骨骼材料与结构的性能仿真及重建模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物力学是力学与生物学、生理学以及医学等诸多学科相互结合而形成的一门新兴的边缘交叉学科。生物力学以生命体为研究对象,它从生物个体、组织、器官以及细胞和分子等不同层次上研究应力与运动、变形、生长等之间的关系。生物力学研究可以帮助我们更好地了解各种生命现象与所处力学环境之间的关系,从而有效地设计制造各种器械、设备以改善我们的生活质量。由于其研究对象与人们的生活息息相关,生物力学这门学科已经越来越多地受到人们的关注,并且渗透到人们生活中的各个领域。
     有限元方法是一种成熟高效的数值计算方法,在现代工程技术中发挥了巨大的作用,在生物力学和医学工程中也有许多成功的应用。自1972年Brekelmans和Rybicki等人首先将有限元法应用于骨科生物力学的研究以来,经过30多年的迅速发展,已经渗透到生物力学、生物医学工程学等研究的各个领域,特别是在骨科生物力学研究中有限元方法显示出了显著的优越性。目前,数值模拟技术已经成为和理论研究、实验研究并列的生物力学研究的重要手段之一,并且形成了计算生物力学这个重要并且非常活跃的生物力学分支学科。
     本文运用数值模拟技术对骨骼材料和结构的力学性质及骨重建进行了一些数值模拟研究,全文共分七章。
     第一章是绪论,系统地介绍了生物力学研究的发展背景及当前的研究现状,并以骨力学的研究为重点,介绍了人体骨骼的组成、结构及常用力学性质等。另外还用少量篇幅介绍了当前生物力学中的一些前沿领域的最新研究进展,如细胞生物力学、DNA力学、组织工程等,以期对当前的生物力学研究有一个初步的认识。
     第二章对目前主要的骨重建理论进行了系统的介绍。首先回顾了骨重建理论的发展历程,阐述了骨重建的微观机理,并对可能引起骨重建的力学激励量进行了归纳总结。最后还介绍了骨重建理论在临床上的一些应用,这些应用主要集中在人工关节(主要是膝关节和髋关节)设计、髋关节表面成形术、种植牙中种植体的设计等方面。
     在论文的第三章,首先详细介绍了目前国内外应用比较广泛的两种基本的骨重建理论,并阐述了其各自的优缺点,然后在这两种骨重建理论的基础上,发展了一种新的模拟骨重建的算法,该算法有效克服了上述两种骨重建理论中存在的缺点,最后用文献中的几个算例对本文提出的骨重建算法进行了验证,证明了本文提出的算法的有效性。
     第四章应用本文第三章中提出的骨重建算法分别对考虑骨结合和不考虑骨结合两种情况下种植牙周围的骨重建现象进行了数值模拟。首先建立了不考虑骨结合的种植体及周围骨骼组织的有限元模型,对种植体植入后种植牙周围骨骼组织的密度分布情况进行了数值模拟,并对骨重建方程中的两个控制参数对骨密度分布的影响进行了初步的探讨。
     事实上,骨结合率是影响种植牙稳定性的一个重要因素,也是衡量种植牙手术成败的重要指标之一。本章还通过建立四种不同的骨结合率(25%、50%、75%、100%骨结合)的种植体模型,模拟了骨结合率对种植牙周围骨组织的密度分布情况的影响并与临床观察进行了比较。模拟结果表明,骨结合率并不是越大越好,当骨结合率为50%时,种植体周围骨组织的密度分布情况与临床观察最为接近。文献报道临床上比较成功的种植牙手术,其骨结合率均在50-70%之间,这也验证了本章的模拟结果。
     第五章基于逆向工程技术和医学CT&MRI图像数据,提出了建立人体复杂骨骼三维有限元模型的一种一般方法,并以人体膝关节为例,对建立模型过程进行了详细的说明。本章首先对目前建立骨骼有限元模型的方法进行了系统的归纳与总结,并比较了各方法的优缺点,还详细介绍了目前国内外在建立膝关节有限元模型方面的一些研究进展;然后将在工程领域中广泛应用的逆向工程技术引入骨骼系统建模中来,结合CT&MRI等医学图像数据,以人体关节中最为复杂的膝关节为例,详细讲述了利用逆向工程技术建立了人体膝关节的三维有限元模型的过程,该模型包括股骨、胫骨、髌骨、股骨下软骨、胫骨平台软骨、半月板。
     在第六章中,利用第五章中的逆向工程建模技术,通过建立特定个体(Subject-Specific)的股骨近端的有限元模型,模拟了股骨头缺血性坏死骨瓣移植前后股骨近端应力的变化情况。骨瓣移植术是治疗中期股骨头缺血性坏死的主要手段之一,但这种手术方法一直缺乏相应的生物力学理论基础。本章试图通过数值模拟骨移植前后股骨受力状态的变化来加深对这一手术的认识。首先基于医学CT图像数据分别建立了正常、坏死及修复的股骨头三维有限元模型;并基于同样的医学图像数据分别对三个有限元模型的材料参数进行设置,即将CT图像数据通过一些方法“转换”为有限元模型的弹性模量。用该方法得到的有限元模型与真实的骨骼结构更为接近,计算结果也更为准确。对三个不同模型的有限元分析结果表明,在切除掉坏死区域后,股骨头所受应力有显著增加,而进行骨移植手术后,股骨头部应力相应地减小。很明显,对坏死的股骨头进行骨瓣移植修复能有效地恢复股骨头部的力学性能,使其受力状态与正常股骨更为接近。本文的数值模拟为股骨头缺血性坏死骨瓣移植手术提供了临床依据,同时为将来进一步的手术方案优化提供了基础。
     第七章对人体下肢的平地行走及弯曲过程进行了动力学模拟。首先利用LifeMod软件建立了包括膝关节在内的完整的人体下肢动力学模型,并用该模型对人体平地行走及下肢弯曲过程进行了动力学模拟。得到了在人体平地行走及弯曲过程中胫-股关节的接触力及膝关节四条主要韧带张力的变化情况,并对ACL和PCL韧带缺损对胫-股关节接触力及其它韧带张力的变化情况进行了动力学模拟。
As a rising edge and cross discipline, Biomechanics is the combination and further development of many disciplines such as Biology, Physiology and Medical etc. Biomechanics seeks to understand the mechanics of living tissues in different levels such as biology individual, tissue, organ, cell and molecule. The main research content of biomechanics is the relationship among stress and motion, deformation, growth etc. The biomechanical research can help us to understand better the relationships between life phenomena and their mechanical environments, and thus, effectively to design medical devices so as to improve our life quality. Because the object of biomedical research is closely related to our lives, the biomechanics is attracting more and more attention and has permeated into every realm of our lives.
     The finite element method is a well-developed and efficient numerical method, which plays a very important role in modern engineering and technique and also has successful applications in biomechanics and medical engineering. In 1972, the finite element method was initially applied to the study of orthopedic biomechanics by Brekelmans et al. and Rybicki et al. to evaluate the stress in human bones, since then, the method has gotten rapid development over thirty years and has been applied to every fields of biomechanics and biomedical engineering, especially in the research of orthopedic biomechanics in which the finite element method is shown to have prominent superiority. At present, the finite element method along with theoretical and experimental research has become one of the important ways of biomechanical research. Moreover, a branch of biomechanics, i.e. computational biomechanics, has formed and become more and more active and significant.
     In this paper, the numerical simulation technique is used to predict the mechanical properties of bone materials and structures in addition with bone remodeling simulation. The dissertation is divided into seven chapters.
     The first chapter is the preface. In this chapter, the background and present status of biomechanical research are systemically introduced with the emphasis on bone mechanical research, including the composition, structure and common mechanical properties of human bone. In addition, some latest improvements in the leading edge of biomechanics such as cell biomechanics, DNA biomechanics, tissue engineering, are briefly introduced, for the purpose to have a preliminary cognition of present biomechanical research after sitting through this chapter.
     The chapter two is a systematic introduction of the primary bone remodeling theories at present. The developing history of bone remodeling theories is restrospected, the micromechanism of bone remodeling is discussed and the possible mechanical stimuli which may cause bone to remodel are summarized in this chapter. Finally, some applications of bone remodeling theory on clinics are introduced. The applications mainly concentrate on the design of artificial joint (especially for knee joint and hip joint), surface arthroplasty of hip joint and the design of dental implants etc.
     In chapter three, firstly, two common and popular bone remodeling theories which have been widely applied at home and abroad are introduced with detail; both the advantages and disadvantages of each theory are discussed. Then, based on the two theories, a new approach for the simulation of bone remodeling is proposed. The shortcomings of the existing two bone remodeling theories are overcome in the newly developed algorithm. At last, some examples which often been used in literatures are verified by the proposed algorithm in this chapter; it is proven to be effective.
     In chapter four, the newly proposed algorithm in chapter three is applied to the simulation of bone remodeling of peri-implant tissue surrounding dental implant with and without the consideration of osseointegration respectively. Firstly, the finite element model of implant and peri-implant bone tissue without the consideration of osseointegration is established and used to predict the density distribution of peri-implant tissue after the dental implantation. Then, the influences of two parameters in bone remodeling equation on the density distribution are preliminary discussed.
     As a matter of fact, the osseointegration is a very important influence factor on the stability of dental implant, and also is a significant index to evaluate a dental implant surgery. In this chapter, four dental implant FE models in different osseointegration rates (25%,50%,75% and 100%) are established respectively, for the purpose to predict the influence of osseointegration rate on density distribution of peri-implant tissue. The simulating results are compared with clinical observations. The results indicate that the osseointegration rate is not bigger always better. The density distribution with 50% osseointegration is closest one compared with clinical observation. According to literature, even clinically successful dental implant surgery, its osseointegration rate is within 50~70%. The simulation results are validated by clinical observations.
     In chapter five, based on reverse engineering techniques and CT&MRI images, a method to establish complex bone finite element model is proposed, and the knee joint is used to demonstrate the detail procedure. Firstly, the present methods for modeling finite element models of bone tissues are systematically introduced and summarized; furthermore, the advantages and disadvantages for each method are compared and discussed. Then, the reverse engineering technique which has been widely used in engineering is introduced in this chapter to establish the finite element model of bone and related tissues. Combined with CT&MRI images, the knee joint, which is the most complex one among all human joints, is taken as an example to show the detail procedure of how to establish the three-dimensional finite element models, including femur, tibia, patella, meniscus and articular cartilages in femur and tibia.
     In chapter six, the stress variation before and after bone grafting surgery of Osteonecrosis of Femoral Head (ONFH) are simulated with subject-specific finite element models of proximal femur. The bone grafting surgery is one of the main means for the treatment of ONFH in its middle stage. Even though, the underlying biomechanical mechanisms of the ONFH surgery are always deficient. The research in this chapter is a try to have a deeper understanding of the procedure of bone grafting surgery by numerical simulation. Firstly, three three-dimensional FE models, i.e. normal model, necrosis model and prosthetic model are established respectively based on CT images. Then, the mechanical properties are assigned to the three FE models based on the same CT images, in other words, the CT images are "converted" in some ways into the elastic modules used by FE models. The FE models established in this way are closer to real bone structure and the computational results established in this way can be more accurate. The analysis results of three models indicate that when the necrosis region is resected, the stresses in femoral head increase obviously, but, after the bone grafting therapy, the stresses in femoral head decrease accordingly compared with normal status. It is obvious that the bone grafting therapy can effectively recover the mechanical properties of femoral head. The numerical simulation in this paper provide the clinical basis for bone grafting therapy of ONFH, meanwhile, also provide foundation for the further design optimization of surgical plan that will be done in the future.
     In chapter seven, the lower extremity of human being are dynamically simulated both in level walking and deep flexion. Firstly, the full dynamic model of human lower extremity including knee joint are established by LifeMod software and used to dynamically predict the procedure in level walking and deep flexion. The contact force of tibia-femoral joint and the tensile force of four main ligaments are achieved by dynamic simulation. Furthermore, the case of ACL and PCL deficiency are simulated to evaluate the influence of ACL and PCL deficiency on the contact force and ligament tensile force.
引文
[1]Fung Y C. Biomechanics:Mechanical properties of living tissues. Berlin: Springer-Verlag,1993.
    [2]田心,毕平.生物力学基础.北京:科学出版社,2007.
    [3]杨桂通,吴文周.骨力学.北京:科学出版社,1989.
    [4]陈秉智.计算骨力学若干问题研究:(博士学位论文).大连:大连理工大学,2002.
    [5]Tortora G J, Grabowski S R. Principles of anatomy and physiology.. New York:John Wiley & Sons,2000.
    [6]Shier D, Butler J, Lewis R. Hole's human anatomy& physiology. Boston:McGraw-Hill Higher Education,2004.
    [7]Martin R B, Burr D B, Sharkey N A. Skeletal tissue mechanics. New York:Springer-Verlag, 1998.
    [8]Rho J Y, Pharr G M. Effects of drying on the mechanical properties of bovine femur measured by nonoindentation. Journal of Materials Science:Materials in Medicine.1999, 10(8):485-488.
    [9]Zysset P K, Guo X E, Hoffler C E et al. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. Journal of Biomechanics.1999,32(10):1005-1012.
    [10]Turner C H, Rho J Y, Takano Y et al. The elastic properties of trabecular and cortical bone tissues are similar:results from two microscopic measurement techniques. Journal of Biomechanics.1999,32(4):437-411.
    [11]Hoffler C E, Guo X E, Zysset P K et al. An application of nanoindentation technique to measure bone tissue lamellae properties. Journal of Biomechanical Engineering.2005, 127(7):1046-1053.
    [12]Duchemin L, Bousson V, Raossanaly C et al. Prediction of mechanical properties of cortical bone by quantitative computed tomography. Medical Engineering& Physics.2008, 30(3):321-328.
    [13]Roux W. Gasammelte abhandlungen uber entwicklungsmechanik der organismen. Leipzing: Engelmann,1895.
    [14]Wolff J L. The law of bone remodelling. Translated by Maquet P, Furlong R, in 1986. Berlin:Springer-Verlag,1892.
    [15]Yasuda I. Piezoelectricity of living bone. Journal of Kyoto Prefectural University of Medicine.1953,53:325.
    [16]Fukada E, Yasuda, I. On the piezoelectric effect of bone. Journal of the Physics Society of Japan.1957,12:1158-1162.
    [17]Bassett C A L, Becker R 0. Generation of electric potentials by bone in response to mechanical stress. Science.1962,137(3535):1063-1064.
    [18]王前,钟世镇,杨桂通.人密质骨动态力学性能及其电效应.中国生物医学工程学 报.1995,14(3):280-284.
    [19]李德源,刘占芳,张湘伟.骨组织流动电势数值分析.重庆大学学报(自然科学版).2001,24(2):96-99.
    [20]李德源,刘占芳,张湘伟.松质骨动电响应分析.汕头大学学报(自然科学版).2001,16(1):56-60.
    [21]侯振德,王国安,陈金龙等.骨内动态加载过程中瞬态流动电位的实验研究.天津大学学报.2002,35(2):212-216.
    [22]侯振德,钱民全.骨动态压电响应的测试研究.中国生物医学工程学报.2002,21(6):501-505.
    [23]刘占芳,郦光丰.骨组织动电效应的有限元分析.重庆大学学报.2002,25(12):83-86.
    [24]宋亚文,谢利民.电刺激促进骨折愈合的历史和现状.中国骨伤.2003,16(12):764-766.
    [25]黄克勤,顾志华,高瑞亭等.力电效应对骨重建和修复的影响.中国临床康复.2006,10(29):115-117.
    [26]Hastings G W, ElMessiery M A, Rakowski S. Mechano-electrical properties of bone. Biomaterials.1981,2(4):225-233.
    [27]Guzelsu N, Saha S. Electro-mechanical wave propagation in long bones. Journal of Biomechanics.1981,14(1):19-33.
    [28]Chakkalakal D A, Johnson M W. Electrical properties of compact bone. Clinical Orthopaedics and Related Research.1981,161:133-145.
    [29]Gross D, Williams W S. Streaming potential and the electromechanical response of physiologically-moist bone. Journal of Biomechanics.1982,15(4):277-295.
    [30]Johnson M W, Chakkalakal D A, Harper R A et al. Fluit flow in bone in vitro. Journal of Biomechanics.1982,15(11):881-885.
    [31]Pienkowski D, Pollack S R. The origin of stress-generated potentials in fluid-saturated bone. Journal of Orthopaedic Research.1983,1(1):30-41.
    [32]Grodzinsky A J. Electromechanical and physicochemical properties of connective tissue. Critical Reviews in Biomedical Engineering.1983,9(2):133-199.
    [33]Guzelsu N, Saha S. Electro-mechanical behavior of wet bone-Part I:Theory. Journal of Biomechanical Engineering.1984,106(3):249-261.
    [34]Guzelsu N, Saha S. Electro-mechanical behavior of wet bone-Part II:Wave propagation. Journal of Biomechanical Engineering.1984,106(3):262-271.
    [35]Pollack S R, Salzstein R A, Pienkowski D. The electric double layer in bone and its influence on stress-generated potentials. Calcified Tissue International.1984,36(Suppl 1):S77-S81.
    [36]Pollack S R, Petrov N, Salzstein R et al. An anatomical model for streaming potentials in osteons. Journal of Biomechanics.1984,17(8):627-636.
    [37]Otter M, Shoenung J, Williams W S. Evidence for different sources of stress-generated potentials in wet and dry bone. Journal of Orthopaedic Research.1985,3(3):321-324.
    [38]Salzstein R A, Pollack S R, Mak A F et al. Electromechanical potentials in cortical bone-I. A continuum approach. Journal of Biomechanics.1987,20(3):261-270.
    [39]Salzstein R A, Pollack S R. Electromechanical potentials in cortical bone-II. Experimental analysis. Journal of Biomechanics.1987,20(3):271-280.
    [40]Hastings G W, Mahmud F A. Electrical effects in bone. Journal of Biomedical Engineering. 1988,10(6):515-521.
    [41]Petrov N, Pollack S R, Blagoeva R. A discrete model for streaming potentials in a single osteon. Journal of Biomechanics.1989,22(6-7):517-521.
    [42]Hastings G W, Mahmud F A, Martini M. Non-contacting electrode system for the measruement of strain generated potentials in bone. Journal of Biomedical Engineering.1989, 11(5):402-408.
    [43]Scott G C, Korostoff E. Oscillatory and step response electromechanical phenomena in human and bovine bone. Journal of Biomechanics.1990,23(2):127-143.
    [44]Guzelsu N, Walsh W R. Streaming potential of intact wet bone. Journal of Biomechanics. 1990,23(7):673-685.
    [45]Walsh W R, Guzelsu N. Electrokinetic behavior of intact wet bone:compartmental model. Journal of Orthopaedic Research.1991,9(5):683-692.
    [46]Kowalchuk R M, Pollack S R. Stress-generated potentials in bone:effects of bone fluid composition and kinetics. Journal of Orthopaedic Research.1993,11(6):874-883.
    [47]Mak A F, Zhang J D. Numerical simulation of streaming potentials due to deformation-induced hierachical flows in cortical bone. Journal of Biomechanical Engineering.2001,123(1):66-70.
    [48]Beck B R, Qin Y X, McLeod K J et al. On the relationship between streaming potential and strain in an in vivo bone preparation. Calcified Tissue International.2002, 71(4):335-343.
    [49]Qin Y X, Lin W, Rubin C. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Annals of Biomedical Engineering.2002,30(5):693-702.
    [50]Lakes R S, Katz J L, Sternstein S. Viscoelastic properties of wet cortical bone-I. torsional and biaxial studies. Journal of Biomechanics.1979,12:657-678.
    [51]Lakes R S, Katz J L. Viscoelastic properties of wet cortical bone. II. relaxation mechanisms. Journal of Biomechanics.1979,12:679-687.
    [52]Lakes R S, Katz J L. Viscoelastic properties of wet cortical bone. III. a nonlinear constitutive equation. Journal of Biomechanics.1979,12:689-698.
    [53]赵淑芝,张廷峰,李润等.人体半月板和关节软骨弹性模量的实验.吉林工业大学学报.1994,24(2):59-61.
    [54]廖东华,韩海潮,李良寿.离体胫骨的疲劳实验研究.医用生物力学.1995,10(4):238-244.
    [55]姜建元,吕飞舟,张志玉等.前交叉韧带及其替代物粘弹性性质的实验研究.医用生物力学.1997,12(4):205-211.
    [56]郭玉民,贾潇凌.国人胫骨松质骨力学性质的实验研究.中国生物医学工程学报.1999,18(3):250-255.
    [57]郭玉民,张宏民,朱健.松质骨材料的粘弹性性质研究.山西农业大学学报.2000,20(3):271-273.
    [58]郭玉民,张宏民,朱健等.松质骨粘弹性性质的实验研究.中国生物医学工程学报.2000,19(3):272-275.
    [59]赵均海,孙家驹,毛晓岗等.人密质骨的撞击实验研究.中国生物医学工程学报.2001,20(2):170-174.
    [60]侯振德,徐莲云.利用图像相关法测量骨拉伸弹性模量随试件厚度的变化规律.中国生物医学工程学报.2002,21(6):506-510.
    [61]赵长福,高中礼,马中胜等.股骨上端松质骨压缩粘弹性实验研究.吉林大学学报(工学版).2002,32(2):87-90.
    [62]麻文炎,张忠君,赵光涛等.股骨头松质骨三维拉伸应力松弛蠕变实验研究.医用生物力学.2003,18(1):34-38.
    [63]朴成东,齐菲,马洪顺.股骨上端松质骨拉伸应力松弛及蠕变的实验研究.医用生物力学.2005,20(3):149-152.
    [64]王玉发,张忠君,黑发志等.跟骨、月骨、头状骨松质骨粘弹性实验研究.生物医学工程学杂志.2003,20(3):434-438.
    [65]程杰平,权铁钢,马洪顺等.股骨颈松质骨拉伸蠕变实验研究.北京生物医学工程.2005,24(4):302-304.
    [66]董心,贺家宁,罗民等.C3-C7段颈椎粘弹性实验研究.吉林工业大学自然科学学报.2001,31(2):35-39.
    [67]张军,金观昌,宋建新.人体颈椎C7退变性的有限元分析与实验研究.清华大学学报(自然科学版).2004,44(11):1509-1512.
    [68]孙树东,王成学,赵长福等.正常国人腰间盘纤维软骨粘弹性实验研究.中国生物医学工程学报.2005,24(3):257-261.
    [69]莫润阳.用声波速度确定骨组织弹性参数.应用声学.2005,24(1):38-43.
    [70]王颖坚.松质骨的细观力学研究评述.力学进展.1996,26(3):416-423.
    [71]张宁,樊学军.利用松质骨理想化模型对骨小梁刚度的研究.力学学报.1997,29(6):701-710.
    [72]张瑞萍,吴文周.考虑粘弹性性能的密质骨损伤本构模型的研究.中国生物医学工程学报.1999,18(2):194-198.
    [73]刚芹果,张丽萍.密质骨的滑动界面细观力学模型.医用生物力学.1999,14(2):118-121.
    [74]刚芹果,华筑信,孙家驹.哈弗氏骨单元的微观结构模型.医用生物力学.1999,14(4):212-216.
    [75]刚芹果.含液体骨单元的力学模型.生物物理学报.2000,16(2):367-372.
    [76]李德源,陈海斌.松质骨粘弹性的数值分析.重庆大学学报(自然科学版).2001,24(4):91-94.
    [77]董心,朱兴华,杨秀勤.去除尺骨后桡骨的适应性骨再造.中国生物医学工程学报.1996,15(2):190-193.
    [78]朱兴华,郭同彤,朱伟民.应变能密度做控制变量的骨干表面再造——理论预测.中国生物医学工程学报.1999,18(4):426-432.
    [79]宫赫,朱兴华.初始密度对骨自优化结果的影响.中国生物医学工程学报.2000,19(3):276-280.
    [80]宫赫,朱兴华,朱东.拓扑优化在骨结构模拟中的应用.吉林工业大学自然科学学 报.2000,30(2):47-51.
    [81]朱兴华,周振平,董心等.长骨表面再造仿真中死区控制模型研究.中国生物医学工程学报.2000,19(2):194-199.
    [82]朱兴华,白雪飞.骨折愈合塑形的力学机理Ⅰ——骨表面再造理论的应用.生物医学工程学杂志.2000,17(4):410-414.
    [83]张春秋,朱兴华.拟骨细胞水平力学感知机理的骨再造自适应法.吉林工业大学自然科学学报.2001,31(2):28-34.
    [84]张春秋,朱兴华.改变力学环境后松质骨胞元结构的预测.中国生物医学工程学报.2001,20(2):175-181.
    [85]朱兴华,宫赫,朱东.椎体结构及其生长过程模拟.中国生物医学工程学报.2001,20(4):310-316.
    [86]朱兴华,苏继军,郭同彤等.骨表面再造数值模拟在人工股骨头假体优化设计中的应用.中国生物医学工程学报.2001,20(6):560-565.
    [87]宫赫,朱兴华,朱东.骨自优化方程获得稳定解的条件的非线性分析方法.中国生物医学工程学报.2002,21(4):289-297.
    [88]张春秋,朱兴华.骨折愈合塑形的力学机理Ⅱ——骨自优化理论的应用.中国生物医学工程学报.2002,21(2):132-137.
    [89]朱兴华,郭同彤,苏继军.界面间隙对假体周围骨小梁结构的影响.中国生物医学工程学报.2002,21(6):493-500.
    [90]朱兴华,宫赫,白雪飞等.弹性模量与表观密度的分段函数关系用于股骨近端的结构模拟.中国生物医学工程学报.2003,22(3):250-257.
    [91]朱兴华,张春秋,郭同彤.多载荷下带有生理限定应力的松质骨细观结构模拟.中国生物医学工程学报.2003,22(1):51-59.
    [92]宫赫,朱兴华.用多单元模型分析骨再造方程的稳定解.清华大学学报(自然科学版).2004,44(8):1115-1119.
    [93]朱兴华,侯亚君,尚禹.骨小梁上的微裂纹对松质骨力学性能的影响.中国生物医学工程学报.2004,23(3):286-288.
    [94]朱兴华,侯亚君,尚禹.胞元结构形式、材料性质对松质骨力学性能的影响.中国生物医学工程学报.2004,23(2):134-138.
    [95]朱兴华,马宗民.基于损伤修复理论的各向异性骨再造自我组织控制模型.中国生物医学工程学报.2004,23(6):554-561.
    [96]朱兴华,马宗民,朱伟民.载荷下降形式对妇女绝经后骨质疏松模拟结果的影响.医用生物力学.2004,19(3):151-156.
    [97]张春秋,王福荣,郭玉香.废用对松质骨结构的影响.生物医学工程研究.2005,23:129-132.
    [98]张浩,朱兴华,杨林等.一种描述松质骨骨质疏松过程的计算模型.吉林大学学报(工学版).2005,35(3):334-338.
    [99]朱东,董心,刘百奇等.膝内翻引起胫骨平台内侧骨质增生的模拟.中国生物医学工程学报.2005,24(4):391-396.
    [100]朱兴华,马宗民,刘磊.妇女绝经后骨质疏松的模拟.吉林大学学报(工学 版).2005,35(2):219-223.
    [101]马宗民,朱兴华,朱伟民等.妇女绝经、老龄对骨质疏松的影响.北京生物医学工程.2005,24(5):333-337.
    [102]刘易军,宫赫,刘百奇等.胫骨上端外部形状及内部结构的模拟.中国生物医学工程学报.2006,25(5):563-565.
    [103]朱东,马宗民,麻文炎等.带有力学调控系统的各向异性骨再造模型.生物医学工程学杂志.2006,23(3):525-529.
    [104]马宗民,李淑娴,朱兴华.妇女骨质疏松过程的数值模拟.大连大学学报.2006,27(4):61-66.
    [105]马宗民,李淑娴,朱兴华.各向异性骨再造过程的实现.航天医学与医学工程.2007,20(1):28-31.
    [106]马宗民,李淑娴,朱兴华等.妇女骨质疏松过程及运动防治模拟.生物医学工程学杂志.2007,24(1):124-128.
    [107]Weinans H, Huiskes R, Grootenboer H J. The behavior of adaptive bone-remodeling simulation models. Journal of Biomechanics.1992,25(12):1425-1441.
    [108]Mullender M G, Huiskes R, Weinans H. A physiological approach to the simulation of bone remodelling as a self-organizational control process. Journal of Biomechanics.1994, 27(11):1389-1394.
    [109]刘海,谢力勤,徐孝根等.给定荷载下的骨骼重建的有限元分析.清华大学学报(自然科学版).2002,42(8):1079-1082.
    [110]安梅岩,马爱军,李莹辉等.有限元法计算大鼠胫骨骨密度变化.航天医学与医学工程.2005,18(1):55-57.
    [111]安梅岩,马爱军.利用内部骨重建理论和有限元法计算骨密度的变化.生物医学工程学杂志.2006,23(1):60-63.
    [112]陈希瑞,龚宪生.基于ANSYS的股骨自适应再造仿真研究.中国生物医学工程学报.2007,26(2):199-203.
    [113]朱兴华,董心,张义民等.长骨功能适应性研究.中国生物医学工程学报.1993,12(2):106-110.
    [114]刘迎曦,赵文志,张军等.低应力环境对大鼠股骨的骨密度和几何形态学的影响.生物医学工程学杂志.2005,22(6):1165-1167.
    [115]刘迎曦,赵文志,张军等.不同应力环境下生长期大鼠股骨的生物力学试验研究.生物医学工程学杂志.2005,22(3):472-475.
    [116]刘迎曦,张军,赵文志等.基于快速生长期大鼠在不同应力环境中活骨实验的骨适应生物模型数字量化研究.生物医学工程学杂志.2006,23(2):318-321.
    [117]赵文志,刘迎曦,张军等.应力环境对大鼠股骨生长与重建和力学性能的影响.中国生物医学工程学报.2006,25(1):79-87.
    [118]王远亮,蔡绍皙.生物力学与骨组织工程.力学进展.1999,29(2):232-242.
    [119]张毅奕,陶祖莱.载荷诱导骨生长的力学细胞生物学机制.力学进展.2000,30(3):433-445.
    [120]Scott M S, Martina H. Calcium and bone metabolism during space flight. Nutrient Consumption/Metabolism.2002,18:849-852.
    [121]Whedon G D, Rambaut P C. Effects of long-duration space flight on calcium metabolism: Review of human studies from skylab to the present. Acta Astronautica.2006,58(2):59-81.
    [122]Morey-Holton E R, Hill E L, Souza K A. Animals and spaceflight:From survival to understanding. Journal of Musculoskelet& Neuronal Interactions.2007,7(1):17-25.
    [123]Zerwekh J E, Ruml L A, Gottschalk F et al. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. Journal of Bone and Mineral Research.1998,13(10):1594-1601.
    [124]Heer M, Baecker N, Mika C et al. Immobilization induces a very rapidincrease in osteoclast activity. Acta Astronautica.2005,57(1):31-36.
    [125]Rittweger J, Frost H M, Schiessl H et al. Muscle atrophy and bone loss after 90 days' bed rest and the effects of flywheel resistive exercise and pamidronate:Results from the LTBR study. Bone.2005,36(6):1019-1029.
    [126]Simkin A, Ayalon J, Leichter I. Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcified Tissue International.1987, 40(2):59-63.
    [127]Sogaard C H, Danielsen C C, Thorling E B et al. Long-term exercise of young and adult female rats:Effect on femoral neck biomechanical competence and bone structure. Journal of Bone and Mineral Research.1994,9(3):409-416.
    [128]Bourrin S, Palle S, Pupier R et al. Effect of physical training on bone adaptation in three zones of the rat tibia. Journal of Bone and Mineral Research.1995, 10(11):1745-1752.
    [129]Courteix D, Lespessailles E, Loiseau Peres S et al. Effects of physical training on bone mineral density in prepubertal girls:a comparative study between impact-loading and non-impact-loading sports. Osteoporosis International.1998,8(2):152-158.
    [130]Fritton J C, Myers E R, Wright T M et al. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone.2005, 36(6):1030-1038.
    [131]Lanyon L E. The measurement of bone strain "in vivo". Acta Orthop Belg.1976,42(Suppl 1):98-108.
    [132]Lanyon L E, Magee P T, Baggott D G. The relationship of functional stress and strain to the processes of bone remodelling. An experimental study on the sheep radius. Journal of Biomechanics.1979,12(8):593-600.
    [133]Lanyon L E. Functional strain as a determinant for bone remodeling. Calcified Tissue International.1984,36(Suppl 1):S56-S61.
    [134]von Meyer G H. Die architektur der spongiosa. Arch Anat Physiol Wiss Med.1867, 34:615-628.
    [135]Roesler H. The history of some fundamental concepts in bone biomechanics. Journal of Biomechanics.1987,20:1025-1034.
    [136]Frost H M. The laws of bone structure. In:Thomas C C, ed. Springfield; 1964.
    [137]Pauwels F. Biomechanics of the locomotor apparatus. Berlin:Springer,1965.
    [138]Cowin S C, Hegedus D. Bone remodelling I:theory of adaptive elasticity. Journal of Elasticity.1976,6(3):313-326.
    [139]Cowin S C, Nachlinger R R. Bone remodelling III:uniqueness and stability in adaptive elasticity theory. Journal of Elasticity.1978,8(3):285-295.
    [140]Cowin S C, Firoozbakhsh K. Bone remodelling of diaphysial surfaces under constant load:theoretical predictions. Journal of Biomechanics.1981,14(7):471-484.
    [141]Firoozbakhsh K, Cowin S C. An analytical model of Pauwels'functional adaptation mechanism in bone. Journal of Biomechanical Engineering.1981,103(4):246-252.
    [142]Cowin S C, Hart R T, Baber J R et al. Functional adaptation in long bones:establishing in vivo values for surface remodelling rate coefficients. Journal of Biomechanics.1985, 18(9):665-684.
    [143]Woo S L, Kuei S C, Amiel D et al. The effect of prolonged physical training on the properties of long bone:a study of Wolff's Law. The Journal of Bone and Joint Surgery. American Volume.1981,63(5):780-787.
    [144]Uhthoff H K, Jaworski Z F G. Bone loss in response to long-term immobilisation. The Journal of Bone and Joint Surgery. British Volume.1978,60-B(3):420-429.
    [145]Jaworski Z F G, Liskova K M, Uhthoff H K. Effect of long-term immobilisation on the pattern of bone loss in older dogs. The Journal of Bone and Joint Surgery. British Volume. 1980,62-B(1):104-110.
    [146]Hart R T, Davy D T, Heiple K G. A computational method for stress analysis of adaptive elastic materials with a view toward applications in strain-induced bone remodeling. Journal of Biomechanical Engineering.1984,106(4):342-350.
    [147]Hart R T, Davy D T, Heiple K G. Mathematical modeling and numerical solutions for functionally dependent bone remodeling. Calcified Tissue International.1984,36(Suppl. 1):S104-S109.
    [148]Carter D R. Mechanical loading histories and cortical bone remodeling. Calcified Tissue International.1984,36(Suppl 1):S19-S24.
    [149]Rubin C T, Lanyon L E. Regulation of bone mass by mechanical strain magnitude. Calcified Tissue International.1985,37(4):411-417.
    [150]Huiskes R, Weinans H, Grootenboer H J et al. Adaptive bone-remodeling theory applied to prosthetic design analysis. Journal of Biomechanics.1987,20(11-12):1135-1150.
    [151]Jog C S, Haber R B. Stability of finite element models for distributed-parameter optimization and topology design. Computer Methods in Applied Mechanics and Engineering. 1996,130(3-4):203-226.
    [152]Sigmund O, Peterson J. Numerical instabilities in topology optimization:a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural and Multidisciplinary Optimization.1998,16(1):68-75.
    [153]Mullender M G, Huiskes R. Proposal for the regulatory mechanism of Wolff's law. Journal of Orthopaedic Research.1995,13(4):503-512.
    [154]Huiskes R, Ruimerman R, Van Lenthe G H et al. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature.2000,405(6787):704-706.
    [155]Ruimerman R, Huiskes R, Van Lenthe G H et al. A computer-simulation model relating bone-cell metabolism to mechanical adaptation of trabecular bone. Computer Methods in Biomechanics and Biomedical Engineering.2001,4(5):433-448.
    [156]Ruimerman R, Van Rietbergen B, Hilbers P et al. A 3-dimensional computer model to simulate trabecular bone metabolism. Biorheology.2003,40(1-3):315-320.
    [157]Fyhrie D P, Carter D R. A unifying principle relating stress to trabecular bone morphology. Journal of Orthopaedic Research.1986,4(3):304-317.
    [158]Carter D R, Fyhrie D P, Whalen R T. Trabecular bone density and loading history:regulation of connective tissue biology by mechanical energy. Journal of Biomechanics.1987,20(8):785-794.
    [159]Carter D R. Mechanical loading history and skeletal biology. Journal of Biomechanics. 1987,20(11-12):1095-1109.
    [160]Whalen R T, Carter D R, Steele C R. Influence of physical activity on the regulation of bone density. Journal of Biomechanics.1988,21(10):825-837.
    [161]Carter D R, Orr T E, Fyhrie D P. Relationships between loading history and femoral cancellous bone architecture. Journal of Biomechanics.1989,22(3):231-244.
    [162]Beaupre G S, Orr T E, Carter D R. An approach for time-dependent bone modeling and remodel ing-theoretical development. Journal of Orthopaedic Research.1990,8(5):651-661.
    [163]Beaupre G S, Orr T E, Carter D R. An approach for time-dependent bone modeling and remodeling-application:a preliminary remodeling simulation. Journal of Orthopaedic Research.1990,8(5):662-670.
    [164]Jacobs C R, Simo J C, Beaupre G S et al. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. Journal of Biomechanics.1997, 30(6):603-613.
    [165]Fernandes P R, Rodrigues H, Jacobs C. A model of bone adaptation.using a global optimization criterion based on the trajectorial theory of Wolff. Computer Methods in Biomechanics and Biomedical Engineering.1999,2(2):125-138.
    [166]Fernandes P R, Folgado J, Jacobs C et al. A contact model with ingrowth control for bone remodelling around cementless stems. Journal of Biomechanics.2002,35(2):167-176.
    [167]Jacobs C R. The mechanobiology of cancellous bone structural adaptation. Journal of Rahabilitation Research and Development.2000,37(2):209-216.
    [168]Burger E H, Klein-Nulend J, van der Plas A et al. Function of osteocytes in bone-their role in mechanotransduction. The Journal of Nutrition.1995,125(Suppl 7):2020S-2023S.
    [169]Lanyon L E. Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone.1996,18(Suppl 1):37S-43S.
    [170]Bonewald L F. Osteocytes:a proposed multifunctional bone cell. Journal of Musculoskeletal and Neuronal Interactions.2002,2(3):239-241.
    [171]曲华,吴文周,赵永红.骨应力与生长关系的细观机制.太原理工大学学报.2003,34(5):509-512.
    [172]Cowin S C. Mechanical modeling of the stress adaptation process in bone. Calcified Tissue International.1984,36(Suppl 1):s98-s103.
    [173]Cowin S C, Luo G M, Sadegh A M et al. On the sufficiency conditions for the stability of bone remodeling equilibrium. Journal of Biomechanics.1994,27(2):183-186.
    [174]Martin R B, Clark R N, Advani S. An electro-mechanical basis for osteonal mechanics. In:Brighton C T, Goldstein S A, ed. Advances in Bioengineering. New York:ASME,1974.
    [175]Smit T H, Burger E H. Is BMU-coupling a strain-regulated phenomenon? A finite element analysis. Journal of Bone and Mineral Research.2000,15(2):301-307.
    [176]Smit T H, Burger E H, Huyhge J M. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment. Journal of Bone and Mineral Research.2002, 17(11):2021-2029.
    [177]Turner C H, Owen I, Takano Y. Mechanotransduction in bone:role of strain rate. American Journal of Physiology.1995,269(3):E438-E442.
    [178]Brown T D, Pedersen D R, Gray M L et al. Toward an identification of mechanical parameters initiating periosteal remodeling:a combined experimental and analytic approach. Journal of Biomechanics.1990,23(9):893-905.
    [179]EiMessiery M A, Phil M. Physical basis for piezoelectricity of bone matrix. IEEE Transaction on Biomedical Engineering.1981,28A:336-346.
    [180]Knothe Tate M L, Niederer P, Knothe U. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone. 1998,22(2):107-117.
    [181]Bakker A D, Joldersma M, Klein-Nulend J et al. Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. American Journal of Physiology, Endocrinology and Metabolism.2003,285(3):608-613.
    [182]McGarry J G, Klein-Nulend J, Prendergast P J. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostanglandin E2 release in osteocytes and osteoblasts. Biochemical and Biophysical Research Communications.2005, 330(1):341-348.
    [183]Bonewald L F. Establishment and characterization of an osteocyte-like cell line ML0-Y4. Journal of Bone and Mineral Metabolism.1999,17(1):61-65.
    [184]张兵兵,潘君,王远亮等.流体剪切力在骨生长、重建中的重要作用.医用生物力学.2005,20(2):123-126.
    [185]Hillsley M V, Frangos J A. Review:bone tissue engineering:the role of interstitial fluid flow. Biotechnology and Bioengineering.1994,43(7):573-581.
    [186]Weinbaum S, Cowin S C, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. Journal of Biomechanics.1994,27(3):339-360.
    [187]Cowin S C, Weinbaum S, Zeng Y. A case for bone canaliculi as the anatomical site of strain generated potentials. Journal of Biomechanics.1995,28(11):1281-1297.
    [188]Turner C H, Forwood M R, Otter M W. Mechanotransduction in bone:do bone cells act as sensors of fluid flow? The FASEB Journal.1994,8(11):875-878.
    [189]Duncan R L, Turner C H. Mechanotransduction and the functional response of bone to mechanical strain. Calcified Tissue International.1995,57(5):344-358.
    [190]Owan I, Burr D B, Turner C H et al. Mechanotransduction in bone:osteoblasts are more responsive to fluid forcoes than mechanical strain. American Journal of Physiology.1997, 273(3):C810-C815.
    [191]Mullender M G, El Haj A J, Yang Y et al. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Medical& Biological Engineering& Computing.2004, 42(1):14-21.
    [192]Klein-Nulend J, Bacabac R G, Mullender M G. Mechanobiology of bone tissue. Pathologie Biologie (Paris).2005,53(10):576-580.
    [193]McGarry J G, Klein-Nulend J, Mullender M G et al. A comparison of strain and fluid shear stress in stimulating bone cell responses-a computational and experimental study. The FASEB Journal.2005,19(3):482-504.
    [194]Frost H M. Intermediary organization of the skeleton. FL:Boca Raton,1986.
    [195]Martin R B, Burr D B. The structure, function and adaptation of cortical bone. New York:Raven Press,1989.
    [196]Prendergast P J, Huiskes R. Microdamage and osteocyte-lacuna strain in bone:a microstructural finite element analysis. Journal of Biomechanical Engineering.1996, 118(2):240-246.
    [197]Martin R B. Is all cortical bone remodelling initiated by microdamage? Bone.2002, 30(1):8-13.
    [198]Lee T C, Staines A, Taylor D. Bone adaptation to load:microdamage as a stimulus for bone remodelling. Journal of Anatomy.2002,201(6):437-446.
    [199]Taylor D, Hazenberg J G, Lee T C. Living with cracks:damage and repair in human bone. Nature Material.2007,6(4):263-268.
    [200]Burr D B, Martin R B, Schaffler M B et al. Bone remodeling in response to in vivo fatigue microdamage. Journal of Biomechanics.1985,18(3):189-200.
    [201]Mori S, Burr D B. Increased intracortical remodelling following fatigue damage. Bone. 1993,14(2):103-109.
    [202]朱兴华,白凤德,董心等.三面固定槽形加压钢板内固定后股骨表面再造模拟.中国生物医学工程学报.1997,16(2):128-132.
    [203]高中礼,赵长福,于庆巍等.人工股骨置换术后骨再造预测.生物医学工程学杂志.2003,20(2):295-298.
    [204]Van Rietbergen B, Huiskes R, Weinans H et al. ESB Research Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems. Journal of Biomechanics. 1993,26(4-5):369-382.
    [205]Vena P, Verdonschot N, Contro R et al. Sensitivity analysis and optimal shape design for bone-prosthesis interfaces in a femoral head surface replacement. Computer Methods in Biomechanics and Biomedical Engineering.2000,3(3):245-256.
    [206]Hedia H S. Stiffness optimisation of cement and stem materials in total hip replacement. Bio-Medical Materials and Engineering.2001,11(1):1-10.
    [207]Lenz J, Rong Q, Schweizerhof K et al. FE-simulation of bone modeling around an implant in the mandible in two-stage versus one-stage implantation. Biomedical Engineering.2002, 47(Suppl 1):298-301.
    [208]Katoozian H, Barani Z, Davy D T. Adaptive bone remodeling criteria applied to design optimization of femoral component of hip prostheses. Journal of Mechanics in Medicine and Biology.2005,5(1):191-202.
    [209]Gupta S, New A M, Taylor M. Bone remodelling inside a cemented resurfaced femoral head. Clinical Biomechanics.2006,21(6):594-602.
    [210]Xu W, Robinson K. X-ray image review of the bone remodeling around an osseointegrated trans-femoral implant and a finite element simulation case study. Annals of Biomedical Engineering.2008,36(3):435-443.
    [211]Chou H Y, Jagodnik J J, Muftu S. Predictions of bone remodeling around dental implant systems. Journal of Biomechanics.2008,41(6):1365-1373.
    [212]Fyhrie D P, Carter D R. Femoral head apparent density distribution predicted from bone stresses. Journal of Biomechanics.1990,23(1):1-10.
    [213]Hart R T, Davy D T. Theories of bone modeling and remodeling. In:Cowin S C, ed. Bone Mechanics. Boca Raton:CRC Press,1989.
    [214]Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clinical Orthopaedics and Related Research.1992, (274):124-134.
    [215]Ruimerman R, Hilbers P, van Rietbergen B et al. A theoretical framework for strain-related trabecular bone maintenance and adaptation. Journal of Biomechanics.2005, 38(4):931-941.
    [216]Turner C H, Anne V, Pidaparti R M V. A uniform strain criterion for trabecular bone adaptation:do continuum-level strain gradients drive adaptation? Journal of Biomechanics. 1997,30(6):555-563.
    [217]Jacobs C R, Levenston M E, Beaupre G S et al. Numerical instabilities in bone remodeling simulations:the advantages of a node-based finite element approach. Journal of Biomechanics.1995,28(4):449-459.
    [218]Carter D R, Hayes W C. The compressive behavior of bone as a two-phase porous structure. Journal of Bone and Joint Surgery of America.1977,59(7):954-962.
    [219]Currey J D. The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. Journal of Biomechanics.1988,21 (2):131-139.
    [220]Keller T S. Predicting the compressive mechanical behavior of bone. Journal of Biomechanics.1994,27(9):1159-1168.
    [221]Morgan E F, Bayraktar H H, Keaveny T M. Trabecular bone modulus-density relationships depend on anatomic site. Journal of Biomechanics.2003,36(7):897-904.
    [222]Rice J C, Cowin S C, Bowman J A. On the dependence of the elasticity and strength of cancellous bone on apparent density. Journal of Biomechanics.1988,21(2):155-168.
    [223]Doblare M, Garcia J M. Anisotropic bone remodelling model based on a continuum damage-repair theory. Journal of Biomechanics.2002,35(1):1-17.
    [224]马宗民,李淑娴,朱兴华.基于Wolff定律的各向异性骨再造模型.中国生物医学工程学报.2007,26(6):908-911.
    [225]王晓洁,罗教明,杨立等.种植体周围骨内应力分布的三维有限元分析.实用口腔医学杂志.2005,21(5).
    [226]van Staden R C, Guan H, Loo Y C. Application of the finite element method in dental implant research. Computer Methods in Biomechanics and Biomedical Engineering.2006, 9(4):257-270.
    [227]Brekelmans W A M, Poort H W, Slooff T J J H. A new method to analyse the mechanical behavior of skeletal parts. Acta Orthopaedica Scandinavica.1972,43(5):301-317.
    [228]Rybicki E F, Simonen F A, Weis E B. On the mathematical analysis of stress in human femur. Journal of Biomechanics.1972,5(2):203-215.
    [229]Thresher R W, Saito G E. The stress analysis of human teeth. Journal of Biomechanics. 1973,6(5):443-449.
    [230]Farah J W, Craig R G, Sikarskie D L. Photoelastic and finite element stress analysis of a restored axisymmetric first molar. Journal of Biomechanics.1973,6(5):511-520.
    [231]董玉英,董福生,邢汝东等.种植体直径对骨界面应力分布影响的三维有限元分析.中国口腔种植学杂志.2001,6(2):55-57.
    [232]董福生,董玉英,邢汝东等.种植体长度对骨界面应力分布影响的三维有限元分析.中国口腔种植学杂志.2001,6(3):106-108.
    [233]丁熙,陈树华,陈日齐等.倾斜角度对种植体骨界面生物力学影响的三维有限元分析.中国口腔种植学杂志.2002,7(4):162-165.
    [234]韩栋伟,李巧明.不同牙尖斜度对单个种植义齿应力分布的影响.实用口腔医学杂志.2004,20(2):159-162.
    [235]卢军,潘可风,徐晓琳等.不同骨结合率对种植体骨界面应力分布的影响.口腔颌面外科杂志.2005,15(3):234-237.
    [236]赵峰,高勃,刘振侠.螺旋形种植体骨界面初始应力的三维有限元分析.牙体牙髓牙周病学杂志.2006,16(5):257-260.
    [237]高勃,赵峰,刘振侠.螺旋形种植体弹性模量与骨界面应力分布关系的三维有限元分析.临床口腔医学杂志.2006,22(11):667-670.
    [238]赵永康,马红梅,张力等.种植体杨氏模量变化对下颌骨应力分布影响的有限元分析.华西口腔医学杂志.2006,24(1):89-91.
    [239]丁熙,朱形好,廖胜辉等.不同直径种植体对即刻负载种植体骨界面应力分布的影响.医用生物力学.2007,22(2):146-150.
    [240]Akagawa Y, Sato Y, Teixeira E R et al. A mimic osseointegrated implant model for three-dimensional finite element analysis. Journal of Oral Rehabilitation.2003, 30(1):41-45.
    [241]Geng J P, Xu W, Tan K B C et al. Finite element analysis of an osseointegrated stepped screw dental implant. Journal of Oral Implantology.2004,30(4):223-233.
    [242]Sevimay M, Turhan F, Kilicarslan M A et al. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. The Journal of Prosthetic Dentistry.2005,93(3):227-234.
    [243]Natali A N, Pavan P G, Ruggero A L. Analysis of bone-implant interaction phenomena by using a numerical approach. Clinical Oral Implants Research.2006,17(1):67-74.
    [244]Mellal A, Wiskott H W, Botsis J et al. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clinical Oral Implants Research.2004,15(2):239-248.
    [245]Li J, Li H, Shi L et al. A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dental Materials.2007,23(9):1073-1078.
    [246]Neoss. Neoss Implant System Surgical Guidelines. UK 2006.
    [247]Aparicio C, Orozco P. Use of 5-mm-diameter implants:Periotest values related to a clinical and radiographic evaluation. Clinical Oral Implants Research.1998,9(6):398-406.
    [248]Peng L, Bai J, Zeng X et al. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Medical Engineering& Physics.2006,28(3):227-233.
    [249]Papavasiliou G, Kamposiora P, Bayne S C et al.3D-FEA of osseointegration percentages and patterns on implant-bone interfacial stresses. Journal of Dentistry.1997, 25(6):485-491.
    [250]Roberts W E. Bone tissue interface. Journal of Dental Education.1988,52(12):804-809.
    [251]Block M S, Finger I M, Fontenot M G et al. Loaded hydroxylapatite-coated and grit-blasted titanium implants in dogs. The International Journal of Oral& Maxillofacial Implants.1989,4(3):219-225.
    [252]胡远东.种植体周围骨吸收的因素.口腔颌面外科杂志.2000,1(3):177-179.
    [253]董玉英.人工种植牙生物力学研究进展.中国口腔种植学杂志.1999,4(1):39-42.
    [254]Branemark P I, Adell R, Breine U et al. Intra-osseous anchorage of dental prostheses. Ⅰ. Experimental studies. Scandinavian Journal of Plastic and Reconstructive Surgery.1969, 3(2):81-100.
    [255]Branemark P I. Osseointegration and its experimental background. The Journal of Prosthetic Dentistry.1983,50(3):399-410.
    [256]Schroeder A, van der Zypen E, Stich H et al. The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. Journal of Maxillofacial Surgery.1981,9(1):15-25.
    [257]汪昆,李得华,李玉龙等.种植体骨结合率对种植体固有频率影响的有限元分析.第四军医大学学报.2005,26(5):1996-1998.
    [258]Barth E, Johansson C, Albrektsson T. Histologic comparison of ceramic and titanium implants in cats. The International Journal of Oral& Maxillofacial Implants.1990, 5(3):227-231.
    [259]邢晓建,刘宝林,刘岚.骨结合率对种植体-骨界面应力分布的影响.西安交通大学学报(医学版).2002,23(4):395-397.
    [260]Watzak G, Zechner W, Ulm C et al. Histologic and histomorphometric analysis of three types of dental implants following 18 months of occlusal loading:a prelimary study in baboons. Clinical Oral Implants Research.2005,16(4):408-416.
    [261]Rebaudi A, Koller B, Laib A et al. Microcomputed tomographic analysis of the peri-implant bone. The International Journal of Periodontics& Restorative Dentistry.2004, 24:316-325.
    [262]巩磊,傅戈雁,陈治民.快速成型与逆向工程技术及其在医学中的应用.《新技术新工艺》-热加工工艺技术与装备.2006,3:67-69.
    [263]王蔚年.人工膝关节:理论基础与临床应用.上海:复旦大学出版社,2004.
    [264]许玉林,孙允高,张春林.膝关节生物力学模型研究现状.医用生物力学.2003,18(4):250-255.
    [265]许玉林,孙允高,张春林.膝关节动力学模型的研究进展.国外医学(生物医学工程分册).2004,27(1):57-60.
    [266]Huiskes R, Chao E Y. A survey of finite element analysis in orthopedic biomechanics: the first decade. Journal of Biomechanics.1983,16(6):385-409.
    [267]Huiskes R, Hollister S J. From structure to process, from organ to cell:recent developments of FE-analysis in orthopaedic biomechanics. Journal of Biomechanical Engineering.1993,115 (4B):520-527.
    [268]吴文周,孙珏.人体膝关节应力场分布.太原工学院学报.1982,2(1):12-16.
    [269]王以进.膝关节半月板的运动创伤分析.体育数学与体育系统工程.1992,2(1).
    [270]张宇,郝智秀,金德闻等.基于磁共振图像的人体膝关节三维模型的建立.中国康复医学杂志.2007,22(4):339-342.
    [271]万磊,李义凯,原林等.基于中国数字人CT数据重建膝关节有限元模型.中国骨与关节损伤杂志.2006,21(4):271-273.
    [272]张美超,赵卫东,原林等.建立数字化虚拟中国男性一号膝关节的有限元模型.第一军医大学学报.2003,23(6):527-529.
    [273]潘哲尔,黄加张,顾湘杰等.磁共振影像膝关节三维有限元模型的建立.中国骨与关节损伤杂志.2006,21(4):268-270.
    [274]何毓珏,尚鹏,叶铭等.基于膝关节三维模型的髌股关节动力学特性研究.医用生物力学.2005,20(4):216-221.
    [275]Donahue T L H, Hull M L, Rashid M M et al. A finite element model of the human knee joint for the study of tibio-femoral contact. Journal of Biomechanical Engineering.2002, 124(3):273-280.
    [276]Gardiner J C, Weiss J A. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. Journal of Orthopaedic Research.2003, 21(6):1098-1106.
    [277]Yao J, Tamez-Pena J, Totterman S et al. Finite element modeling of in vivo knee joint contact under axial loading.11th Annual Symposium on Computational Methods in Orthopaedic Biomechanics. New Orleans, LA,2003.
    [278]Yao J, Salo A, Barbu-Mclnnis M et al. Finite element modeling of knee joint contact pressures and comparison to magnitic resonance imaging of the loaded knee. Proceedings of IMECE'03,2003 International Mechanical Engineering Congress& Exposition. Washington D. C.2003.
    [279]Yao J, Snibbe J, Maloney M et al. Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading:a finite element analysis with image-based experimental validation. Journal of Biomechanical Engineering.2006,128(1):135-141.
    [280]Bratianu C, Rinderu P, Gruioun L. A 3D finite element model of a knee for joint contact stress analysis during sport activities. Key Engineering Materials.2004,261-263:513-518.
    [281]Pena E, Martinez M A, Calvo B et al. A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. Clinical Biomechanics.2005, 20(6):636-644.
    [282]Pena E, Calvo B, Martinez M A et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of Biomechanics.2006,39(9):1686-1701.
    [283]崔旭,赵德伟,古长江.股骨头缺血性坏死塌陷预测的生物力学研究.中国临床解剖学杂志.2005,23(2):193-198.
    [284]伍中庆,吴宇峰,苏培基等.膝关节三维有限元模型的建立.中华实用中西医杂志.2004,4(17):2970-2971.
    [285]薛文,王坤正,凌伟.螺旋CT扫描建立成人股骨头坏死三维有限元模型.陕西医学杂志.2005,34(11):1339-1341.
    [286]赵德伟,徐达传,崔旭.股骨头不同区域囊变对力学承载的影响.中华骨科杂志.2005,25(4):232-235.
    [287]于书娟,汪大林,李笑梅等.三维激光扫描技术建立附着体义齿的三维数字化模型.临床口腔学杂志.2005,21(3):160-161.
    [288]张美超,廖进民,李敏等.激光三维扫描系统重建下颌骨.第一军医大学学报.2004,24(7):756-757.
    [289]陈强,侯铁胜,杨国标等.全颈椎三维有限元模型的建立.第二军医大学学报.2006,27(5):554-555.
    [290]陆声,张美超,徐永清等.骨质疏松腰椎三维有限元数字化模型的建立.中国临床康复.2006,10(9):127-129.
    [291]马春生,张海钟,杜汇良等.具有解剖基下颌的人体头部有限元模型的建立.生物医学工程学杂 志.2005,22(1):53-56.
    [292]吴胜勇,张美超,李景学等.骨质疏松老年妇女有限元模型的建立.中国临床解剖学杂志.2004,22(6):661-663.
    [293]张美超,刘阳,刘则玉等.利用Mimics和Freeform建立中国数字人上颌第一磨牙三维有限元模型.医用生物力学.2006,21(3):208-211.
    [294]赵万鹏,林峰,卢清萍等.三维重建和体积测量法预测股骨头坏死的塌陷.清华大学学报(自然科学版).2005,45(11):1460-1463.
    [295]赵万鹏,林峰,卢清萍等.三维重建及有限元分析预测股骨头坏死塌陷.中国生物医学工程学报.2005,24(6):784-787.
    [296]傅栋,靳安民.应用CT断层图像快速构建人体骨骼有限元几何模型的方法.中国组织工程研究与临床康复.2007,11(9):1620-1623.
    [297]汪光晔,张春才,许硕贵等.标准步态下骨盆三维有限元模型构建及其生物力学意义.第四军医大学学报.2007,28(4):379-382.
    [298]尚鹏,叶铭,王成焘.基于CT&MRI的人体下肢肌肉-骨骼数字化模型.生物医学工程学杂志.2004,21(5):756-760.
    [299]Boyd S K, Muller R. Smooth surface meshing for automated finite element model generation from 3D image data. Journal of Biomechanics.2006,39(7):1287-1295.
    [300]Camacho D L, Hopper R H, Lin G M et al. An improved method for finite element mesh generation of geometrically complex structures with application to the skullbase. Journal of Biomechanics.1997,30(10):1067-1070.
    [301]Gao J, Xu W, Ding Z.3D finite element mesh generation of complicated tooth model based on CT slices. Computer Methods and Programs in Biomedicine.2006,82(2):97-105.
    [302]Kaminsky J, Rodt T, Gharabaghi A et al. A universal algorithm for an improved finite element mesh generation mesh quality assessment in comparison to former automated. Medical Engineering& Physics.2005,27(5):383-394.
    [303]Teo J C M, Chui C K, Wang Z L et al. Heterogeneous meshing and biomechanical modeling of human spine. Medical Engineering& Physics.2007,29(2):277-290.
    [304]Yin H M, Sun L Z, Wang G et al. ImageParser:a tool for finite element generation from three-dimensional medical images. Biomedical Engineering Online.2004,3(31):1-9.
    [305]陈功,易红,倪中华.基于逆向工程的医学器官有限元建模方法.机械工程学报.2006,42(1):139-144.
    [306]胡鑫,习俊通,金烨等.一种髋关节计算机辅助建模新方法的研究.生物医学工程学杂志.2004,21(5):828-831.
    [307]黄雪梅,林艳萍,王成焘.基于逆向工程的个体化人工膝关节CAD建模.机械设计与研究.2004,20(4):81-82.
    [308]王疆.逆向工程软件结合Micro CT技术在牙体组织精细三维有限元模型建立中的应用.第四军医大学学报.2006,27(8):744-747.
    [309]Sun W, Starly B, Nam J et al. Bio-CAD modeling and its applications in computer-aided tissue engineering. Computer-Aided Design.2005,37(11):1097-1114.
    [310]Viceconti M, Zannoni C, Pierotti L. TRI2SOLID:an application of reverse engineering methods to the creation of CAD models of bone segments. Computer Methods and Programs in Biomedicine.1998,56(3):211-220.
    [311]Zheng S, Zhao W, Lu B.3D reconstruction of the structure of a residual limb for customising the design of a prosthetic socket. Medical Engineering& Physics.2005, 27(1):67-74.
    [312]李鉴轶,赵卫东,余正红等.膝关节三维软骨的三维构建.解剖学杂志.2007,30(6):695-697.
    [313]潘田佳,罗阳,张向娟等.基于逆向工程的人体颌骨个体化三维实体重建研究.计算机应用技术.2008,35(3):30-33.
    [314]Zielinska B, Donhue T.3D finite element model of meniscectomy:changes in joint contact behavior. Journal of Biomechanical Engineering.2006,128(1):115-123.
    [315]Shepard D, Seedhom B. "The instantaneous" compressive modulus of human articular cartilage in joints of the lower limb. Rhumatology.1999,38(2):124-132.
    [316]李子荣.应重视类似股骨头坏死髋关节疾病的鉴别诊断.中华医学杂志.2006,86(7):433-434.
    [317]Babia G C, Soucacos P N. Effectiveness of total hip arthroplasty in the management of hip osteonecrosis. Orthopedic Clinics on North America.2004,35 (3):359.
    [318]张鹤山,李子荣.股骨头坏死诊断与治疗的专家建议.中华骨科杂志.2007,27(2):146-147.
    [319]王凯冰,白彬,王宏辉等.股骨头缺血性坏死治疗的研究现状.哈尔滨医科大学学报.2007,41(1):79-81.
    [320]王义生.股骨头坏死的微创技术治疗.河南医学研究.2005,14(3):278-280.
    [321]赵德伟.股骨头缺血性坏死手术治疗方案的选择.中华医学杂志.2006,86(7):435-437.
    [322]Brown T D, Hild G L. Pre-collapse stress redistributions in femoral head osteonecrosis-a three-dimensional finite element analysis. Journal of Biomechanical Engineering.1983,105(2):171-176.
    [323]Yang J W, Koo K H, Lee M C et al. Mechanics of femoral head osteonecrosis using three-dimensional finite element method. Archives of Orthopaedic and Trauma Surgical.2002, 122(2):88-92.
    [324]张念非,李子荣,刘成刚等.股骨头缺血性坏死股骨头塌陷的预测.中日友好医院学报.2002,16(5-6):289-293.
    [325]Marom S A, Linden M J. Computer aided stress analysis of long bones utilizing computed tomography. Journal of Biomechanics.1990,23(5):399-404.
    [326]Edidin A A, Taylor D L, Bartel D L. Automatic assignment of bone moduli from CT data: a 3-d finite element study.37th Annual Meeting of the Orthopaedic Research Society. Anaheim, California.1991.
    [327]Zannoni C, Mantovani R, Viceconti M. Material properties assignment to finite element models of bone structures:a new method. Medical Engineering& Physics.1998, 20(10):735-740.
    [328]Taddei F, Pancanti A, Viceconti M. An improved method for the automatic mapping of computed tomography numbers onto finite element models. Medical Engineering& Physics.2004, 26(1):61-69.
    [329]Taddei F, Schileo E, Helgason B et al. The material mapping strategy influences the accuracy of CT-based finite element models of bones:an evaluation against experimental measurements. Medical Engineering& Physics.2007,29(9):973-979.
    [330]Schileo E, Taddei F, Cristofolini L et al. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. Journal of Biomechanics.2008, 41(2):356-367.
    [331]McBroom R J, Hayes W C, Edwards W T et al. Prediction of vertebral body compressive fracture using quantitative computed tomography. Journal of Bone and Joint Surgery.1985, 67(8):1206-1214.
    [332]Ciarelli M J, Goldstein S A, Kuhun J L et al. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. Journal of Orthopaedic Research.1991, 9(5):674-682.
    [333]Rho J Y, Hobatho M C, Ashman R B. Relations of mechanical properties to density and CT numbers in human bone. Medical Engineering& Physics.1995,17(5):347-355.
    [334]Yang G, Kabel J, VanRiertbergen B et al. The anisotropic Hooke's law for cancellous bone and wood. Journal of Elasticity.1999,53(2):125-146.
    [335]Yosibash Z, Padan R. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. Journal of Biomechanical Engineering.2007, 129(3):297-309.
    [336]Ducheyne P, Heymans L, Martens M et al. The mechanical behaviour of intracondylar cancellous bone of the femur at different loading rates. Journal of Biomechanics.1977, 10(11/12):747-762.
    [337]Martens M, Van Audekercke R, Delport P et al. The mechanical characteristics of cancellous bone at the upper femoral region. Journal of Biomechanics.1983,16(12):971-983.
    [338]Helgason B, Perilli E, Schileo E. Mathematical relationships between bone density and mechanical properties:A literature review. Clinical Biomechanics.2008, 23(2):135-146.
    [339]Harrigan T P, Harris W H. A finite element study of the effect of diametral interface gaps on the contact areas and pressures in uncemented cylindrical femoral total hip components. Journal of Biomechanics.1991,24(1):87-91.
    [340]Wirtz D C, Schiffers N, Pandorf T et al. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. Journal of Biomechanics.2000, 33(10):1325-1330.
    [341]Keyak J H. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Medical Engineering& Physics.2001,23(3):165-173.
    [342]Pawlikowski M, Skalski K, Haraburda M. Process of hip joint prosthesis design including bone remodeling phenomenon. Computers and Structures.2003,81(8):887-893.
    [343]Komistek R D, Stiehl J B, Dennis D A et al. Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics. Journal of Biomechanics.1998, 31 (2):185-189.
    [344]吕厚山.人工关节外科学.北京:科学出版社,1999.
    [345]郑秀瑗,贾书惠,高云峰.现代运动生物力学.北京:国防工业出版社,2002.
    [346]王西十,白瑞璞,Turner S T等.股骨-胫骨-髌骨三体人膝关节咬合运动数学模型.生物医学工程学杂志.1998,15(4):360-362.
    [347]王西十,白瑞璞.关于人膝关节生物力学模型的研究现状.力学进展.1999,29(2):244-250.
    [348]王西十,王岷.一个三维人膝关节咬合的生物力学模型.力学与实践.2000,22(5):42-44.
    [349]王西十,王岷.一个三维人膝关节咬合的生物力学模型.固体力学学报.2000,21(4):341-344.
    [350]张培玉,金德闻,白彩勤等.多轴膝关节假肢稳定性的分析.康复医学工程.1998,13(1):18-20.
    [351]Morrison J B. The mechanics of the knee joint in relation to normal walking. Journal of Biomechanics.1970,3(1):51-61.
    [352]Harrington I J. A bioengineering analysis of force actions at the knee in normal and pathological gait. Biomedical Engineering.1976,11(5):167-172.
    [353]Collins J J, O'Connor J J. Muscle-ligament inteactions at the knee during walking. Proceedings of the Institute of Mechanical Engineers.1991,205(1),11-18.
    [354]Collins J J. The redundant nature of locomotor optimization laws. Journal of Biomechanics.1995,28(3):251-267.
    [355]Shelburne K B, Pandy M G, Anderson F C et al. Pattern of anterior cruciate ligament force in normal walking. Journal of Biomechanics.2004,37(6):797-805.
    [356]Thambyah A, Pereira B P, Wyss U. Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking. The Knee.2005,12(5):383-388.
    [357]Smith S M, Cockbum R A, Hemmerich A et al. Tibiofemoral joint contact forces and knee kinematics during squatting. Gait& Posture.2008,27(3):376-386.
    [358]Azangwe G, Mathias K J, Marshall D. Preliminary comparison of the rupture of human and rabbit anterior cruciate ligament. Clinical Biomechanics.2001,16(10):913-917.
    [359]王海鹏,容可,钟砚琳等.膝关节周围韧带三维有限元模型的建立.上海交通大学学报(医学版).2008,28(4):367-370.
    [360]Liu W, Maitland M E. The effect of hamstring muscle compensation for anterior laxity in the ACL-deficient knee during gait. Journal of Biomechanics.2000,33(7):871-879.
    [361]Nagura T, Dyrby C O, Alexander E J et al. Mechanical loads at the knee joint during deep flexion. Journal of Orthopaedic Research.2002,20(4):881-886.
    [362]Thambyah A. How critical are the tibiofemoral joint reaction forces during frequent squatting in Asian populations? The Knee.2008, doi:10.1016/j. knee.2008.04.006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700