磷酸化HSP27对抗TNF-α诱导HeLa细胞凋亡的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤坏死因子(TNF)-a是一多功能的细胞因子,调节包括细胞凋亡在内的许多细胞生物学进程。TNF-a通过与其受体结合发挥生物学作用,与TNF-a作用的受体有受体1(TNFR1)和受体2(TNFR2),TNFR1表达于几乎所有的组织细胞,是TNF-a的主要受体。在大多数细胞中,TNF-a通过与TNFR1结合,诱发促存活和促凋亡两条相反的信号途径。热休克蛋白27(HSP27)是一个重要的分子伴侣,属于低分子量热休克蛋白家族(分子量12-43KD),主要生物学作用包括:保护细胞免受多种刺激诱发的细胞凋亡;调节细胞骨架重塑;参与细胞增殖、分化的信号调节等。HSP27在多种不同刺激的作用下可以被磷酸化修饰,其主要的磷酸化修饰位点位于15,78和82位的丝氨酸上,一旦HSP27被磷酸化修饰,其分子结构从大分子多聚体解聚为小分子寡聚体、二聚体或单体,其生物学功能亦随之改变。许多研究表明HSP27的磷酸化水平与肿瘤细胞的转移能力和放化疗抵抗正相关,然而,也有研究表明磷酸化HSP27与肿瘤的进展呈负相关。因此,磷酸化HSP27在肿瘤中的作用仍然存在着争议。
     在本研究中,我们观察了磷酸化HSP27在TNF-a诱导人宫颈癌细胞(HeLa)凋亡中的作用。通过研究我们发现:TNF-a刺激人宫颈癌HeLa细胞,HSP27被磷酸化,使用MK2特异性抑制剂CMPD1或下调MK2以及过表达HSP27磷酸突变体的方法证明:抑制HSP27磷酸化增强TNF-a诱导的HeLa细胞凋亡。而后,我们又分析了磷酸化HSP27对抗TNF-a诱导凋亡的分子机制。通过免疫共沉淀实验我们发现,TNF-a刺激HeLa细胞诱导HSP27与转化生长因子活化激酶1(TAK1)结合,有趣的是,CMPD1预处理HeLa细胞,抑制HSP27磷酸化,TNF-a诱导的两者间的结合量亦随之减弱,该结果意味着,在HSP27/TAK1复合物中包含磷酸化形式的HSP27。通过激光共聚焦实验检测两者间的共定位现象发现,未接受TNF-a刺激的HeLa细胞,HSP27和TAK1均匀分布于细胞胞质内,一旦接受TNF-a的刺激,两者均积聚在胞质的某一区域,并表现出明显的共定位现象。相反,抑制HSP27磷酸化,两者间的共定位现象明显减弱。采用MK2抑制剂或MK2干扰的方法,抑制HSP27磷酸化,及过表达HSP27磷酸化突变体HSP27-3D,我们进一步发现磷酸化HSP27可以调节TAK1的泛素化、磷酸化及下游信号促存活信号分子p38MAPK及ERK的活化。另外,我们的实验结果亦表明,抑制HSP27磷酸化促进了肿瘤坏死因子受体1相关死亡蛋白(TRADD)的泛素化,但是,HSP27磷酸化对TNF-a诱导的促凋亡复合体中TRADD-FADD复合物的形成并无明显影响作用。这些结果表明磷酸化HSP27对TAK1和TRADD的泛素化发挥相反的调节作用,而且,磷酸化HSP27主要通过影响TNF-a诱导的促存活信号发挥抗凋亡作用,对凋亡复合体中TRADD与FADD的结合并无明显影响。总之,我们的研究揭示,磷酸化HSP27通过与TAK1结合,调节其泛素化,磷酸化及下游分子p38MAPK和ERK的活化在TNF-a诱导的凋亡发挥抗凋亡作用。该研究表明,在HeLa细胞中磷酸化HSP27可以作为一个新的调节分子调控TNF-a诱导的细胞凋亡,为磷酸化HSP27在TNF-a诱导HeLa细胞凋亡中的保护作用提供了一个新的见解。
Tumour necrosis factor (TNF)-a is a multifunction cytokine that regulates critical cellular processes, including apoptosis. TNF-a itself exerts its biological effects interacting with two different receptors:TNFR1and TNFR2, TNFR1is the major receptor which expressed in almost all cell types, after binding to its TNFR1, TNF-a usually trigger both survival and apoptotic signals in various cell types. Heat shock protein27(HSP27), an important cellular chaperone, belongs to the small molecular weight heat shock protein (HSP) family (12-43kD), is believed to protect cells from apoptosis, regulate cytoskeletal remodeling, involve in regulating cell proliferation, differentiation signal. HSP27can be phosphorylation at serine residues15,78and82according to different stimuli. Once HSP27was phosphorylated it disaggregated from large oligomeric complexes to small oligomers, dimer or monomers, subsequently the biological functions of Hsp27were also changed. Many studies have shown that the phosphorylation status of HSP27correlates with the metastatic potential and chemotherapy and radiotherapy resistance of cancer cells. However, it has also been reported HSP27phosphorylation levels can also be inversely correlated with the progression of tumours. Thus, the role of HSP27phosphorylation in tumor is still contradiction.
     In this study, we investigated the role of phosphorylated HSP27in TNF-α induced human cervical carcinoma (HeLa) cells apoptosis and found that HSP27was phosphorylated upon TNF-a stimulation and suppression of HSP27phosphorylation by specific inhibitor CMPD1or MAPKAPK2(MK2) knockdown and by overexpression of nonphosphorylated mutant and phospho-mimetic mutants demonstrated that attenuated HSP27phosphorylation enhanced the TNF-a-induced apoptosis. Then, we analyzed the molecular mechanism of HSP27phosphorylation in the antagonism of TNF-a induced apoptosis in HeLa cells. By coimmunoprecipitation, we observed that HSP27associated with transforming growth factor-β (TGF-β)-activated kinase1(TAK1) in response to TNF-a stimulation. and, interestingly, CMPD1pretreatment resulted in the reduced complex formation of HSP27and TAK1, suggesting that phosphorylated HSP27could be composed into the complex. The co-localization of HSP27and TAK1was also detected by confocal microscopy. Result showed that HSP27and TAK1distributed in cytoplasm in the untreated HeLa cells, while their immunostainings obviously superposed and congregated in a compartment of cytoplasm upon stimulation of TNF-a. By contrast, suppression of HSP27phosphorylation largely reduced the congregation of HSP27and TAK1. By using CMPD1to block MK2activity or direct knockdown of MK2in order to hinder HSP27phosphorylation and by overexpression phospho-mimetic mutants Hsp27-3D, we further founded that phosphorylation of HSP27regulated TAK1ubiquitination, phosphorylation, and activation of downstream pro-survival molecules p38MAPK and ERK. In addition, our data also showed inhibition HSP27phosphorylation can promote ubiquitination of TRADD, but did not affect the binding of TRADD and FADD in HeLa cells. These results suggested HSP27phosphorylation not only regulated the ubiquitination of TAK1but also TRADD ubiquitination, and, the effects of HSP27phosphorylation on the ubiquitianation of TAK1and TRADD was opposite. Moreover, HSP27phosphorylation only regulated the pro-survival signal pathway, but did not affect the association of TRADD and FADD in apoptotic complex induced by TNF-a in HeLa cells. Taken together, our study revealed that HSP27phosphorylation regulating TAK1ubiquitination, phosphorylation and activation of p38and ERK pro-survival signaling pathway via interacting with TAK1in HeLa cells. This study demonstrates that HSP27phosphorylation serves as a novel regulator in TNF-a-induced apoptosis, and provides a new insight into the cytoprotective role of HSP27phosphorylation.
引文
1. Kriegler M, Perez C, DeFay K, Albert I, Lu S. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein:ramifications for the complex physiology of TNF. Cell 1988; 53:45-53.
    2. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et al. A metalloproteinase disintegrin that releases tumour necrosis factor-R from cells. Nature 1997; 385:729-733.
    3. Bhattacharjee R, Xiang W, Wang Y, Zhang X, Billiar TR. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes. Biochemical and biophysical research communications 2012; 423:85-90.
    4. Tasdogan M, Memis D, Sut N, Yuksel M. Results of a pilot study on the effects of propofol and dexmedetomidine on inflammatory responses and intraabdominal pressure in severe sepsis. Journal of clinical anesthesia 2009; 21:394-400.
    5. Al-Daghri N, Al-Attas O, Alokail M, Alkharfy K, Shaik N, Draz H, et al. Gender-specific associations between insulin resistance, hypertension, and markers of inflammation among adult Saudis with and without diabetes mellitus type 2. Advances in medical sciences 2010; 55:179-185.
    6. Sayed BA, Christy AL, Walker ME, Brown MA. Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF:a role for neutrophil recruitment? The Journal of Immunology 2010; 184:6891-6900.
    7. Huang Y, Chen L, Zhou Y, Liu H, Yang J, Liu Z, et al. UXT-V1 protects cells against TNF-induced apoptosis through modulating complex Ⅱ formation. Molecular biology of the cell 2011; 22:1389-1397.
    8. Yoon K, Jung EJ, Lee SY. TRAF6-mediated regulation of the PI3 kinase (PI3K)-Akt-GSK3β cascade is required for TNF-induced cell survival. Biochemical and biophysical research communications 2008; 371:118-121.
    9. Gao Y, Han C, Huang H, Xin Y, Xu Y, Luo L, et al. Heat shock protein 70 together with its co-chaperone CHIP inhibits TNF-a induced apoptosis by promoting proteasomal degradation of apoptosis signal-regulating kinase 1. Apoptosis 2010; 15:822-833.
    10. Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995; 83:793-802.
    11. Cabal-Hierro L, Lazo PS. Signal transduction by tumor necrosis factor receptors. Cellular signalling 2012; 24:1297-1305.
    12. Faustman D, Davis M. TNF receptor 2 pathway:drug target for autoimmune diseases. Nature Reviews Drug Discovery 2010; 9:482-493.
    13. Choi SJ, Lee K-H, Park HS, Kim S-K, Koh C-M, Park JY. Differential expression, shedding, cytokine regulation and function of TNFR1 and TNFR2 in human fetal astrocytes. Yonsei medical journal 2005; 46:818-826.
    14. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114:181-190.
    15. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor a (TNFa)-induced NF-κB activation. Journal of Biological Chemistry 2008; 283:24295-24299.
    16. Lee TH, Shank J, Cusson N, Kelliher MA. The kinase activity of Ripl is not required for tumor necrosis factor-a-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of Ripl by Traf2. Journal of Biological Chemistry 2004; 279:33185-33191.
    17. Chen N-J, Chio IIC, Lin W-J, Duncan G, Chau H, Katz D, et al. Beyond tumor necrosis factor receptor:TRADD signaling in toll-like receptors. Proceedings of the National Academy of Sciences 2008; 105:12429-12434.
    18. Mahoney D, Cheung H, Mrad RL, Plenchette S, Simard C, Enwere E, et al. Both cIAP1 and cIAP2 regulate TNFa-mediated NF-κB activation. Proceedings of the National Academy of Sciences 2008; 105:11778-11783.
    19. Pobezinskaya YL, Kim Y-S, Choksi S, Morgan MJ, Li T, Liu C, et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nature immunology 2008; 9:1047-1054.
    20. Blackwell K, Zhang L, Thomas GS, Sun S, Nakano H, Habelhah H. TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis. Molecular and cellular biology 2009; 29:303-314.
    21. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote R1P1 ubiquitination. Molecular cell 2008; 30:689-700.
    22. Cho Y, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009; 137:1112-1123.
    23. Vandenabeele P, Galluzzi L, Berghe TV, Kroemer G. Molecular mechanisms of necroptosis:an ordered cellular explosion. Nature Reviews Molecular Cell Biology 2010; 11:700-714.
    24. Yeh WC, Hakem R, Woo M, Mak TW. Gene targeting in the analysis of mammalian apoptosis and TNF receptor superfamily signaling. Immunological reviews 1999; 169:283-302.
    25. Rauert H, Wicovsky A, Muller N, Siegmund D, Spindler V, Waschke J, et al. Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). Journal of Biological Chemistry 2010; 285:7394-7404.
    26. Rauert H, Stuhmer T, Bargou R, Wajant H, Siegmund D. TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms. Cell death & disease 2011; 2:e194.
    27. Matsuzawa A, Tseng P-H, Vallabhapurapu S, Luo J-L, Zhang W, Wang H, et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 2008; 321:663-668.
    28. Wu C-J, Conze DB, Li X, Ying S-X, Hanover JA, Ashwell JD. TNF-α induced c-IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 ubiquitination. The EMBO journal 2005; 24:1886-1898.
    29. Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2010; 1802:396-405.
    30. Dhillon A, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene 2007; 26:3279-3290.
    31. Whitmarsh A. The JIP family of MAPK scaffold proteins. Biochemical Society Transactions 2006; 34:828-832.
    32. Zeke A, Lukacs M, Lim WA, Remenyi A. Scaffolds:interaction platforms for cellular signalling circuits. Trends in cell biology 2009; 19:364-374.
    33. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. Journal of cell science 2004; 117:4619-4628.
    34. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases:an overview. Molecular and cellular biochemistry 2003; 253:269-285.
    35. Balmanno K, Cook S. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death & Differentiation 2008; 16:368-377.
    36. Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death:Is subcellular localization the answer? Cell cycle 2009; 8:1168-1175.
    37. Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, et al. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. Journal of Biological Chemistry 2002; 277:12710-12717.
    38. Sinha D, Bannergee S, Schwartz JH, Lieberthal W, Levine JS. Inhibition of ligand-independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors up-regulates Akt and prevents apoptosis. Journal of Biological Chemistry 2004; 279:10962-10972.
    39. Cuadrado A, Nebreda A. Mechanisms and functions of p38 MAPK signalling. Biochem J 2010; 429:403-417.
    40. Bradham C, McClay DR. p38 MAPK in development and cancer. Cell cycle 2006; 5:824-828.
    41. Lin A. Activation of the JNK signaling pathway:breaking the brake on apoptosis. Bioessays 2003; 25:17-24.
    42. Jing L, Anning L. Role of JNK activation in apoptosis:a double-edged sword. Cell research 2005; 15:36-42.
    43. Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, et al. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Molecular cell 2004; 13:329-340.
    44. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288:870-874.
    45. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends in cell biology 2001; 11:372-377.
    46. Potapova O, Anisimov SV, Gorospe M, Dougherty RH, Gaarde WA, Boheler KR, et al. Targets of c-Jun NH2-terminal kinase 2-mediated tumor growth regulation revealed by serial analysis of gene expression. Cancer Research 2002; 62:3257-3263.
    47. Potapova O, Gorospe M, Dougherty RH, Dean NM, Gaarde WA, Holbrook NJ. Inhibition of c-Jun N-terminal kinase 2 expression suppresses growth and induces apoptosis of human tumor cells in a p53-dependent manner. Molecular and cellular biology 2000; 20:1713-1722.
    48. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 1995; 270:2008-2011.
    49. Sakurai H. Targeting of TAK1 in inflammatory disorders and cancer. Trends in Pharmacological Sciences 2012;33:522-530.
    50. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Molecular cell 2008; 31:918-924.
    51. Landstrom M. The TAK1-TRAF6 signalling pathway. The international journal of biochemistry & cell biology 2010; 42:585-589.
    52. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, et al. TAB1:an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 1996; 272:1179-1182.
    53. Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Molecular cell 2000; 5:649-658.
    54. Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K. Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. The EMBO journal 2003; 22:6277-6288.
    55. Singhirunnusorn P, Suzuki S, Kawasaki N, Saiki I, Sakurai H. Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-β-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. Journal of Biological Chemistry 2005; 280:7359-7368.
    56. Yu Y, Ge N, Xie M, Sun W, Burlingame S, Pass AK, et al. Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop is required for interleukin (IL)-l-mediated optimal NFκB and AP-1 activation as well as IL-6 gene expression. Journal of Biological Chemistry 2008; 283:24497-24505.
    57. Pathak S, Borodkin VS, Albarbarawi O, Campbell DG, Ibrahim A, van Aalten DM. O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. The EMBO journal 2012; 31:1394-1404.
    58. Liang L, Fan Y, Cheng J, Cheng D, Zhao Y, Cao B, et al. TAK1 ubiquitination regulates Doxorubic in-induced NF-κB activation. Cellular signalling 2013;25:247-254.
    59. Hamidi A, von Bulow V, Hamidi R, Winssinger N, Barluenga S, Heldin C-H, et al. Polyubiquitination of transforming growth factor β (TGFβ)-associated kinase 1 mediates nuclear factor-KB activation in response to different inflammatory stimuli. Journal of Biological Chemistry 2012; 287:123-133.
    60. Adhikari A, Chen ZJ. Diversity of polyubiquitin chains. Developmental cell 2009; 16:485-486.
    61. Mao R, Fan Y, Mou Y, Zhang H, Fu S, Yang J. TAK1 lysine 158 is required for TGF-β-induced TRAF6-mediated Smad-independent IKK/NF-κB and JNK/AP-1 activation. Cellular signalling 2011; 23:222.
    62. Fan Y, Yu Y, Mao R, Tan X, Xu G, Zhang H, et al. USP4 targets TAK1 to downregulate TNFa-induced NF-κB activation. Cell Death & Differentiation 2011; 18:1547-1560.
    63. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, et al. The type I TGF-P receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature cell biology 2008; 10:1199-1207.
    64. Li Q, Yan J, Mao AP, Li C, Ran Y, Shu HB, et al. Tripartite motif 8 (TRIM8) modulates TNFa-and IL-1β-triggered NF-κB activation by targeting TAK1 for K63-linked polyubiquitination. Proceedings of the National Academy of Sciences 2011; 108:19341-19346.
    65. Ahmed N, Zeng M, Sinha I, Polin L, Wei WZ, Rathinam C, et al. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Takl and inflammation. Nature immunology 2011; 12:1176-1183.
    66. Fan Y, Shi Y, Liu S, Mao R, An L, Zhao Y, et al. Lys< sup> 48-linked TAK1 polyubiquitination at lysine-72 downregulates TNFa-induced NF-κB activation via mediating TAK1 degradation. Cellular signalling 2012;24:1381-1389.
    67. Kajino T, Ren H, Iemura S-i, Natsume T, Stefansson B, Brautigan DL, et al. Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. Journal of Biological Chemistry 2006; 281:39891-39896.
    68. Cheung PC, Campbell DG, Nebreda AR, Cohen P. Feedback control of the protein kinase TAK1 by SAPK2a/p38a. The EMBO journal 2003; 22:5793-5805.
    69. Melisi D, Xia Q, Paradiso G, Ling J, Moccia T, Carbone C, et al. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. Journal of the National Cancer Institute 2011; 103:1190-1204.
    70. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell 2008; 132:344-362.
    71. Ortis F, Miani M, Colli M, Cunha D, Gurzov E, Allagnat F, et al. Differential usage of NF-κB activating signals by 1L-1β and TNF-a in pancreatic beta cells. FEBS letters 2012; 586:984-989.
    72. Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 2002; 17:525-535.
    73. Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, Kroemer G. HSP27 and HSP70:potentially oncogenic apoptosis inhibitors. Cell cycle 2003; 2:578-583.
    74. Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochemical and biophysical research communications 2003; 304:505-512.
    75. Vidyasagar A, Wilson NA, Djamali A. Heat shock protein 27 (HSP27):biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair 2012; 5.
    76. Stetler RA, Signore AP, Gao Y, Cao G, Chen J. HSP27:mechanisms of cellular protection against neuronal injury. Current molecular medicine 2009; 9:863.
    77. Trinklein ND, Chen WC, Kingston RE, Myers RM. Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell stress & chaperones 2004; 9:21.
    78. Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H. Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. The Journal of Neuroscience 2003; 23:5187-5196.
    79. Wilkerson DC, Skaggs HS, Sarge KD. HSF2 binds to the Hsp90, Hsp27, and c-Fos promoters constitutively and modulates their expression. Cell stress & chaperones 2007; 12:283.
    80. Whitlock NA, Agarwal N, Ma J-X, Crosson CE. Hsp27 upregulation by HIF-1 signaling offers protection against retinal ischemia in rats. Investigative ophthalmology & visual science 2005; 46:1092-1098.
    81. Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye MM, et al. Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. Journal of Biological Chemistry 2000; 275:1095-1104.
    82. Chen S, Brown IR. Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell stress & chaperones 2007; 12:51.
    83. Geiger R, Berger R, Hess J, Bogers A, Sharma H, Mooi W. Enhanced expression of vascular endothelial growth factor in pulmonary plexogenic arteriopathy due to congenital heart disease. The Journal of pathology 2000; 191:202-207.
    84. SMOYER WE, RANSOM R, HARRIS RC, WELSH MJ, LUTSCH G, BENNDORF R. Ischemic acute renal failure induces differential expression of small heat shock proteins. Journal of the American Society of Nephrology 2000; 11:211-221.
    85. Ciocca DR, Calderwood SK. Heat shock proteins in cancer:diagnostic, prognostic, predictive, and treatment implications. Cell stress & chaperones 2005; 10:86.
    86. Huang Q, Ye J, Huang Q, Chen W, Wang L, Lin W, et al. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma. Clinical Chemistry and Laboratory Medicine 2010; 48:263-269.
    87. Lo Muzio L, Leonardi R, Mariggio M, Mignogna M, Rubini C, Vinella A, et al. HSP 27 as possible prognostic factor in patients with oral squamous cell carcinoma. 2004; 19.
    88. Leger JP, Smith FM, Currie RW. Confocal microscopic localization of constitutive and Heat Shock-induced Proteins HSP70 and HSP27 in the rat heart. Circulation 2000; 102:1703-1709.
    89. Pivovarova AV, Chebotareva NA, Chernik IS, Gusev NB, Levitsky DI. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. Febs Journal 2007; 274:5937-5948.
    90. During RL, Gibson BG, Li W, Bishai EA, Sidhu GS, Landry J, et al. Anthrax lethal toxin paralyzes actin-based motility by blocking Hsp27 phosphorylation. The EMBO journal 2007; 26:2240-2250.
    91. Qian J, Vafiadaki E, Florea SM, Singh VP, Song W, Lam CK, et al. Small Heat Shock Protein 20 Interacts With Protein Phosphatase-1 and Enhances Sarcoplasmic Reticulum Calcium CyclingNovelty and Significance. Circulation research 2011; 108:1429-1438.
    92. Chen HF, Chen CY, Lin TH, Huang ZW, Chi TH, Ma YS, et al. The protective roles of phosphorylated heat shock protein 27 in human cells harboring myoclonus epilepsy with ragged-red fibers A8344G mtDNA mutation. Febs Journal 2012; 279:2987-3001.
    93. Qiu X-B, Shao Y-M, Miao S, Wang L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cellular and Molecular Life Sciences CMLS 2006; 63:2560-2570.
    94. Kostenko S, Moens U. Heat shock protein 27 phosphorylation:kinases, phosphatases, functions and pathology. Cellular and molecular life sciences 2009; 66:3289-3307.
    95. Hayes D, Napoli V, Mazurkie A, Stafford WF, Graceffa P. Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. Journal of Biological Chemistry 2009; 284:18801-18807.
    96. Guo K, Liu Y, Zhou H, Dai Z, Zhang J, Sun R, et al. Involvement of protein kinase C β-extracellular signal-regulating kinasel/2/p38 mitogen-activated protein kinase-heat shock protein 27 activation in hepatocellular carcinoma cell motility and invasion. Cancer science 2008; 99:486-496.
    97. Yuan J, Rozengurt E. PKD, PKD2, and p38 MAPK mediate Hsp27 serine-82 phosphorylation induced by neurotensin in pancreatic cancer PANC-1 cells. Journal of cellular biochemistry 2008; 103:648-662.
    98. Seo HR, Chung D-Y, Lee Y-J, Lee D-H, Kim J-I, Bae S, et al. Heat Shock Protein 25 or Inducible Heat Shock Protein 70 Activates Heat Shock Factor 1 DEPHOSPHORYLATION ON SERINE 307 THROUGH INHIBITION OF ERK1/2 PHOSPHORYLATION. Journal of Biological Chemistry 2006; 281:17220-17227.
    99. Tar K, Csortos C, Czikora I, Olah G, Ma SF, Wadgaonkar R, et al. Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. Journal of cellular biochemistry 2006; 98:931-953.
    100. Loktionova S, Kabakov A. Phosphatase inhibitors prevent HSP27 dephosphorylation, destruction of stress fibrils, and morphological changes in endothelial cells during ATP depletion. Bulletin of experimental biology and medicine 2001; 132:914-917.
    101. Azuma N, Akasaka N, Kito H, Ikeda M, Gahtan V, Sasajima T, et al. Role of p38 MAP kinase in endothelial cell alignment induced by fluid shear stress. American Journal of Physiology-Heart and Circulatory Physiology 2001; 280:H189-H197.
    102. Huot J, Lambert H, Lavoie JN, Guimond A, Houle F, Landry J. Characterization of 45-kDa/54-kDa HSP27 Kinase, a Stress-Sensitive Kinase Which may Activate the Phosphorylation-Dependent Protective Function of Mammalian 27-kDa Heat-shock Protein HSP27. European Journal of Biochemistry 1995; 227:416-427.
    103. Rousseau S, Dolado I, Beardmore V, Shpiro N, Marquez R, Nebreda AR, et al. CXCL12 and C5a trigger cell migration via a PAKI/2-p38a MAPK-MAPKAP-K2-HSP27 pathway. Cellular signalling 2006; 18:1897-1905.
    104. Ronkina N, Kotlyarov A, Gaestel M. MK2 and MK3-a pair of isoenzymes. Front Biosci 2008; 13:5511-5521.
    105. Gaestel M. MAPKAP kinases-MKs-two's company, three's a crowd. Nature Reviews Molecular Cell Biology 2006; 7:120-130.
    106. Polanowska-Grabowska AG, R. Heat-shock proteins and platelet function. Platelets 2000; 11:6-22.
    107. Gerits N, Mikalsen T, Kostenko S, Shiryaev A, Johannessen M, Moens U. Modulation of F-actin rearrangement by the cyclic AMP/cAMP-dependent protein kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires PKA-induced nuclear export of MK5. Journal of Biological Chemistry 2007; 282:37232-37243.
    108. Kostenko S, Johannessen M, Moens U. PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5. Cellular signalling 2009; 21:712-718.
    109. Shi Y, Kotlyarov A, Laaβ K, Gruber AD, Butt E, Marcus K, et al. Elimination of protein kinase MK5/PRAK activity by targeted homologous recombination. Molecular and cellular biology 2003; 23:7732-7741.
    110. Lint JV, Rykx A, Vantus T, Vandenheede JR. Getting to know protein kinase D. The international journal of biochemistry & cell biology 2002; 34:577-581.
    111. Doppler H, Storz P, Li J, Comb MJ, Toker A. A phosphorylation state-specific antibody recognizes Hsp27, a novel substrate of protein kinase D. Journal of Biological Chemistry 2005; 280:15013-15019.
    112. Liu P, Scharenberg AM, Cantrell DA, Matthews SA. Protein kinase D enzymes are dispensable for proliferation, survival and antigen receptor-regulated NFkB activity in vertebrate B-cells. FEBS letters 2007; 581:1377-1382.
    113. McMullen ME, Bryant PW, Glembotski CC, Vincent PA, Pumiglia KM. Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. Journal of Biological Chemistry 2005; 280:20995-21003.
    114. Evans IM, Britton G, Zachary IC. Vascular endothelial growth factor induces heat shock protein (HSP) 27 serine 82 phosphorylation and endothelial tubulogenesis via protein kinase D and independent of p38 kinase. Cellular signalling 2008; 20:1375-1384.
    115. Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno K. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. The EMBO journal 2006; 25:713-726.
    116. Berrou E, Bryckaert M. Recruitment of protein phosphatase 2A to dorsal ruffles by platelet-derived growth factor in smooth muscle cells:dephosphorylation of Hsp27. Experimental cell research 2009; 315:836-848.
    117. Geum D, Son GH, Kim K. Phosphorylation-dependent cellular localization and thermoprotective role of heat shock protein 25 in hippocampal progenitor cells. Journal of Bio logical Chemistry 2002; 277:19913-19921.
    118. Arrigo A-P, Simon S, Gibert B, Kretz-Remy C, Nivon M, Czekalla A, et al. Hsp27 (HspB1) and aB-crystallin (HspB5) as therapeutic targets. FEBS letters 2007; 581:3665-3674.
    119. Gendron TF, Petrucelli L. The role of tau in neurodegeneration. Molecular neurodegeneration 2009; 4:13.
    120. Paul C, Simon S, Gibert B, Virot S, Manero F, Arrigo A-P. Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27). Experimental cell research 2010; 316:1535-1552.
    121. Cuesta R, Laroia G, Schneider RJ. Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes & development 2000; 14:1460-1470.
    122. Hollander JM, Martin JL, Belke DD, Scott BT, Swanson E, Krishnamoorthy V, et al. Overexpression of wild-type heat shock protein 27 and a nonphosphorylatable heat shock protein 27 mutant protects against ischemia/reperfusion injury in a transgenic mouse model. Circulation 2004; 110:3544-3552.
    123. White MY, Tchen AS, McCarron HC, Hambly BD, Jeremy RW, Cordwell SJ. Proteomics of ischemia and reperfusion injuries in rabbit myocardium with and without intervention by an oxygen-free radical scavenger. Proteomics 2006; 6:6221-6233.
    124. Ramlawi B, Otu H, Mieno S, Boodhwani M, Sodha NR, Clements RT, et al. Oxidative stress and atrial fibrillation after cardiac surgery:a case-control study. The Annals of thoracic surgery 2007; 84:1166-1173.
    125. Bryantsev A, Chechenova M, Shelden E. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress. Experimental cell research 2007;313:195-209.
    126. Chen H-F, Xie L-D, Xu C-S. Role of heat shock protein 27 phosphorylation in migration of vascular smooth muscle cells. Molecular and cellular biochemistry 2009; 327:1-6.
    127. Hong Z, Zhang Q-Y, Liu J, Wang Z-Q, Zhang Y, Xiao Q, et al. Phosphoproteome study reveals Hsp27 as a novel signaling molecule involved in GDNF-induced neurite outgrowth. Journal of proteome research 2009; 8:2768-2787.
    128. Tak H, Jang E, Kim SB, Park J, Suk J, Yoon YS, et al.14-3-3epsilon inhibits MK5-mediated cell migration by disrupting F-actin polymerization. Cellular signalling 2007; 19:2379-2387.
    129. Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, et al. Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. Journal of Bio logical Chemistry 2008; 283:12305-12313.
    130. Lanneau D, de Thonel A, Maurel S, Didelot C, Garrido C. Apoptosis versus cell differentiation:role of heat shock proteins HSP90, HSP70 and HSP27. Prion 2007; 1:53-60.
    131. Moens U, Kostenko S. Hsp27 Phosphorylation Patterns and Cellular Consequences. Cellular Trafficking of Cell Stress Proteins in Health and Disease:Springer, 2012:43-74.
    132. Fujita R, Ounzain S, Wang ACY, Heads RJ, Budhram-Mahadeo VS. Hsp-27 induction requires POU4F2/Brn-3b TF in doxorubicin-treated breast cancer cells, whereas phosphorylation alters its cellular localisation following drug treatment. Cell Stress and Chaperones 2011; 16:427-439.
    133. Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo A-P, Rubinsztein DC. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Human molecular genetics 2002; 11:1137-1151.
    134. Tanabe K, Matsushima-Nishiwaki R, Dohi S, Kozawa O. Phosphorylation status of heat shock protein 27 regulates the interleukin-1β-induced interleukin-6 synthesis in C6 glioma cells. Neuroscience 2010; 170:1028-1034.
    135. Chandrika BB, Maney SK, Lekshmi SU, Retnabhai ST. Endoplasmic reticulum targeted Bcl2 confers long term cell survival through phosphorylation of heat shock protein 27. The international journal of biochemistry & cell biology 2010; 42:1984-1992.
    136. Venkatakrishnan C, Dunsmore K, Wong H, Roy S, Sen CK, Wani A, et al. HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells:p21 upregulation and G2/M phase cell cycle arrest. American Journal of Physiology-Heart and Circulatory Physiology 2008; 294:H1736-H1744.
    137. Parcellier A, Brunet M, Schmitt E, Col E, Didelot C, Hammann A, et al. HSP27 favors ubiquitination and proteasomal degradation of p27Kipl and helps S-phase re-entry in stressed cells. The FASEB journal 2006; 20:1179-1181.
    138. Al-Madhoun AS, Chen Y-X, Haidari L, Rayner K, Gerthoffer W, McBride H, et al. The interaction and cellular localization of HSP27 and ERβ are modulated by 17β-estradiol and HSP27 phosphorylation. Molecular and cellular endocrinology 2007; 270:33-42.
    139. Bryantsev A, Kurchashova S, Golyshev S, Polyakov V, Wunderink H, Kanon B, et al. Regulation of stress-induced intracellular sorting and chaperone function of Hsp27 (HspB1) in mammalian cells. Biochem J 2007; 407:407-417.
    140. Elad N, Maimon T, Frenkiel-Krispin D, Lim RY, Medalia O. Structural analysis of the nuclear pore complex by integrated approaches. Current opinion in structural biology 2009; 19:226-232.
    141. Khalil AA, Kabapy NF, Deraz SF, Smith C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2011; 1816:89-104.
    142. Lakshman M, Xu L, Ananthanarayanan V, Cooper J, Takimoto CH, Helenowski I, et al. Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Research 2008; 68:2024-2032.
    143. Yasuda E, Kumada T, Takai S, Ishisaki A, Noda T, Matsushima-Nishiwaki R, et al. Attenuated phosphorylation of heat shock protein 27 correlates with tumor progression in patients with hepatocellular carcinoma. Biochemical and biophysical research communications 2005; 337:337-342.
    144. Tremolada L, Magni F, Valsecchi C, Sarto C, Mocarelli P, Perego R, et al. Characterization of heat shock protein 27 phosphorylation sites in renal cell carcinoma. Proteomics 2005; 5:788-795.
    145. Zhang D, Wong LL, Koay E. Phosphorylation of Ser78 of Hsp27 correlated with HER-2/neu status and lymph node positivity in breast cancer. Mol Cancer 2007; 6:52.
    146. Lee J-W, Kwak H-J, Lee J-J, Kim Y-N, Lee JW, Park M-J, et al. HSP27 regulates cell adhesion and invasion via modulation of focal adhesion kinase and MMP-2 expression. European journal of cell biology 2008; 87:377-387.
    147. Banerjee S, Lin C-FL, Skinner KA, Schiffhauer LM, Peacock J, Hicks DG, et al. Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Cancer Research 2011; 71:318-327.
    148. Melle C, Ernst Q Escher N, Hartmann D, Schimmel B, Bleul A, et al. Protein profiling of microdissected pancreas carcinoma and identification of HSP27 as a potential serum marker. Clinical chemistry 2007; 53:629-635.
    149. Kang S, Elf S, Lythgoe K, Hitosugi T, Taunton J, Zhou W, et al. p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells. The Journal of clinical investigation 2010; 120:1165.
    150. O'Hayre M, Salanga CL, Kipps TJ, Messmer D, Dorrestein PC, Handel TM. Elucidating the CXCL12/CXCR4 signaling network in chronic lymphocytic leukemia through phosphoproteomics analysis. PloS one 2010; 5:e11716.
    151. Lamont KR, Tindall DJ. Minireview:alternative activation pathways for the androgen receptor in prostate cancer. Molecular Endocrinology 2011; 25:897-907.
    152. Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P, et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Research 2007; 67:10455-10465.
    153. Hassan S, Biswas MHU, Zhang C, Du C, Balaji K. Heat shock protein 27 mediates repression of androgen receptor function by protein kinase Dl in prostate cancer cells. Oncogene 2009; 28:4386-4396.
    154. Park K-J, Gaynor RB, Kwak YT. Heat shock protein 27 association with the IκB kinase complex regulates tumor necrosis factor a-induced NF-κB activation. Journal of Biological Chemistry 2003; 278:35272-35278.
    155. Arrigo A. sHsp as novel regulators of programmed cell death and tumorigenicity. Pathologie-biologie 2000; 48:280.
    156. Jiao W, Hong W, Li P, Sun S, Ma J, Qian M, et al. The dramatically increased chaperone activity of small heat-shock protein IbpB is retained for an extended period of time after the stress condition is removed. Biochem J 2008; 410:63-70.
    157. Yu Z, Zhi J, Peng X, Zhong X, Xu A. Clinical significance of HSP27 expression in colorectal cancer. Molecular medicine reports 2010; 3:953-958.
    158. Shiota M, Bishop JL, Nip KM, Zardan A, Takeuchi A, Cordonnier T, et al. Hsp27 Regulates Epithelial Mesenchymal Transition, Metastasis, and Circulating Tumor Cells in Prostate Cancer. Cancer Research 2013; 73:3109-3119.
    159. Nakashima M, Adachi S, Yasuda I, Yamauchi T, Kawaguchi J, Itani M, et al. Phosphorylation status of heat shock protein 27 plays a key role in gemcitabine-induced apoptosis of pancreatic cancer cells. Cancer letters 2011; 313:218-225.
    160. Hoang AT, Huang J, Rudra-Ganguly N, Zheng J, Powell WC, Rabindran SK, et al. A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. The American journal of pathology 2000; 156:857-864.
    161. Lee J-H, Sun D, Cho K-J, Kim M-S, Hong M-H, Kim I-K, et al. Overexpression of human 27 kDa heat shock protein in laryngeal cancer cells confers chemoresistance associated with cell growth delay. Journal of cancer research and clinical oncology 2007; 133:37-46.
    162. Kanagasabai R, Karthikeyan K, Vedam K, Qien W, Zhu Q, Ilangovan G. Hsp27 protects adenocarcinoma cells from UV-induced apoptosis by Akt and p21-dependent pathways of survival. Molecular Cancer Research 2010; 8:1399-1412.
    163. Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T, et al. Heat shock protein 27 controls apoptosis by regulating Akt activation. Journal of Biological Chemistry 2003; 278:27828-27835.
    164. Matsui Y, Hadaschik BA, Fazli L, Andersen RJ, Gleave ME, So AI. Intravesical combination treatment with antisense oligonucleotides targeting heat shock protein-27 and HTI-286 as a novel strategy for high-grade bladder cancer. Molecular cancer therapeutics 2009; 8:2402-2411.
    165. Hadchity E, Aloy M-T, Paulin C, Armandy E, Watkin E, Rousson R, et al. Heat shock protein 27 as a new therapeutic target for radiation sensitization of head and neck squamous cell carcinoma. Molecular Therapy 2009; 17:1387-1394.
    166. Charette SJ, Lavoie JN, Lambert H, Landry J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Molecular and cellular biology 2000; 20:7602-7612.
    167. Garrido C. Size matters:of the small HSP27 and its large oligomers. Cell death and differentiation 2002; 9:483-485.
    168. Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A, et al. HSP27 is a ubiquitin-binding protein involved in I-κBα proteasomal degradation. Molecular and cellular biology 2003; 23:5790-5802.
    169. Choi J-S, Oh J-I, Na M, Lee S-K, Joo SH. PKCδ promotes etoposide-induced cell death by phosphorylating Hsp27 in HeLa cells. Biochemical and biophysical research communications 2012;426:590-595.
    170. TAB A K, KURAMITSU Y, RYOZAWA S, YOSHIDA K, TANAKA T, MAEHARA S-I, et al. Heat-shock protein 27 is phosphorylated in gemcitabine-resistant pancreatic cancer cells. Anticancer research 2010; 30:2539-2543.
    171. Xu Y, Diao Y, Qi S, Pan X, Wang Q, Xin Y, et al. Phosphorylated Hsp27 Activates ATM-Dependent p53 Signaling and Mediates the Resistance of MCF-7 Cells to Doxorubicin-Induced Apoptosis. Cellular signalling 2013;25:1176-1185.
    172. Qi S, Xin Y, Qi Z, Xu Y, Diao Y, Lan L, et al. HSP27 phosphorylation modulates TRAIL-induced activation of Src-Akt/ERK signaling through interaction with (3-Arrestin2. Cellular signalling 2013;26:594-602.
    173. Charette SJ, Landry J. The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Annals of the New York Academy of Sciences 2000; 926:126-131.
    174. Chau H, Mirtsos C, Huang H-L. Regulation of death complexes formation in tumor necrosis factor receptor signaling. Experimental cell research 2011; 317:1841-1850.
    175. Yeh W-C, Itie A, Elia AJ, Ng M, Shu H-B, Wakeham A, et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 2000; 12:633-642.
    176. Schneider-Brachert W, Tchikov V, Merkel O, Jakob M, Hallas C, Kruse M, et al. Inhibition of TNF receptor 1 internalization by adenovirus 14.7 K as a novel immune escape mechanism. Journal of Clinical Investigation 2006; 116:2901.
    177. Gonzalez-Mejia M, Voss O, Murnan E, Doseff A. Apigenin-induced apoptosis of leukemia cells is mediated by a bimodal and differentially regulated residue-specific phosphorylation of heat-shock protein-27. Cell death & disease 2010;1:e64.
    178. Zoubeidi A, Zardan A, Wiedmann RM, Locke J, Beraldi E, Fazli L, et al. Hsp27 promotes insulin-like growth factor-I survival signaling in prostate cancer via p90Rsk-dependent phosphorylation and inactivation of BAD. Cancer Research 2010; 70:2307-2317.
    179. Zhuang H, Jiang W, Zhang X, Qiu F, Gan Z, Cheng W, et al. Suppression of HSP70 expression sensitizes NSCLC cell lines to TRAIL-induced apoptosis by upregulating DR4 and DR5 and downregulating c-FLIP-L expressions. Journal of Molecular Medicine 2013; 91:219-235.
    180. Zhuang H, Jiang W, Cheng W, Qian K, Dong W, Cao L, et al. Down-regulation of HSP27 sensitizes TRAlL-resistant tumor cell to TRAIL-induced apoptosis. Lung Cancer 2010; 68:27-38.
    181. Chang E, Heo K-S, Woo C-H, Lee H, Le N-T, Thomas TN, et al. MK2 SUMOylation regulates actin filament remodeling and subsequent migration in endothelial cells by inhibiting MK2 kinase and HSP27 phosphorylation. Blood 2011; 117:2527-2537.
    182. Clements RT, Feng J, Cordeiro B, Bianchi C, Sellke FW. p38 MAPK-dependent small HSP27 and aB-crystallin phosphorylation in regulation of myocardial function following cardioplegic arrest. American Journal of Physiology-Heart and Circulatory Physiology 2011; 300:H1669-H1677.
    183. Dokas LA, Malone AM, Williams FE, Nauli SM, Messer Jr WS. Multiple protein kinases determine the phosphorylated state of the small heat shock protein, HSP27, in SH-SY5Y neuroblastoma cells. Neuropharmacology 2011; 61:12-24.
    184. Leja-Szpak A, Jaworek J, Szklarczyk J, Konturek S, Pawlik W. Melatonin stimulates HSP27 phosphorylation in human pancreatic carcinoma cells (PANC-1). Journal of physiology and pharmacology 2007; 58:177.
    185. Andrieu C, Taieb D, Baylot V, Ettinger S, Soubeyran P, De-Thonel A, et al. Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene 2010; 29:1883-1896.
    186. Nakashima M, Adachi S, Yasuda I, Yamauchi T, Kawaguchi J, Itani M, et al. Phosphorylation status of heat shock protein 27 plays a key role in gemcitabine-induced apoptosis of pancreatic cancer cells. Cancer letters 2011;313:218-225.
    187. Kim JH, Jeong SJ, Kim B, Yun SM, Choi DY, Kim SH. Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3 cells. Journal of Pineal Research 2012; 52:244-252.
    188. Stetler RA, Gao Y, Zhang L, Weng Z, Zhang F, Hu X, et al. Phosphorylation of HSP27 by protein kinase D is essential for mediating neuroprotection against ischemic neuronal injury. The Journal of Neuroscience 2012; 32:2667-2682.
    189. Kato K, Tokuda H, Mizutani J, Adachi S, Matsushima-Nishiwaki R, Natsume H, et al. Role of HSP27 in tumor necrosis factor-a-stimulated interleukin-6 synthesis in osteoblasts. International Journal of Molecular Medicine 2011; 28:887.
    190. Liu J, Hong S, Feng Z, Xin Y, Wang Q, Fu J, et al. Regulation of lipopolysaccharide-induced inflammatory response by heat shock protein 27 in THP-1 cells. Cellular immunology 2010; 264:127-134.
    191. Liu Z. Function of the p38MAPK-HSP27 Pathway in Rat Lung Injury Induced by Acute Ischemic Kidney Injury. BioMed research international 2013; 2013.
    192. Wu Y, Liu J, Zhang Z, Huang H, Shen J, Zhang S, et al. HSP27 regulates IL-1 stimulated IKK activation through interacting with TRAF6 and affecting its ubiquitination. Cellular signalling 2009; 21:143-150.
    193. Salari S, Seibert T, Chen Y-X, Hu T, Shi C, Zhao X, et al. Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages. Cell Stress and Chaperones 2013; 18:53-63.
    194. Adhikari AS, Singh BN, Rao KS, Rao CM. aB-crystallin, a small heat shock protein, modulates NF-κB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-a induced cytotoxicity. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2011; 1813:1532-1542.
    195. De Luca A, Maiello MR, D'Alessio A, Pergameno M, Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways:role in cancer pathogenesis and implications for therapeutic approaches. Expert opinion on therapeutic targets 2012; 16:S 17-S27.
    196. Chen S, Gu C, Xu C, Zhang J, Xu Y, Ren Q, et al. Celastrol prevents cadmium-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. Journal of neurochemistry 2014;128:256-266.
    197. Huang X-y, Wang H-c, Yuan Z, Huang J, Zheng Q. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via β-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepato-gastroenterology 2012;59:889.
    198. Matsushima-Nishiwaki R, Takai S, Adachi S, Minamitani C, Yasuda E, Noda T, et al. Phosphorylated heat shock protein 27 represses growth of hepatocellular carcinoma via inhibition of extracellular signal-regulated kinase. Journal of Biological Chemistry 2008; 283:18852-18860.
    199. Adhikari A, Xu M, Chen Z. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 2007; 26:3214-3226.
    200. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140:805-820.
    201. Jung E, Baik K, Shim J, Lee K, Kim S, Jeong S, et al. AMP-activated protein kinase-al as an activating kinase of TGF-β-activated kinase 1 has a key role in inflammatory signals. Cell Death & Disease.2012;3:e357.
    202. Sun L, Chen ZJ. The novel functions of ubiquitination in signaling. Current opinion in cell biology 2004; 16:119.
    203. de Thonel A, Vandekerckhove J, Lanneau D, Selvakumar S, Courtois G, Hazoume A, et al. HSP27 controls GATA-1 protein level during erythroid cell differentiation. Blood 2010; 116:85-96.
    204. Wu Y, Liu J, Zhang Z, Huang H, Shen J, Zhang S, et al. HSP27 regulates IL-1 stimulated IKK activation through interacting with TRAF6 and affecting its ubiquitination. Cellular signalling 2009; 21:143-150.
    205. Wang L, Du F, Wang X. TNF-a induces two distinct caspase-8 activation pathways. Cell 2008; 133:693-703.
    206. Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27:6245-6251.
    207. Varfolomeev EE, Ashkenazi A. Tumor necrosis factor:an apoptosis JuNKie? Cell 2004; 116:491-497.
    208. Won M, Park K, Byun H, Sohn K, Kim Y, Jeon J, et al. Novel anti-apoptotic mechanism of A20 through targeting ASK1 to suppress TNF-induced JNK activation. Cell Death & Differentiation 2010; 17:1830-1841.
    209. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K-i, Takeda K, et al. ASKl is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO reports 2001; 2:222-228.
    210. Mounier N, Arrigo A-P. Actin cytoskeleton and small heat shock proteins:how do they interact? Cell stress & chaperones 2002; 7:167.
    211. Du J, Zhang L, Yang Y, Li W, Chen L, Ge Y, et al. ATP depletion-induced actin rearrangement reduces cell adhesion via p38 MAPK-HSP27 signaling in renal proximal tubule cells. Cellular Physiology and Biochemistry 2010; 25:501-510.
    212. Kondo S, Ishizaka Y, Okada T, Kondo Y, Hitomi M, Tanaka Y, et al. FADD gene therapy for malignant gliomas in vitro and in vivo. Human gene therapy 1998; 9:1599-1608.
    213. Komata T, Koga S, Hirohata S, Takakura M, Germano IM, Inoue M, et al. A novel treatment of human malignant gliomas in vitro and in vivo:FADD gene transfer under the control of the human telomerase reverse transcriptase gene promoter. International journal of oncology 2001; 19:1015.
    214. Micheau O, Solary E, Hammann A, Dimanche-Boitrel M-T. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. Journal of Biological Chemistry 1999; 274:7987-7992.
    215. Sun BH, Zhao XP, Wang BJ, Yang DL, Hao LJ. FADD and TRADD expression and apoptosis in primary hepatocellular carcinoma. World J Gastroenterol 2000; 6:223-227.
    216. Zheng L, Bidere N, Staudt D, Cubre A, Orenstein J, Chan FK, et al. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Molecular and cellular biology 2006; 26:3505-3513.
    217. Misaki T, Yamamoto T, Suzuki S, Fukasawa H, Togawa A, Ohashi N, et al. Decrease in tumor necrosis factor-a receptor-associated death domain results from ubiquitin-dependent degradation in obstructive renal injury in rats. The American journal of pathology 2009; 175:74-83.
    218. Ermolaeva MA, Michallet M-C, Papadopoulou N, Utermohlen O, Kranidioti K, Kollias G, et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nature immunology 2008; 9:1037-1046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700