两种特异的柴胡皂苷酶和薯蓣皂苷酶特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苷类是中草药的有效成分之一。但天然苷类物质并不是生理活性最佳的分子结构,皂苷口服后在体内经过肠道菌和消化系统酶的作用,转化为低糖基、次生苷被吸收而起药效。本文目的是利用生物酶法在体外将天然皂苷转化成易吸收、药效高的结构。为了得到高活性、易吸收的低糖基的柴胡皂苷及薯蓣皂苷,本文从微生物中获得了与传统糖苷酶性质不同的新型皂苷酶,并对新型柴胡皂苷酶和薯蓣皂苷酶进行了分离纯化、酶学性质、酶催化水解作用,及定向转化的研究。
     采用缓冲液抽提、硫铵沉淀、离子交换层析、凝胶电泳法从两种微生物Aspergillus oryzae c42和Absidia sp. d38中分别分离纯化了柴胡皂苷酶及薯蓣皂苷酶。柴胡皂苷酶被纯化了56倍,收率为1.4%;薯蓣皂苷酶被纯化了7.8倍,收率为3.6%。
     柴胡皂苷酶最适反应温度为40℃,最适pH为5.0;Cu++,Hg++,Ag+对酶活力有抑制作用,Ca++和Mg++对酶活力有激活作用。该酶在60℃以下、pH 4.0~7.0相对稳定。SDS-聚丙烯酰胺凝胶电泳测定该单亚基酶分子量约为58 kDa。
     薯蓣皂苷酶最适反应温度为40℃,最适pH为5.0;Cu++,Hg++对酶活力有抑制作用;Mg2+对酶活力有激活作用。该酶在50℃以下、pH 5.0~6.0相对稳定。SDS-聚丙烯酰胺凝胶电泳测定该单亚基酶分子量约为55 kDa。
     在柴胡皂苷酶的研究中发现,柴胡皂苷酶可以水解柴胡皂苷A(含有环氧醚键)和柴胡皂苷B2(不含环氧醚键)。首先将柴胡皂苷的3-O-β-D-(1→3)-Glc水解,形成3-O-β-D-Fuc-柴胡皂苷元,然后进一步水解3-O-β-D-Fuc-柴胡皂苷元的3-O-β-D-Fuc形成不带糖基的柴胡皂苷元。柴胡皂苷酶对糖基位置及苷元结构的选择性高,能较好的水解三萜类皂苷(柴胡皂苷),对糖基种类选择性低,可以水解3-C位的Glc、Fuc等不同种类糖基;对甾体类皂苷(薯蓣皂苷)不水解。
     在薯蓣皂苷酶的研究中发现,薯蓣皂苷酶首先将薯蓣皂苷的两个3-O-α-L-(1→4)-Rha和3-O-α-L-(1→2)-Rha水解,生成3-O-β-Glc-薯蓣皂苷元,然后进一步水解3-O-β-D-Glc-薯蓣皂苷元的3-O-β-D-Glc生成不带糖基的薯蓣皂苷元。薯蓣皂苷酶还能将3-O-[α-L-(1→4)-Ara,α-L-(1→2)-Rha]-β-D-Glc-薯蓣皂苷元的3-O-α-L-(1→2)-Rha水解,生成3-O-α-L-Ara-β-D-Glc-薯蓣皂苷元,然后进一步水解α-L-(1→4)-Ara生成3-O-β-D-Glc-薯蓣皂苷元,最后水解3-O-β-D-Glc生成不带糖基的薯蓣皂苷元。薯蓣皂苷酶仅对甾体类皂苷(薯蓣皂苷、3-O-[α-L-(1→4)-Ara,α-L-(1→2)-Rha]-β-D-Glc-薯蓣皂苷元)具有较好的水解作用,对三萜类皂苷(柴胡皂苷、白头翁皂苷及朱砂根皂苷)不具有水解作用。该酶糖基种类的选择性不高,可以水解Glc、Ara、Rha等不同种类糖基,但对糖基位置苷元种类具有较高的选择性,只能水解甾醇类皂苷。
     定向转化柴胡皂苷时,柴胡皂苷酶在底物浓度20 mg/mL,40℃,pH 5.0条件下,反应24h水解20g柴胡皂苷得粗产物23.78g。柴胡皂苷酶经60%回收后仍具有很高的酶活力,其转化率大于60%。酶解产物经硅胶柱层析法分离纯化后,回收率为79.55%,水解掉两个糖基的柴胡皂苷单体(酶解产物Ⅰ)得率为21.85%,水解掉一个糖基的柴胡皂苷单体(酶解产物Ⅱ)得率为4.45%。经HPLC测定纯度达90%左右。
     定向转化薯蓣皂苷时,薯蓣皂苷酶在底物浓度15 mg/mL,40℃,pH 5.0条件下,反应30h水解20g薯蓣皂苷得粗产物22.54g。薯蓣皂苷酶经60%回收后仍具有很高的酶活力,其转化率大于60%。酶解产物经硅胶柱层析法分离纯化后,回收率为91.8%,薯蓣皂苷元单体得率为20.85%,3-O-β-D-Glc-薯蓣皂苷元单体得率为39.8%;3-O-α-L-Rha-β-D-Glc-薯蓣皂苷元单体得率为12.85%。经HPLC测定纯度达90%左右。
     柴胡皂苷酶和薯蓣皂苷酶对糖基位置及苷元结构的选择性高,柴胡皂苷酶不水解薯蓣皂苷、薯蓣皂苷酶不水解柴胡皂苷;两种酶对糖基种类的选择性低、能够水解多种糖基;这不同于国际酶学委员会认定的“一种糖昔酶只能水解一种糖苷键”的规律;柴胡皂苷酶和薯蓣皂苷酶是新发现的特异酶。
     本文在证明酶法定向转化柴胡皂苷及薯蓣皂苷制备低糖基皂苷或苷元的可行性的同时,为深入研究糖苷酶由其是皂苷糖苷酶奠定了一定的实验基础。
Saponin is one of the physiologically active ingredients in Chinese traditional medicine, but saponin in its natural form cannot be directly absorbed and utilized by human body. After oral intake, the glycosides of saponins are hydrolyzed by digestive enzymes and/or intestinal bacteria into low-sugar-saponin and aglycone, which are absorbed slowly in gastrointestinal tract to exhibit physiological activity. Therefore, modification of natural saponins by enzymes in vitro to produce more active second saponins that can be easily absorbed and utilized by human body would add great value to functional foods and medicines made from herbs. In this paper, saponin-glycosidase, a new type of glycosidase, which could hydrolyze saikosaponin and dioscin to low-sugar-saponin were studied. In order to hydrolyze the saikosaponin and dioscin specifically, the saikosaponin-glycosidase and dioscin-glycosidase were isolated, purified, and characterized.
     These two enzymes cultured from Aspergillus oryzae c42 and Absidia sp. d38 strain separately are purified to one sport in PAGE after buffer extraction, (NH4)2SO4 precipitation and ion exchange chromatography. In the purification, the saikosaponin-glycosidase yield was 1.4% and the enzyme specific activity was increased by 56 times; the dioscin-glycosidase yield was 3.6% and the enzyme specific activity was increased by 7.8 times. HPLC(C8) was used to further check the purity of these two glycosidases. Only one peak appeared on HPLC, respectively, indicating that the two glycosidases separated by DEAE and PAGE were already pure enzyme.
     The optimum temperature and pH of the saikosaponin-glycosidase was 40℃and 5.0, respectively:and stable under 60℃, pH 4.0~7.0. The activity of saikosaponin-glycosidase was not apparently affected by the Na+ and K+ ions, but significantly inhibited by the Cu++, Hg++ and Ag+ions; and slightly affected by the Ca++ and Mg++ ions. The molecular weight of saikosaponin-glycosidases was about 58 kDa in the SDS-polyacrylamide gel electrophoresis.
     The optimal temperature of dioscin-glycosidase was 40℃; the optimal pH was.5.0; and stable under 50℃, pH 5.0~6.0. The activity of dioscin-glycosidase was not affected by the Na+, K+and Mg2+ions; it was significantly inhibited by the Cu2+and Hg2+ions; and it was slightly affected by the Ca2+ ions. The molecular weight of dioscin-glycosidases was about 55 kDa in the SDS-polyacrylamide gel electrophoresis.
     The saikosaponin-glycosidase not only hydrolyzed 3-O-β-D-(1→3)-glucoside of saikosaponin A (containing 13β,28-epoxy ether bond) into 3-O-β-D-Fuc-saikosapogenin A, further hydrolyzed 3-O-β-D-Fuc-saikosapogenin A into saikosapogenin A; but also hydrolyzed 3-O-β-D-(1→3)-glucoside of saikosaponin B2 (non-containing 13β,28-epoxy ether bond) into 3-O-β-D-Fuc-saikosapogenin B2; further hydrolyzed 3-O-β-D-Fuc-saikosapogenin B2 into saikosapogenin B2. The saikosaponin-glycosidase hydrolyzed the Glc、Fuc of triterpenoide saponins in 3-C, but not hydrolyzed steroidal saponins.
     The dioscin-glycosidase gradually hydrolyzes 3-O-α-L-Rha of dioscin to 3-O-α-L-Rha-β-D-Glc-diosgenin; further rapidly hydrolyzes the other a-L-Rha to main intermediate products 3-O-β-D-Glc-diosgenin; and subsequently hydrolyzes intermediate products to final product of aglycone. the enzyme also gradually hydrolyzes 3-O-α-L-(1→4)-Ara,3-O-α-L-(1→2)-Rha.andβ-D-Glc of [3-O-α-L-(1→4)-Ara, 3-O-α-L-(1→2)-Rha]-β-D-Glc-diosgenin into final product diosgenin. The dioscin-glycosidase hydrolyzed the Glc、Ara、Rha of steroidal saponins, but not hydrolyzed triterpenoide saponins.
     20g saikosaponin was hydrolyzed by saikosaponin-glycosidase under the conditions of that substrate concentration 20 mg/mL,40℃, pH 5.0 and 24h, obtaining 23.78g crude product. The enzyme activity was still high after recycle in 60%. After separation on the silica gel column, the yield of saikosaponin enzymatic productⅠandⅡwere 21.85% and 4.45%, respectively. And the purity of both enzymatic products was 90% detecting by HPLC.
     20g dioscin was hydrolyzed by dioscin-glycosidase under the conditions of that substrate concentration 15 mg/mL,40℃, pH 5.0 and 30h, obtaining 22.54g crude product. The enzyme activity was still high after recycle in 60%. After separation on the silica gel column, the yield of diosgenin was 20.85%, the yield of 3-O-β-D-Glc-diosgenin was 39.8%, and the yield of 3-O-α-L-Rha-β-D-Glc-diosgenin was 12.85%. The purity of these enzymatic products was 90% detecting by HPLC.
     The multi-glycoside nature of saikosaponin-glycosidase and dioscin-glycosidase significantly differs from what is considered norm for glycosidases described in Enzyme Nomenclature by NC-IUBMB "one enzyme hydrolyzes one type of glycoside",indicating that saikosaponin-glycosidase and dioscin-glycosidase were new special enzyme.
     All this proved the possibility of transforming saikosaponin and dioscin into the low-sugar glycoside saponins. It also provided a foundation on studying glycosidase especially saponin glycosidase further.
引文
[1]陆蕴如.中药化学.北京:学苑出版社,1995
    [2]Connolly J D, Hill R A. Triterpenoids. Natural Products Reports,2007,24:465-486
    [3]金凤燮,鱼红闪,芦明春,等.生物转化法生产高附加值生理活性物质的开发.辽宁医药,2002,17(3):33-36
    [4]刘美正,郭忠武.皂甙研究--糖链的作用.有机化学,1997,17(30):307-318
    [5]陈英杰,张绍林,林景南,等.人参皂甙碱水解的研究.沈阳药学院学报,1990,7(4):283-287
    [6]陈燕萍,孟勤,宋长春,等.20(S)-原人参二醇类皂苷的制备及其转化人参皂苷Rh2.中国药学杂志,1997,32(5):273-275
    [7]Deng S, Yu B. Hui Y, et al. Synthesis of three diosgenyl saponins:dioscin, polyphyllin D, and balanitin 7. Carbohydrate Research,1999,317:53-62
    [8]Li M, Han X, Yu B. Synthesis of monomethylated dioscin derivatives and their antitumor activities. Carbohydrate Research,2003,2003:117-121
    [9]张彩霞,佟少山.王育红,等.纤维素酶在穿山龙提取中的应用.基层中药杂志.2000.14(2):32-33
    [10]徐任生.天然产物化学.科学出版社,1997
    [11]Kuriyama K, Murui T. Effect of cellulase hydrolysis of lignan glucoside in sesame seed by β-glucosidase. Journal of the Agricultural Chemical Society of Japan,1993,67:1701-1705
    [12]Kobashi K. Metabolism of ginsenoside by human interstinal bacteria (Ⅱ). The Ginseng Rev.,1994,18:10-14
    [13]Kobashi K. Glycosides are naural prodrugs:evidence using germfree and gnotobiotic rats associated with a human intestinal bacterium. Journal of Traditional Medicines,1998,15: 1-13
    [14]鱼红闪,吴少杰,金凤燮,等.酶法改变甘草苷糖醛酸基提高其甜度的研究(Ⅰ).能水解甘草苷糖醛酸基酶的微生物的选择与产酶的研究.食品与发酵工业,1999,25(3):10-15
    [15]鱼红闪,吴少杰,金凤燮,等.酶法改变甘草苷糖醛酸基提高其甜度的研究(Ⅱ)-能水解甘草苷糖醛酸基酶的提纯与酶性质研究.食品与发酵工业,1999,25(4):5-12
    [16]Tanaka O, Ohtani K. Modification of stevia saponin by enzyme engineering. Bio. Indus, 1990,7(5):314-321
    [17]Feng B, Hu W, Ma B P, et al. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Applied Microbiology and Biotechnology,2007,76:1329-1338
    [18]Feng B, Kang L, Ma B, et al. The substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Tetrahedron,2007,63:6796-6812
    [19]Zhang C, Zhang Y, Chen J, et al. Purification and characterization of baicalin-β-D-glucuronidase hydrolyzing baicalin to baicalein from fresh roots of Scutellaria viscidula Bge. Process Biochemistry,2005,40:1911-1915
    [20]Yu H. Zhang C, Lu M. et al. Purification and Characterization of New Special Ginsenosidase Hvdrolyzing Multi-Glycisides of Protopanaxadiol Ginsenosides, Ginsenosidase Type I. Chemical and Pharmaceutical Bulletin,2007,55(2):231-235
    [21]Zhang C, Zhang Y Z, Chen J, et al. Purification and characterization of baicalin-β-D-glucuronidase hydrolyzing baicalin to baicalein from fresh roots of Scutellaria viscidula Bge. Process Biochemistry,2005,40:1911-1915
    [22]Zhang C, Yu H, Bao Y, et al. Purification and characterization of ginsenoside-β-glucosidase from ginseng. Chemical and Pharmaceutical Bulletin.2001.49:795-798
    [23]Zhang C, Yu H, Bao Y. et al. Purification and characterization of gisenoside-α-arabiofuranase hydrolyzing ginsenoside Rc into Rd from the fresh rood of Panax ginseng. Process Biochemistry,2002.50:792-798
    [24]Yu H, Gong J, Zhang C, et al. Purification and characterization of ginsenoside-α-rhamnosidase. Chemical and Pharmaceutical Bulletin,2002,50:175-178
    [25]Yu H. Ma X, Guo Y. et al. Purification and Characterization of Ginsenoside-β-Glucosidase. Journal of Ginseng Research,1999,23:50-54
    [26]Zhang C. Yu H, Lu M, et al. Enzymic synthesis of salidroside:Purification and characterization of salidrosidase from Aspergillas niger. Process Biochemistry,2005,40: 3143-3147
    [27]Yu H, Liu H, Zhang C, et al. Purification and characterization of gypenoside-α-L-rhamnosidase hydrolyzing gypenoside-5 into gisenoside Rd:Process Biochemistry,2004,39:861-867
    [28]Mohamed S A, Fahmy A S, Mohamed T M. Carbohydrases in camel (Camelus dromedarius) pancreas. Purification and characterization of glucoamylase. Comparative Biochemistry and Physiology, Part B,2005.140:73-80
    [29]Han Y, Chen H. Characterization ofβ-glucosidase from corn stover and its application in simultaneous saccharification and fermentation. Bioresource Technology,2008,99: 6081-6087
    [30]Park J S, Russell J B, Wilson D B. Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85. Anaerobe,2007,13:83-88
    [31]Amouri B, Gargouri A. Characterization of a novelβ-glucosidase from a Stachybotrys strain. Biochemical Engineering Journal,2006,32:191-197
    [32]Iwata H, Suzuki T, Aramaki I. Purification and Characterization of Rice a-Glucosidase, a Key Enzyme for Alcohol Fermentation of Rice Polish. Journal of Bioscience and Bioengineering,2003,95(1):106-108
    [33]Yu H, Xu J, Lu W, et al. Identification, purification and characterization ofβ-glucosidase from apple seed as a novel catalyst for synthesis of O-glucosides. Enzyme and Microbial Technology,2007,40:354-361
    [34]Kim N, Choo Y M, Lee K S, et al. Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comparative Biochemistry and Physiology, Part B,2008,150:368-376
    [35]Zeleny R, Leonard R, Dorfner G, et al. Molecular cloning and characterization of a plant al.3/4-fucosidase based on sequence tags from almond fucosidase I. Phytochemistry,2006, 67:641-648
    [36]Yamasaki Y, Fujimoto M. Kariya J, et al. Purification and characterization of an α-glucosidase from germinating millet seeds. Phytochemistry,2005,66:851-857
    [37]Hu Y, Luan H, Zhou K, et al. Purification and characterization of a novel glycosidase from the china white jade snail (Achatina fulica) showing transglycosylation activity. Enzyme and Microbial Technology,2008.43:35-42
    [38]Bhatti H N, Rashid M H, Nawaz R, et al. Purification and characterization of a novel glucoamylase from Fusarium solani. Food Chemistry,2007,103:338-343
    [39]Hu Y, Luan H, Hao D. et al. Purification and characterization of a novel ginsenoside-hydrolyzingβ-D-glucosidase from the China white jade snail (Achatina fulica). Enzyme and Microbial Technology,2007,40:1358-1366
    [40]Luan H, Liu X, Qi X, et al. Purification and characterization of a novel stable ginsenoside Rbl-hydrolyzingβ-D-glucosidase from China white jade snail. Process Biochemistry,2006, 41:1974-1980
    [41]Lee Y, Kim B, Lee B, et al. PuriWcation and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology,2008,99: 378-386
    [42]Martin K L, Unkles S E, Mcdougall B M, et al. Purification and characterization of the extracelluarβ-1,6-glucanases from the fugus Acremonium strain OXF C13 and isolation of the gene/s encoding these enzymes. Enzyme and Microbial Technology,2006,38:351-357
    [43]Wallecha A, Mishra S. Purification and characterization of twoβ-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochimica et Biophysica Acta,2003,1649:74-78
    [44]Barbagallo R N, Spagna G, Palmeri R, et al. Selection, characterization and comparison of β-glucosidase from mould and yeasts employable for enological applications. Enzyme and Microbial Technology,2004,35:58-66
    [45]Huynh Q K, Gulve E A, Dian T. Purification and Characterization of Glutamine:Fructose 6-Phosphate Amidotransferase from Rat Liver. Archives of Biochemistry and Biophysics, 2000.379:307-313
    [46]George R W. Saponins used in traditional and morden medicine. New York:Plenum Press, 1996.
    [47]Withers S C S R. Glycosidase mechanisms. Current opinion in chemical biology,2000,4(5): 573-580
    [48]Zechel D, Withers S. Glycosidase mechanisms:anatomy of a finely tuned catalyst. Accounts of Chemical Research,2000,33(1):11-18
    [49]Koeller K, Wong C. Enzymes for chemical synthesis. Nature,2001,409(11):232
    [50]Baker D D, Chu M, Oza U, et al. The value of natural products to future pharmaceutical discovery. Natural Products Reports,2007,24:1225-1244
    [51]Hoffmeister D, Keller N P. Natural products of filamentous fungi:enzymes, genes, and their regulation. Natural Products Reports,2007,24:393-416
    [52]Thiericke R. Rohr J. Biological variation of microbial metabolites by precusordhected biosynthsis. Natural Products Reports,1993,20:265
    [53]王侃,鱼红闪,金凤燮.芦丁-α-鼠李糖苷酶的提纯及其酶性质.大连轻工业学院学报,2004.23(1):30-33
    [54]金赞敏.鱼红闪,金凤燮.人参皂苷-α-鼠李糖苷酶分离提纯及其酶性质.大连轻工业学院学报,2003,22(2):114-116
    [55]Zhao X, Gao L, Wang J, et al. A novel ginsenoside Rbl-hydrolyzingβ-D-glucosidase from Cladosporium fulvum. Process Biochemistry,2009,44(6):612-618
    [56]金凤燮等著.天然产物生物转化.北京:化学工业出版社,2009
    [57]杜景红,左廷兵,李风兰.柴胡属(Bupleuruml)植物研究进展.东北农业大学学报,2003,34(3):352-359
    [58]王有志,张亚云.中药柴胡的物种调查和鉴定.中国药学杂志,1994,29(1):16-18
    [59]王振宇.李南,李淑莲.柴胡的真伪辨别.中医药学报,2003,31(4):24-25
    [60]齐凯琴.柴胡提取物防醉作用的研究.天然产物研究与开发,1995,7(3):20-23
    [61]余传隆,黄泰康,丁志遵.中药辞海(第二卷).北京:中国医药科技出版社,1996
    [62]刘燕,廖卫平,郭姣,等.柴胡三种萃取物的抗惊厥作用研究比较.中医药学报,2002,30(6):21-22
    [63]吴寿金,赵泰金.现代中草药成分化学.北京:中国医药科技出版社,2001
    [64]梁之桃,秦民坚,王峰涛,等.柴胡属植物皂苷成分研究进展.天然产物研究与开发,2001,13(6):67-72
    [65]Meselhy M, Aboutabl E A. Hopane-type saponin from polycarpon succlentum growing in Egypt. Phytochemistry,1997,44:925-929
    [66]Jia Q, Zhang R. Advances in chemical studies on the saponins from Bupleurum plants. Acta Pharmaceutica Sinica,1989,24(12):961-971
    [67]Motoo T, Sawabu N. Antitumor effects of saikosaponin-s, baicalin and baicalin on human hepatoma cell lines. Cancer Letter,1994,86(1):10-28
    [68]Kato M, Pu M, Isobe K, et al. Characterization of the immunoregulatory action of saikosaponin-d. Cellular Immunology,1994,159:15-25
    [69]Ding Z, Zhou J, He Y. New Triterpenoid Saponins from Polycarpon prostraturn (Caryophyllaceae). Acta Botanica Sinica,2000,42(3):306-310
    [70]谭利,赵玉英,张如意.柴胡皂甙s的结构鉴定.植物学报,1998,40(2):176-179
    [71]刘绣华,李明静,汪汉卿.三岛柴胡种子化学成分分析.分析化学,1998,28(9):1079-1084
    [72]梁鸿,赵玉英,白焱晶,等.柴胡皂甙V的结构鉴定.药学学报,1998,33(4):282-285
    [73]张宏娜.赵玉英.梁鸿.等.HPLC-ELSD法同时测定柴胡中柴胡皂苷a、c、d、f含量.药物分析杂志.2007,27(8):1150-1153
    [74]王鹏,王玉生,刘斌.不同产地柴胡中总皂苷及柴胡皂苷a含量测定.中国药物与临床,2008,8(3):228-229
    [75]邬科芳,倪力军,张立国.不同提取工艺对柴胡中柴胡皂苷a含量的影响.中成药.2006,28(8):1230-1231
    [76]Hu Z, Cai M, Liang H. Desirability function approach for the optimization of microwave-assisted extraction of saikosaponins from Radix Bupleuri. Separation and Purification Technology,2008,61:266-275
    [77]Hsieh Y, Huang H. Determination of saikosaponins by micellar electrokinetic capillary chromatography. Journal of Chromatography,1997,759:193-201
    [78]Huang H, Zhang X, Xu Z, et al. Fast determination of saikosaponins in Bupleurum by rapid resolution liquid chromatography with evaporative light scattering detection. Journal of Pharmaceutical and Biomedical Analysis,2009,49:1048-1055
    [79]Yoon K D, Kim J. Application of centrifugal partition chromatography coupled with evaporative light scattering detection for the isolation of saikosaponins-a and-c from Bupleurum falcatum roots. J. Sep. Sci.,2009,32:74-78
    [80]Zhu S, Shimokawa S, Shoyama Y, et al. A novel analytical ELISA-based methodology for pharmacologically active saikosaponins. Fitoterapia,2006,77:100-108
    [81]Sanchez-Conotreras S, Diaz-Lanaz A M, Bartolome C, et al. Minor sulfated saikosaponins from the aerial parts of Bupleurum rigidum L. Phytochemistry,2000,54:783-789
    [82]宋海妹,苏晓凤,李楠,等.柴胡皂苷的提取与鉴定.大连轻工业学院学报,2005,24(1):15-18
    [83]苏晓凤,鱼红闪,金凤燮.柴胡皂苷酶解产物的分离纯化.大连轻工业学院学报.2006,25(1):39-42
    [84]Bermejo B P, Abad M M, Silviin S A, et al. In vivo and in vitro antiinflammtory activity of saikosaponins. Life Sciences,1998,63(13):1147-1156
    [85]刘伟.柴胡不同炮制方法对其抗炎作用的影响.河南中医药学刊,1998,13(4):10-12
    [86]Ushio Y, Abe H. The Effects of Saikosaponin-d on Yeast Phagocytosis and Degradation in Peritoneal Macrophages:Related Increase in Fc Receptor Expression and Altered Cytoplasmic Organization. The Japanese Journal of Pharmacology,1991,56(2):167-175
    [87]Ushio Y, Oda Y, Abe H. Effect of saikosaponin on the immune responses in mice. International Journal of Immunopharmacology,1991,13(5):501-508
    [88]Chou C C, Pan S L, Teng C M, et al. Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences,2003,19:403-413
    [89]周秋丽.张志强.长泽哲郎.柴胡皂甙抑制Na+.K+—ATP酶活性的构效关系.白求恩医科大学学报.1997,23(4):356-358
    [90]Nakamura T, Kuriyama M, Kosuge E, et al. Effects of saiboku-to (TJ-96) on the production of platelet-activating factor in human neutrophils. Annals of the New York Academy of Sciences,1993,685:572-579
    [91]Ding W, Qi X, Li P. Cholesteryl hemisuccinate as a membrane stabilizer in dipalmitoylphosphatidylcholine liposomes containing saikosaponin-d. International Journal of Pharmaceutics,2005,300:38-47
    [92]张裕卿,李滨县.聚氧乙烯-马来酸酐聚合物改性纤维素酶催化酸水解盾叶薯蓣薯蓣皂苷元的研究.中草药,2007,38(4):527-530
    [93]李开泉,邹盛勤,陈武.薯蓣属植物的研究开发现状.林产化工通讯,2004,38(2):26-29
    [94]江苏新医学院.《中药大辞典》(下册).上海:上海科学技术出版社,1986
    [95]刘国际,罗娜,陈俊英,等.不同酶法酶提取薯蓣皂苷元的研究.郑州大学学报,2005,26(4):48-50
    [96]张黎明,徐玮.穿龙薯蓣皂苷的提取及其副产物的分离.天津科技大学学报,2007.22(3):1-5
    [97]袁毅,张黎明,王亮亮,等.穿龙薯蓣皂苷的提取及其副产物的分离.天津科技大学学报,2007,22(3):1-5
    [98]都述虎,刘文英,付铁军,等.穿龙薯蓣总皂苷中甾体皂苷的分离与鉴定.药学学报,2002,37(4):267-270
    [99]张学才,荣先冬,陈冬霞,等.从新鲜黄姜提取薯蓣皂苷元的工艺研究.化学与生物工程,2007,24(6):55-57
    [100]沈玉萍,杨欢,沙娟.反相高效液相色谱法分析穿山龙中薯蓣皂苷元的含量.药物分析杂志,2007,27(5):635-638
    [101]李谦,高向涛,徐俊清,等.离子交换树脂催化薯蓣皂苷水解.应用化学,2009,26(4):431-434
    [102]Sautour M, Mitaine-Offer A, Miyamoto T, et al. A New Steroidal Saponin from Dioscorea cayenensis. Chemical and Pharmaceutical Bulletin,2004,52(11):1353-1355
    [103]Li K, Tang Y, Fawcett J P, et al. Characterization of the pharmacokinetics of dioscin in rat. Steroids,2005,70:525-530
    [104]Li K, Wang Y. Gu J, et al. Determination of dioscin in rat plasma by liquid chromatography-tandem mass spectrometr. Journal of Chromatography B.2005,817:, 271-275
    [105]Liu C, Zhou H, Yan Q. Fingerprint analysis of Dioscorea nipponica by high-performance liquid chromatography with evaporative light scattering detection. Analytica Chimica Acta. 2007,582:61-68
    [106]Lin S, Wang D, Yang D, et al. Characterization of steroidal saponins in crude extract from Dioscorea nipponica Makino by liquid chromatography tandem multi-stage mass spectrometry. Analytica Chimica Acta,2007,599:98-106
    [107]Zou C, Hou S, Shi Y, et al. The synthesis of gracillin and dioscin:two typical representatives of spirostanol glycosides. Carbohydrate Research,2003,338:721-727
    [108]胡湘春,鱼红闪,金凤燮.穿龙薯蓣皂苷的分离提纯.大连轻工业学院学报,2004,23(1):25-29
    [109]王元好,刘冰,鱼红闪,等.穿山龙薯蓣皂苷酶解产物的分离纯化.大连轻工业学院学报,2005,24(1):1-3
    [110]刘冰,王元好,朱宏丽,等.穿山龙薯蓣皂苷酶解产物的分离纯化.大连轻工业学院学报,2006,25(3):161-163
    [111]陶媛媛,张波,鱼红闪,等.植物来源穿山龙皂苷酶的分离提纯及其酶性质.大连轻工业学院学报,2007,26(2):120-123
    [112]徐国钧.生药学.北京:人民卫生出版社,1995
    [113]Mimaki Y, Yokosuka A, Kuroda M, et al. Cytotoxic activities and structure-cytotoxic relationships of steroidal saponins. Biological and Pharmaceutical Bulletin,2001,24(11): 1286-1289
    [114]侯娟,何文辉,王明霞,等.薯蓣皂苷的药理作用.河北医药,2004,26(1):71
    [115]Yoshikawa M, Xu F, Morikawa T P Y N, et al. Medicinal flowers. XII. New spirostane-type steroid saponins with antidiabetogenic activity from Borassus flabellifer. Chemical and Pharmaceutical Bulletin,2007,55(2):308-316
    [116]马海英,周秋丽,王本祥.黄山药总皂苷和薯蓣皂苷元抗高脂血症及体外抗血小板聚集的比较.中国医院药学杂志,2002,22(6):323-325
    [117]马海英,赵志涛,王丽娟,等.薯蓣皂苷元和黄山药总皂苷抗高脂血症作用比较.中国中药杂志,2002,27(2):528-531
    [118]Cai J. Liu M, Wang Z, et al. Apoptosis induced by dioscin in hela cells. Biological and Pharmaceutical Bulletin,2002,25(2):193-196
    [119]Liu M, Wang Z, Ju Y, et al. The Mitotic-Arresting and Apoptosis-Inducing Effects of Diosgenyl Saponins on Human Leukemia Cell Lines. Biological and Pharmaceutical Bulletin,2004.27(2):1059-1065
    [120]蔡晶,巨勇,刘明杰.薯蓣皂苷对Hela细胞的凋亡诱导作用及其机制研究.中草药,2001,32:94-97
    [121]王丽娟,王岩,陈声武.等.薯蓣皂苷元体内、外的抗肿瘤作用.中国中药杂志.2002.27(10):777-779
    [122]李树英,陈家畅.五种山药对小鼠免疫功能影响的比较研究.河南中医,1992,12(1):23-24
    [123]南景一.穿山龙对小鼠免疫功能的影响.中草药,1988,19(3):22-28
    [124]蔡美,周衡.《金匮》薯蓣丸对小鼠免疫功能的影响.湖南中医药导报,1997,3(6):31-34
    [125]苗明三.怀山药多糖对小鼠免疫功能的增强作用.中药药理与临床,1997,13(3):25-26
    [126]谭子虎,吕继端.减薯蓣丸对D2半乳糖致大鼠衰老作用的影响.中华老年医学杂志,1995,14(5):268-270
    [127]刘世昌,倪允孚.四大怀药对小鼠血液中谷胱甘肽过氧化物酶活性的影响.中药材,1991,14(4):39-41
    [128]Ma E, Kim J. Epoxidation of Diosgenin,25(R)-1,4,6-Spirostatrien-3-one and 25(R)-4,6-Spirostadien-3β-ol. Molecules,2003,8:886-893
    [129]杭悦宇,杭秉茜.我国山药类药材对动物降血糖和降血脂的作用.植物资源与环境,1994,3(4):59-60
    [130]郝志奇.山药水煎剂对实验性小鼠的降血糖作用.中国药科大学学报,1991,22(3):158-160
    [131]张克义,常天辉,李伯坚,等.穿龙冠心宁及水溶性皂苷对小白鼠心肌营养性血流量的影响.中国医科大学学报,1982,32(3):10-12
    [132]白永盛.穿龙薯蓣.植物杂志,1997(5)
    [133]Yang C, Zhang Y, Jacob M R, et al. Antifungal Activity of C-27 Steroidal Saponins. Antimicrobial Agents and Chemotherapy,2006,50(5):1710-1714
    [134]Ikeda T, Ando J, Miyazono A, et al. Anti-herpes virus activity of Solanum steroidal glycosides. Biological and Pharmaceutical Bulletin,2000,23(3):363-364
    [135]Hames B, Hooper N, Houghton J. Instant Notes Biochemistry. BIOS Scientific Publishers Limited,1997
    [136]袁道强,黄建华.生物化学实验和技术.北京:中国轻工业出版社,2006
    [137]Kawasaki T. Hydroxyapatite as a liquid chromatographic packing. Journal of Chromatography,1991.544:147-184
    [138]汪家政,范明.蛋白质技术手册.北京:科学出版社,2000
    [139]Wetlaufer D. Ultratiolet spectra of proteins and amino acids. Adv. Prot. Chem.,1962,17: 303-339
    [140]Levin P, Brauer R. The biuret reaction for the determination of proteins--an improve reagent and its application. The Journal of Laboratory and Clinical Medicine.1951,38: 474-478
    [141]Lowry O, Rosebrough N. Farr A, et al. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry,1951,193(265-275)
    [142]Bradford M. A rapid and sensitive method for the quantization of microgram quantities of proteins utilizing the principle of protein dye binding. Analytical Biochemistry,1976,72: 248-254
    [143]Turner P, Mclennan A, Bates A, et al. Instant Notes in Molecular Biology. BIOS Scientific Publishers Limited,1997
    [144]于自然,黄熙泰.现代生物化学.北京:化工出版社,2001
    [145]Hitoshi N, Ikuko K, Tatsushi M, et al. cDNA and deduced amino acid sequence of human PK-120, a plasma kallikrein-sensitive glycoprotein. FEBS letters,1995,357:207-211
    [146]张树政,孟广震.酶学研究技术(上册).北京:科学出版社,1987
    [147]孟广震.中国科学院生物研究技术进展.北京:科学出版社,1998
    [148]Srguleng Q, Hongshan Y, Chunzhi Z, et al. Purification and characterization of dioscin-a-L-rhamnosidase from pig liver. Chemical and Pharmaceutical Bulletin,2005,53: 934-937
    [149]Jin F, Li Y, Zhang C, et al. Thermostable α-amylase and a-galactosidase production from the thermophilic and aerobic Bacillus sp.JF strain. Process Biochemistry,2001,36: 559-564
    [150]王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社,2002
    [151]Jin F. Li X, Zhang C. Purification and characterization of a thermostable α-amylase from Bacillus sp-JF strain. Journal of General Microbiology,1992,38:293-302
    [152]Bae E, Shin J, Kim D. Metabolism of Ginsenoside Re by Human Intestinal Micro flora and Its Estrogenic Effect. Biological and Pharmaceutical Bulletin,2005,28(10):1903-1908
    [153]刘美正,郭忠武.皂甙研究新进展.天然产物研究与开发,1997,9(3):81-85
    [154]刘振国,陈红,程延安,等.柴胡皂苷d对大鼠实验性肝癌形成的预防作用.西安交通大学学报(医学版),2007,28(6):645-661
    [155]黄峥烨.潘展砚.贾亚利,等.柴胡皂苷d对解脲脲原体耐药株与敏感株的活性研究.同济大学学报(医学版),2008,29(3):30-32
    [156]谢东浩,蔡宝昌,安益强,等.柴胡皂苷类化学成分及药理作用研究进展.南京中医药大学学报,2007.23(1):63-65
    [157]杨志刚,陈阿琴,孙红祥.等.柴胡皂苷药理作用研究进展.中国兽药杂志,2005.39(5):27-30
    [158]刘国臣.李盛钰,何大俊,等.甾体皂苷的选择性酸水解研究.东北师大学报.2007,39(2):87-91
    [159]刘德育,曾飒.从三七药材中快速批量分离提取人参皂苷Rd的方法.中药材,2006,29(3):247-249
    [160]宣伟东,陈海生,梁爽.蒺藜中甾体皂苷TTS-12提取分离工艺研究.天然产物研究与开发,2005,17:43-47
    [161]卢滨,范云双,万定荣,等.绿升麻中菠萝蜜烷型三萜类成分研究.时珍国医国药,2009,21(2):267-270
    [162]赵阳,马百平,王升启,等.中药所含甾体皂苷与三萜皂苷防治心血管疾病的研究进展.中国药学杂志,2003,38(1):3-7
    [163]刘锡葵,陈国珍,杨庆雄.甾体皂甙的心血管活性研究.宁波:2000
    [164]Lahmann M, Gyback H, Garegg P J, et al. A facile approach to diosgenin and furostan type saponins bearing a 3β-chacotriose moiety. Carbohydrate Research,2002,337:2153-2159
    [165]韩枫,李稳宏,李冬,等.黄姜中薯蓣皂苷元提取方法的比较研究.中成药,2007, 29(12):1765-1768
    [166]佟玲,张胜科,李锦.酶解法提取薯蓣皂素的工艺研究.陕西师范大学学报(自然科学报),2003,31(2):81-83
    [167]Klibanov A. Improving enzymes by using them in organic solvents. Nature,2001,409(11): 241
    [168]Schmid A, Dordick J, Hauer B. Industrial biocatalysis today and tomorrow. Nature,2001, 409(11):258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700