UPFC多目标控制器设计及其对电力系统影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵活交流输电系统(FACTS)利用大功率电力电子器件来改善电力系统输电性能,作为其典型代表——统一潮流控制器(UPFC)能够同时或分别调节传输线路的阻抗、相角和电压,从而在不影响系统稳定性的前提下,提高线路传输功率能力,改善电压质量。论文就如何实现UPFC的多目标控制这一课题在以下几个方面展开了深入研究:
     首先简要阐述了灵活交流输电系统的基本概念和分类,重点讨论了统一潮流控制器的结构、工作原理、动稳态数学模型以及在控制策略、物理结构及其装置研制和应用等方面的研究现状。
     其次,使用传统的比例-积分(PI)控制策略,分别对UPFC的串、并联两侧进行控制器设计。串联侧等效注入电压的横分量用来控制线路有功功率,纵分量用来控制线路的无功功率;并联侧等效注入电流的横分量用来控制接入节点电压幅值,纵分量用来控制UPFC公用直流电容电压。利用MATLAB软件编程对含UPFC的单机无穷大系统进行潮流调节和暂态稳定的仿真。仿真结果表明UPFC具有快速调节线路有功、无功潮流,稳定接入点母线电压和提高系统暂态稳定性的功能。
     接着,综述目前研究UPFC安装位置的常用方法。利用线路有功潮流性能指数的概念,由UPFC控制参数对输电线路有功过负荷能力产生影响的灵敏度因子来确定UPFC的最佳安装位置;以经济收益最大为目标来确定UPFC的容量。将该方法用于分析IEEE14节点中UPFC安装位置和容量大小,与常用的优化算法相比,该方法更为简单,效率更高。
     最后,将UPFC的多目标控制器的设计问题转化为一个多目标优化问题,采用量子遗传算法优化控制器参数。为验证算法的有效性,与传统的遗传算法比较,对测试函数的仿真结果表明,量子遗传算法具有种群小、快速收敛的优点。对所设计的控制器进行时域仿真,验证UPFC的多目标控制功能。
High power electronic devices are used in Flexible AC Transmission System (FACTS) to improve the performance of power system. As a typical representative, Unified Power Flow Controller (UPFC) can concurrently or selectively control the impedance, the phase angle and the voltage of the transmission line. It can also improve transmission line capacity and voltage quality without affecting the stability of power system.
     First of all, the thesis introduces the basic concepts of FACTS, focusing on the researches which contain the structure, working principle, steady and dynamic mathematical models, control strategies and applications of UPFC.
     Second, the traditional proportional-integral (PI) control strategy is used. The series part of the UPFC is mainly used to control the real power and reactive power of the transmission line. The shunt part of the UPFC is used to control the public DC capacitor voltage and the node voltage where the UPFC is connected. The time domain simulations of the single machine infinite system with UPFC are presented by MATLAB. The simulation results show that UPFC has quick adjustment in changing active and reactive power flow, and also can maintain the bus voltage and improve the transient stability of the system.
     Third, use the real power flow performance index to find the optimal location of UPFC in multi-machine system. And then select the capacity of UPFC with the objective of gaining maximum economic benefits.
     Finally, the design of the UPFC multi-objective controller based on Quantum Genetic Algorithm (QGA) is showed. The QGA has advantages in smaller populations and faster convergence. The time domain simulation results verify the functions of this controller.
引文
[1]包顺先.提高电力系统动态稳定性的UPFC模糊控制器研究[D].天津:天津大学,2006.
    [2]王平.UPFC的仿真分析及其控制器设计[D].南昌:南昌大学,2007.
    [3]李乃湖,李杨,陈珩.灵活交流输电技术在互联网络中的应用[J].中国电力,1995,4:2-6.
    [4]戴文升.柔性交流输电系统及其应用[J].机电信息中国电力发展与设备供应,2003,38(2):29~30.
    [5]赵贺.电力电子学在电力系统中的应用——灵活交流输电系统[M].北京:中国电力出版社,2001.
    [6]何大愚.柔性交流输电技术的定义、机遇及局限性[J].电网技术,1996,20(6):18~24.
    [7]N.G. Hingorani. Flexible AC Transmission Systems (FACTS) Overview [J]. IEEE Spectrum,1993:40~45.
    [8]何大愚.柔性交流输电技术概念研究的新进展[J].电网技术,1997,21(2):9~14.
    [9]张桂香.柔性交流输电系统(FACTS)的研究与前景[J].现代节能,1994,10(3):21~24.
    [10]杨安民.柔性交流输电(FACTS)技术综述[J].华东电力,2006,34(2):74~76.
    [11]喻新强.灵活交流输电技术在国家骨干电网中的工程应用[M].北京:中国电力出版社,2008.
    [12]张颖.基于UPFC时变动态相量模型的电力系统混合暂态仿真[D].南京:河海大学,2006.
    [13]Gyugyi.L. Unified Power Flow Control Concept for Flexible AC Transmission Systems [A]. IEE Conference Publication,1991,345:19~26.
    [14]黄振宇,赵亮,陈寿孙,等.电力系统动态分析中统一潮流控制器的模型研究[J].清华大学学报(自然科学版),1997,37(S1):74~78.
    [15]朱鹏程,刘黎明,刘小元等.统一潮流控制器的分析与控制策略[J].电力系统自动化,2006,30(1):45~51.
    [16]唐爱红,朱鹏程,程时杰,等.UPFC装置参数设计研究[J].高电压技术,2005,31(6):63~66.
    [17]孙元章,刘前进.FACTS控制技术综述——模型、目标与策略[J].电力系统自动化,1999,23(6):8-13.
    [18]周孝信,郭剑波,林集明.电力系统可控串联电容补偿[M].北京:科学出版社,2009.
    [19]A.J.F.Keri, X.Lombard. Unified Power Flow Controller (UPFC) Modeling and Analysis [J]. IEEE Transactions on Power Delivery,1999,14(2):648~654.
    [20]王庆红,胡国根.统一潮流控制器的Matlab仿真建模及分析[J].电网技术,2000,24(9):22~25.
    [21]颜伟,朱继忠,孙洪波,等.UPFC的潮流控制与暂态稳定性研究[J].中国电机工程学报,2000,20(12):57~61.
    [22]万波,张焰.一种新的UPFC潮流计算模型[J].电力自动化设备,2003,23(12):25~27.
    [23]R.Mihalic, P.Zunko, D.Povh. Improvement of Transient Stability Using Unified Power Flow Controller [J]. IEEE Transactions on Power Delivery,1996,11(1):485~491.
    [24]颜伟,朱继忠,孙洪波,等.UPFC的模型与控制器研究[J].电力系统自动化,1999,23(6):36~41.
    [25]邓集祥,王晔.含UPFC的电力系统中的分歧研究[J].电力自动化设备,2004,24(10):27~30.
    [26]Samina Elyas Mubeen, R.K.Nema, Gayatri Agnihotri. Power Flow Control with UPFC in Power Transmission System [A]. World Academy of Science, Engineering and Technology,2008,47:338~342.
    [27]鞠儒生,陈宝贤,邱晓刚.UPFC控制方法研究[J].中国电机工程学报,2003,23(6):60~65.
    [28]李岩松,郭家骥,刘君.UPFC暂态数学模型及其应用[J].电力系统自动化,2000,21(9):31~35.
    [29]WJ.Du, Z.Chen, H.F.Wang, P.JU. Robustness of Unified Power Flow Controller to The Variations of Control Operating Conditions [A]. Universities Power Engineering Conference,2006,2:507~510.
    [30]黄振宇,刁勤华,倪以信,等.统一潮流控制器的控制系统分析及控制策略设计[J].电网技术,1999,23(7):3~9.
    [31]Pengcheng Zhu, Liming Liu, Xiaoyuan Liu. Analysis and Comparison of Two Control Strategies for UPFC [A]. IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific,2005:1-7.
    [32]刘黎明,康勇,陈坚.统一潮流控制器的控制策略的研究与实现[J].中国电机工程学报,2006,26(10):114~119.
    [33]蔡松,段善旭,陈坚.阻抗跟踪对UPFC交叉解耦控制策略的改进[J].电力系统自 动化,2006,39(13):38~42.
    [34]Y.L.Kang, G.B.Shrestha, T.T.Lie. Application of An NLPID Controller on A UPFC to Improve Transient Stability of A Power System [J]. IEE Proceedings Generation Transmission and Distribution,2001,148(6):523~529.
    [35]杜继伟,王奔.基于非线性变结构控制的统一潮流控制器对电力系统稳定性改善的研究[J].电力科学与工程,2005,3:17~20.
    [36]孙琳,谢桦,梅生伟,等.UPFC混成控制器设计及其对四川电网稳定性的改善[J].控制理论与应用,2005,22(1):57~62.
    [37]何娜,刘瑞叶,徐殿国.UPFC模糊控制器设计及在市场环境下应用[J].电力自动化设备,2008,28(3):107~110.
    [38]T.K.Mok, YiXin Ni, Felix F.Wu. A Study of Fuzzy Logic Based Damping Controller for The UPFC [C]. Proceedings of 5th International Conference on Advances in Power System Control, Operation and Management:Hong Kong,2000:290~294.
    [39]Na He, Ruiye Liu, Dianguo Xu. The Study of UPFC Fuzzy Control with Self-adjustable Factor [C]. IEEE/PSE Transmission and Distribution Conference & Exhibition:Asia and Pacific Dalian, China,2005:1-5.
    [40]黄振宇,刁勤华,孙岩,等.UPFC的模糊调制控制研究[J].电力系统自动化,2000,24(2):36~41.
    [41]Kalyani R.P., Venayagamoorthy G.K.. Two Separate Continually Online Trained Neural Controllers for a Unified Power Flow Controller [C]. Conference Record of 38th IAS Annual Meeting:Rome,2003,2(2):308~315.
    [42]Dash P.K., Mishra S., Panda G.. A Radial Basic Function Neural Network Controller for UPFC [J]. IEEE Transactions on Power Systems,2000,15(4):1293~1299.
    [43]李骈文.美国INEZ变电站统一潮流控制器简介[J].电网技术,2002,26(8):84~87.
    [44]B.A. Renz, A. Keri, S. Schauder. AEP Unified Power Flow Controller Performance [J]. IEEE Transactions on Power Delivery,1999,14(4):1374~1381.
    [45]唐爱红,朱鹏程,程时杰,等.统一潮流调节器实验装置的研究[J].电工技术学报,2006,21(6):122~126.
    [46]郭晓冬,唐爱红,王少荣.UPFC实验系统实时数据同步交换研究[J].电气应用,2007,26(10):44~47.
    [47]陈淮金.UPFC电力系统的潮流计算研究[J].电力系统自动化,1996,20(3):23~27.
    [48]罗春雷,孙洪发,徐国禹.含PQV节点的潮流计算在UPFC中的应用[J].电力系统自动化,1997,21(4):12~16.
    [48]张扬,毛雪雁,徐政.用于电网稳态和暂态分析的统一潮流控制器模型[J].电网技 术,2002,26(7):30~33.
    [50]Haoming Liu, Haojun Zhu, Yang Li, et al. Including UPFC Dynamic Phasor Model into Transient Stability Program [C]. Power Engineering Society General Meeting of IEEE, 2005:1~6.
    [51]奚江惠,徐光瑜,陈寿孙.对统一潮流控制器采用零动态控制提高系统暂态稳定的研究[A].高等学校电力系统及其自动化专业第12届学术年会论文集(上册),1996,588~592.
    [52]Wang H F. Damping Function of Unified Power Flow Controller [J]. IEE Proc. Part C, 1999,146(1):81~87.
    [53]王海风,李敏,陈珩.装有统一潮流控制器的多机电力系统Phillips-Heffron模型及其应用[J].中国电机工程学报,2001,21(2):6~11.
    [54]Wang H F. Applications of Modeling UPFC into Multi-machine Power Systems [J]. IEE Proceedings Generation Transmission and Distribution,1999,146(3):306~312.
    [55]刘赞,吕厚余,侯世英.利用统一潮流控制器抑制电力系统低频振荡[J].重庆大学学报,2003,26(7):74~77.
    [56]Gyugyo L, Rietman T R, Edris A. The Unified Power Flow Controller:A New Approach to Power Transmission Control [J]. IEEE Transactions on Power Delivery,1995,2(10): 1085~1097.
    [57]Nanavi-Niaki A, Iravani M R. Steady-state and Dynamic Models of Unified Power Flow Controller for Power System Studies [J]. IEEE Transactions on Power Delivery,1996, 4(11):1937~1943.
    [58]刘新,姚蜀军,韩民晓,等.统一潮流控制器(UPFC)装置选址和定容研究[J].重庆大学学报,2008,10:165~169.
    [59]Wang H F. Interactions and Multi-variable Ddesign of Multiple Control Functions of A Unified Power Flow Controller [J]. International Journal of Electrical Power and Energy Systems,2002,24(7):591~600.
    [60]刘青,魏清,王增平.统一潮流控制器对距离保护影响的分析[J].电力科学与工程,2005,1:76~78.
    [61]程汉湘.柔性交流输电系统[M].北京:机械工业出版社,2009.
    [62]童强.含FACTS元件的电力系统潮流计算模型与算法的研究[D].湖南:湖南大学,2005.
    [63]张琳.FACTS控制器间的交互影响分析及控制策略研究[D].浙江:浙江大学,2007.
    [64]王正风.无功功率与电力系统运行[M].北京:中国电力出版社,2009.
    [65]李士勇,李盼池.量子计算与量子优化计算[M].哈尔滨:哈尔滨工业大学出版社, 2009.
    [66]黄友锐.智能优化算法及其应用[M].北京:国防工业出版社,2007.
    [67]Han K H, Park K H. Parallel Quantum-inspired Genetic Algorithm for Combinatorial Optimization Problems[A]. Piscataway:IEEE Press,2001,1442~1429.
    [68]杜娟,刘志刚.一种新的求解非线性方程组的混合量子遗传算法[J].微计算机应用,2008,29(7):1~5.
    [69]黄蓓,王士同.基于量子遗传算法的非线性无约束优化方法[J].微计算机信息,2006,22(3):264~266.
    [70]寸巧萍.基于量子遗传算法的电力系统无功优化[D].四川:西南交通大学,2008.
    [71]刘红文,张葛翔.基于改进量子遗传算法的电力系统无功优化[J].电网技术,2008,32(12):35~39.
    [72]D.Radu, Y.Besanger. A Multi-Objective Genetic Algorithm Approach to Optimal Allocation of Multi-Type FACTS Devices for Power Systems Security[A]. Power Engineering Society General Meeting,2006,1~8.
    [73]H.I.Shaheen, GI.Rashed, S.J.Cheng. Optimal Location and Parameters Setting of UPFC based on GA and PSO for Enhancing Power System Security under Single Contingencies [A]. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21 st Century,2008 IEEE,1~8.
    [74]M.Behshad, A.Lashkarara, A.H.Rahmani. Optimal Location of UPFC Device Considering System Loadability, Total Fuel cost, Power losses and Cost of Installation [A].2009 2nd International Conference on Power Elecrtronics and Intelligent Transportation System:231~239.
    [75]吴国红,贺家李,余贻鑫,等.FACTS装置最佳设置点的选择指标[J].电力系统自动化,1998,22(9):57~60.
    [76]戴文进,吴敏.基于粒子群优化技术PSO确定TCSC最佳安装位置[J].电力科学与工程,2007,23(1):19~22.
    [77]M.Saravanan, S.Mary Raja Slochanal, P.Venkatesh. Application of PSO Technique for Optimal Location of FACTS Devices Considering System Loadability and Cost of Installation A].2005 7th International Conference on Power Engineering,2005,2: 716~721.
    [78]何仰赞,温增银.电力系统分析(第三版)[M].武汉:华中科技大学出版社,2002.
    [79]李光琦.电力系统暂态分析(第三版)[M].北京:中国电力出版社,2007.
    [80]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
    [81]张伯明,陈寿孙,严正.高等电力网络分析(第二版)[M].北京:清华大学出版 社,2007.
    [82]张志涌,杨祖樱.MATLAB教程[M].北京:北京航空航天大学出版社,2006.
    [83]S.N.Singh, I.Erlich. Locating unified power flow controller for enhancing power system loadability[A]. International Conference on Future Power System,2005:1-5.
    [84]龚纯,王正林.精通MATLAB优化计算[M].北京:电子工业出版社,2009.
    [85]Hadi Saadat著,王葵译.电力系统分析(第二版)[M].北京:中国电力出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700