, [J]. Phys. Rev. B,1986,34:1784-1791.
    [17]MARCUS P M, AND MORUZZI V L, Magnetism of metastable phases:Band Theory and epitaxy (invited), [J]. Appl. Phys.,1988,63:4045-4048.
    [18]JUN-HYUNG C AND MATTHIAS S, Ab initio pseudopotential study of Fe, Co, and Ni employing the spin-polarized LAPW approach, [J]. Phys. Rev. B,1996, 53:10685-10689.
    [19]BARRETEAU C, DESJONQUERES M C, OLES A M, AND SPANJAAED D, Effects of intersite Coulomb interactions on ferromagnetism:Application to Fe, Co, and Ni, [J]. Phys. Rev. B,2004,69:064432-064441.
    [20]MOHAMMED Y SH, YU YAN, HONGXIA W, KAI L, XIAOBO D, Stability of Ferromagnetism in Fe, Co, and Ni Metals under High Pressure with GGA and GGA+U[J]. Magn. Magn. Mater.,2010,322:653-657.
    [21]CHIENA C-H, CHIOUB S H, GUOA G Y, YAOC Y-D, Electronic structure and magnetic moments of 3d transition metal-doped ZnO [J]. Magn. Magn. Mater., 2004,282:275-278.
    [22]COEY J M D, d0 ferromagnetism, [J]. Solid State Sci.,2005,7:660-667.
    [23]E1FIMOV I S, YUNKIA S, AND SAWATZKY G A, Possible Path to a New Class of Ferromagnetic and Half-Metallic Ferromagnetic Materials, [J]. Phys. Rev. Lett., 2002,89:216403-216406.
    [24]VENKATESAN M, FITZGERALD C B, AND COEY J M D, Thin films: Unexpected magnetism in a dielectric oxide, [J]. Nature (London),2004, 430:630-633.
    [25]PEMMARAJU C D AND SANVITO S, Ferromagnetism Driven by Intrinsic Point Defects in HfO2 [J]. Phys. Rev. Lett.,2005,94:217205-217208.
    [26]HONG N H, SAKAI J, POIROT N, AND BRIZE V, Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films [J]. Phys. Rev. B,2006,73:132404-132407.
    [27]YANG K, DAI Y, HUANG B, AND FENG Y P, Density-functional characterization of antiferromagnetism in oxygen-deficient anatase and rutile TiO2, [J]. Phys. Rev. B, 2010,81:033202-033205.
    [28]PENG H, LI J, LI S-S, AND XIA J B, Possible origin of ferromagnetism in undoped anatase TiO2, [J]. Phys. Rev. B,2009,79:092411-092414.
    [29]HONG N H, SAKAI J, AND BRIZE V, Observation of ferromagnetism at room temperature in ZnO thin films [J]. Phys.:Condens. Matter,2007,19:036219-036224.
    [30]HONG N H, POIROT N, AND SAKAI, Ferromagnetism observed in pristine SnO2 thin films [J]. Phys. Rev. B,2008,77:033205-033208.
    [31]DEV P, XUE Y, AND ZHANG P, Defect-Induced Intrinsic Magnetism in Wide-Gap III Nitrides [J]. Phys. Rev. Lett.,2008,100:117204-117207.
    [32]JIN H, DAI Y, HUANG B, AND WHANBO M-H, Ferromagnetism of undoped GaN mediated by through-bond spin polarization between nitrogen dangling bonds, [J]. Appl. Phys. Lett.,2009,94:162505-162507.
    [33]PAN H, YIJ B, SHEN L, WU R Q, YANG J H, LIN J Y, FENG Y P, DING J, YAN H L, AND YIN J H, Room-Temperature Ferromagnetism in Carbon-Doped ZnO, [J]. Phys. Rev. Lett.,2007,99:127201-127204.
    [34]YU C-F, LIN T-J, SUN S-J, AND CHOU H, Origin of ferromagnetism in nitrogen embedded ZnO:N thin films [J]. Phys. D,2007,40:6497-4500.
    [35]SHEN L, WU R Q, PAN H, PENG G W, YANG M, SHA Z D, AND FENG Y P, Mechanism of ferromagnetism in nitrogen-doped ZnO:First-principle calculations [J]. Phys. Rev. B,2008,78:073306-073309.
    [36]ZHOU S, XU Q, POTZGER K, TALUT G, GROTZSHCEL R, FASSBENDER J, VINNICHENKO M, GRENZER J, HELM M, HOCHMUTH H, LORENZ M, GRUNDMANN M, AND SCHMIDT H, Room temperature ferromagnetism in carbon-implanted ZnO [J]. Appl. Phys. Lett.,2008,93:232507-232509.
    [37]ELFIMOV I S, RUSYDI A, CSISZAR S I, HU Z, HSIEH H H, LIN H-J, CHEN C T, LIANG R, AND SAWATZKY G A, Magnetizing Oxides by Substituting Nitrogen for Oxygen, [J]. Phys. Rev. Lett.,2007,98:137202-137205.
    [38]DROGHETTIA AND SANVITO S, Electron doping and magnetic moment formation in N- and C-doped MgO [J]. Appl. Phys. Lett.,2009,94:252505-252507.
    [39]GU B, BULUT N, ZIMAN T, AND MAEKAWA S, Possible d0 ferromagnetism in MgO doped with nitrogen [J]. Phys. Rev. B,2009,79:024407-024413.
    [40]YANG K, Dai Y, HUANG B, AND WHANGBO M-H, Whangbo, On the possibility of ferromagnetism in carbon-doped anatase TiO2 [J]. Appl. Phys. Lett.,2008, 93:132507-132509.
    [41]BAI Y AND CHEN Q, N dopant induced antiferromagnetism in anatase TiO2:First principle study [J]. Solid State Commun.,2008,147:169-172.
    [42]YANG K, DAI Y, HUANG B, AND WHANGBO M-H, Density functional studies of the magnetic properties in nitrogen doped TiO2, [J]. Chem. Phys. Lett.,2009, 481:99-102.
    [43]CHEN X L, XU B H, XUE J M, ZHAO Y, WEI C C, SUN J, WANG Y, ZHANG X D, GENG X H, Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition [J]. Thin Solid Films,2007, 515:3753-3759.
    [44]LIU X D, JIANG E Y, AND LI Z Q, Low temperature electrical transport properties of B-doped ZnO films [J]. Appl. Phys.,2007,102:073708-073711.
    [45]RAKHSHANI A E, J. Phys. D:Boron-doped ZnO films grown by successive chemical solution deposition [J]. Appl. Phys.,2008,41:015305-015310.
    [46]Y. Yamamoto, K. Saito, K. Takahashi, M. Konagai, Preparation of boron-doped ZnO thin"Ims by photo-atomic layer deposition [J]. Sol. Energy Mater. Sol. Cells,2001, 65:125-132.
    [47]KRESSE G AND HAFNER J, Ab initio molecular dynamics for liquid metals, [J]. Phys. Rev. B 47 (1993) 558-561.
    [48]KRESSE G AND FURTHULLER J, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B,1996, 54:11169-11186.
    [49]KRESSE G AND FURTHMULLER Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci.1996,6:15-50.
    [50]KRESSE G AND JOUBERT D, From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B,1999,59:1758-1775.
    [51]PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J AND FIOLHAIS C, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B,1992,46:6671-6687.
    [52]BLOCHL P E, Projector augmented-wave method, [J]. Phys. Rev. B,1994, 50:17953-17979.
    [53]WOOD D M, and ZUNGER A, A new method for diagonalising large matrices [J]. Phys. A:Math. Gen.,1985,18:1343-1359.
    [54]JOHNSON D D, Modified Broyden's method for accelerating convergence in self-consistent calculations, [J]. Phys. Rev. B,1988,38:12807-12813.
    [55]DUDAREV S L, BOTTON G A, SAVRASOV S Y, HUMPHREYS C J AND SUTTON A P, Electron-energy-loss spectra and the structural stability of nickel An LSDA+U study oxide:[J]. Phys. Rev. B,1998,57:1505-1509.
    [56]MONKHORST H J AND PACK J D, Special points for Brillouin-zone integrations [J]. Phys. Rev. B,1976,13:5188-5191.
    [57]ROHRBACH A, HAFNER J, AND KRESSE G, Molecular adsorption on the surface of strongly correlated transition-metal oxides:A case study for CO/NiO(100), [J]. Phys. Rev. B,2004,69:075413-075425.
    [58]HOHENBERG P, AND KOHN W, Inhomogenous electron gas, [J]. Phys. Rev.,1664, 136:B864-B867.
    [59]KOHN W, AND SHAM L J, Self-Consistent Equations Including Exchange and Correlation Effects, [J]. Phys. Rev.,1965,140:A1133-A1138.
    [60]PERDEW J P, SCHMIDT K, DOREN V, ALSENOY V, GEERLINGS C, AND EDS P, In Density Functional Theory and its Applications to Materials; AIP: Melville, NY,2001.
    [61]HEDIN L, LUNDQVIST S, EHRENREICH H, SEITZ F, TURNBLL, AND EDS D, In Solid State Physics, Academic Press, New York,1969; vol.23, p.1.
    [62]HYBERTS M S, AND LOUIE S G, Electron correlation in semiconductors and insulators:Band gaps and quasiparticle energies, [J]. Phys Rev B,1986, 34:5390-5413.
    [63]GEORGE A, KOTLIAR G, KRAUTHM W, AND ROZENBERG J, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J]. Rev. Mod. Phys.,1996,68:13-125.
    [64]HELD K, ANDERSEN K O, FELDBACHER M, YAMASAKI A, YANG Y F, [J]. Phys. Condens Matter 7 (2008) 064203.
    [65]DREIZLER R M, AND GROSS E K U, Density Functional Theory:An Approach to the Quantum Many-Body Problem. Springer-Verlag, Berlin,1990.
    [66]MORONI E G, KRESSE G, AND HAFNER J, Ultrasoft pseudopotentials applied to magnetic Fe, Co, and Ni:From atoms to solids [J]. Phys. Rev. B,1997, 56:15629-15636.
    [67]HAFNER R, SPIsAK D, LORENZ R, AND HAFNER J, Ab initio local-spin-density study of oscillatory exchange coupling in Fe/Au multilayers [J]. Phys. Condens Matter,2002,14:4297-4308.
    [68]PERDEW J P, RUZSINSZKY A, CSONKA G I, VYDROV O A, SCUSERIA G E, CONSTATIN L A, ZHOU X, AND BURKE K, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces [J]. Phys. Rev. Lett.,2008, 100:136406-136409.
    [69]CSONKA G I, VYDROV O A, SCUSERIA G E, RUZINSZKY A, AND PERDEW J P, Diminished gradient dependence of density functional:Constraint satisfaction and self-interaction correction [J]. Chem. Phys.,2007,126:244107-244113.
    [70]HAMMER B, HANSEN L B, AND NORSKOV J K, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Phys. Rev. B,1999,59:7413-7421.
    [71]WU Z, AND COHEN R E, More accurate generalized gradient approximation for solids, [J]. Phys. Rev. B,2006,73:235116-235121.
    [72]TRAN F, LASKOWSKI R, BLAHA P, AND SCHWARZ K, Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional [J]. Phys. Rev. B,2007,75:115131-115143.
    [73]LIECHTENSTEIN A I, ANISIMOV V I, AND ZAANEN J, Density-functional theory and strong interactions:Orbital ordering in Mott-Hubbard insulators [J]. Phys. Rev. B,1995,52:R5467-R5470.
    [74]PARDO V, AND PICKETT W E, Magnetism from 2p states in alkaline earth monoxides:Trends with varying N impurity concentration [J]. Phys. Rev. B,2008, 78:134427-134431.
    [75]ANISIMOV V I, ZAANEN J, AND ANDERSENPHYS O K, Band theory and Mott insulators:Hubbard U instead of Stoner I, [J]. Phys. Rev. B,1991,44:943-954.
    [76]ANISIMOV V I, ARYASETIAWAN F, AND LIECHTENSTEIN A I, First-principles calculations of the electronic structure and spectra of strongly correlated systems:the LDA C U method [J]. Phys.:Condens. Matter,1997,9:767-808.
    [77]KRESSE G, AND HAFNER J, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements [J]. Phys. Condens Matter,1994,6:8245-8257.
    [78]TROULLIER N, AND MARTINS J L, Efficient pseudopotentials for plane-wave calculations [J]. Phys. Rev. B,1991,43:1993-2006.
    [79]VANDERBILT D, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B 41 (1990) 7892-7895.
    [80]SINGH D J, Plane Waves, Pseudopotentials and the LAPW Method; Kluwer Academic, Norwell, MA,1994.
    [81]GOPAL P AND SPALDIN N A, Polarization, piezoelectric constants, and elastic constants of ZnO, MgO, and CdO, [J]. Electron. Mater.,2006,35:538-541.
    [82]LOOk D C, HEMSKY J W, Sizelove J R, Residual Native Shallow Donor in ZnO [J]. Phys. Rev. Lett.,1999,82:2552-2555.
    [83]HAFNER J, Ab-initio simulations of materials using VASP:Density-functional theory and beyond [J]. Comput. Chem.,29 (2008) 2044-2078.
    [84]G. KRESSE G, AND FURTHMULLER J, VASP the GUIDE, Sensengasse 8, A-1130 Wien, Austria.
    [85]S. LANY S, RAEBIGER L, AND ZUNGER A, Magnetic interactions of Cr-Cr and Co-Co impurity pairs in ZnO within a band-gap corrected density functional approach [J]. Phys. Rev. B,2008,77:241201-241204.
    [86]ANISIMOV V I, SOLOVYEV, KOROTIN M A, CZYZYK MT, AND SAWATZKY, Density-functional theory and NiO photoemission spectra [J]. Phys. Rev. B,1993, 48:16929-16934.
    [87]BIRCH F, Geophys. Res.,1952,57:129.
    [88]BIRCH F, The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan's Theory of Finite Strain [J]. Appl. Phys.,1938,9:279-288.
    [89]BIRCH F, Finite Elastic Strain of Cubic Crystals [J].Phys. Rev.,1947,71:809-824.
    [90]F. D. MURNAGHAN F D, The Compressibility of Media under Extreme Pressures [J]. Proc. Natl Acad. Sci. USA,1944,30:244-247.
    [91]M. METHFESSEL M, AND PAXTON AT, High-precision sampling for Brillouin-zone integration in metals [J]. Phys. Rev. B,1989,40:3616-3621.
    [92]BLOCHL P E, JEPSEN O, AND ANDERSEN O K, Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev. B,1994,49:16223-16233.
    [93]JONES R O, AND GUNNARSSON O, The density functional formalism, its applications and prospects, [J]. Review Of Modern Physics,1989,61:689-746.
    [94]PRATT G W, Unrestricted Hartree-Fock Method, Unrestricted Hartree-Fock Method [J]. Phys. Rev.,1956,102:1303-1307.
    [95]WANG Y, AND PERDEW J P, Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling [J]. Phys. Rev. B,1991, 44:13298-13307.
    [96]STOJIC N L, AND BINGGELI N L, Phase stability of Fe and Mn within density-functional theory plus on-site Coulomb interaction approaches [J]. Magn. Magn. Mater.,2008,320:100-106.
    [97]M. EKMAN M, SADIGH B, EINNARSDOTTER K, AND BLAHA P, Ab initio study of the martensitic bcc-hcp transformation in iron [J]. Phys. Rev. B,1998, 58:5296-5304.
    [98]T. C. LEUNG T C, CHAN C T, AND HARMON B N, Ground-state properties of Fe, Co, Ni, and their monoxides:Results of the generalized gradient approximation [J]. Phys. Rev. B 44 (1991) 2923-2927.
    [99]E. G MORONI E G, KRESSE G, HAFNER J, AND FURTHMULLER J, Ultrasoft pseudopotentials applied to magnetic Fe, Co, and Ni:From atoms to solids [J]. Phys. Rev. B,1997,56:15629-15646.
    [100]MAY, SOMAYAZUHU M, SENG G, Mao H K, SU J, AND MEMLEY R, In situ X-ray diffraction studies of iron to Earth-core conditions, [J]. Phys. Earth Planet. Inter.,2004,143-144:455-467.
    [101]N. V. BARGEN N V, AND BOEHLER R, High Press. Res.6 (1990) 133.
    [102]MODAK P, VERMA A K, RAO R S, GODWAL B K, AND JEANLOZ R, Ab initio total-energy and phonon calculations of Co at high pressures [J]. Phys. Rev. B,2006,74:012103-012106.
    [103]SINGH D J, PICKETT W E, KRAKAUER H, Gradient-corrected density functionals:Full-potential calculations for iron [J]. Phys. Rev. B,1991, 43:11628-11634.
    [104]COCOCCIONI M, AND DE GIRONCOLI S, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method [J]. Phys. Rev. B,2005,71:035105-035120.
    [105]LIU A Y, SINGH D G, [J]. Phys. Rev. B 47 (1993) 8515, KITTLE C, Introduction to Solid State Physics,6th ed. (Wiley, New Yourk,1986).
    [106]MAO H K, WU Y, CHEN L C, SHU J F, AND JEPHCOAT A P, Static Compression of Iron to 300 GPa and Fe0.8Ni0.2 Alloy to 260 GPa:Implications for Composition of the Core [J]. Geophys. Res.,1990,95:21737-21740.
    [107]STIXRUDE L, COHEN, SINGH, Iron at high pressure: Linearized-augmented-plane-wave computations in the generalized-gradient approximation [J]. Phys. Rev. B,1994,50:6442-6445.
    [108]BARBIELLINIT B, MORONIT E G, AND JARLBORG T, Effects of gradient corrections on electronic structure in metals [J]. Phys.:Condens. Matter,1990, 2:7597-7611.
    [109]H. FUJIHISA H, AND TAKEMURA K, [J]. Phys. Rev. B 54 (1996) 5.
    [110]A.K. MCMAHAN AK, AND ALBERTS A R, Insulating Nickel at a Pressure of 34 TPa, [J]. Phys. Rev. Lett.,1982,49:1198-1201.
    [111]LAZOR P, Ph. D. thesis, Uppala University 1994.
    [112]SLATER J C, Quantum Theory of Molecules and Solids, Vol. I, Electronic Structure of Molecules, McGraw-Hill Book Company, New York,1963.
    [113]MATTUCK R D, A Guide to Feynman Diagrams in the Many-body Problem,2nd edn, McGraw-Hill Book Company, New York,1976. Intermediate to Advanced.
    [114]HERRING C, A New Method for Calculating Wave Functions in Crystals [J]. Phys. Rev.,1940,57:1169-1177.
    [115]SLATER J C, Quantum Theory of Molecules and Solids, Vol. II, Symmetry and Energy Bands in Crystals, McGraw-Hill Book Company, New York,1965.
    [116]JANSEN H, AND FREEMAN A J, Total-energy full-potential linearized augmented-plane-wave method for bulk solids:Electronic and structural properties of tungsten [J]. Phys. Rev. B,1984,30:561-569.
    [117]HEDIN L, AND LUNDQVIST B I, J. Phys. C 4 (1971) 2064.
    [118]ASHCROFT N, AND MERMIN N, Solid State Physics. Saunders College, Philadelphia, (1976).
    [119]GONZE X, BEUKEN J-M, CARACAR R, DETRAUX F, FUCHS M, RIGNANESE G-M, SINDIC L, VERSTRAETE M, ZERAH G, JOLLET F, TORRENT M, ROY A, MIKAMI M, GHOSEZ P, RATY J-Y, AND ALLAN D, First-principle computation of material properties:the ABINIT software project, [J]. Computational Materials Science,2002,25:478-492.
    [120]PRINZ G A, Science 282, (1998) 1660.
    [121]NAYAK S K, OGURA M, HUCHT A, AKAI H, and ENTEL P, Monte Carlo simulations of diluted magnetic semiconductors using ab initio exchange parameters [J]. Phys.:Condens. Matter,2009,21:064238-064243.
    [122]ERHART P, ALBE K, AND KLEIN A, First-principles study of intrinsic point defects in ZnO:Role of band structure, volume relaxation, and finite-size effects [J]. Phys. Rev. B,2006,73:205203-205211.
    [123]J. E. JAFFE J F, AND HESS A C, Hartree-Fock study of phase changes in ZnO at high pressure [J]. Phys. Rev. B 48 (1993) 7903-7909.
    [124]Q. WANG Q, SUN Q, CHEN G, KAWAZOE Y, AND JENA P, Vacancy-induced magnetism in ZnO thin films and nanowires [J]. Phys. Rev. B,2008, 77:205411-205417.
    [125]KAZEL H, POTZEL W, KOFFERLEIN M, SCHIESSL W, STEINER M, HILLER U, KALVIUS D W, MITCHELL T P, DAS P, BLAHA K, SCHWARZ K, AND PASTERNAK M P, Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures [J]. Phys. Rev. B,1996,53:11425-11438.
    [126]DESGRENIERS S, Structural and compressive parameters High-density phases of ZnO:[J]. Phys. Rev. B 58 (1998) 14102-14105.
    [127]KAI L, YAN Y, HONGXIX W, ZHAN Q, MOHAMMED Y SH, AND HANMIN J, Ferromagnetism in phosphorus-doped ZnO:First-principles calculation [J]. Phys. Lett. A,2010,374:628-631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700