电池驱动长脉冲强磁场的理论、设计、工艺与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强磁场作为一种极端条件,对物质的作用效果明显,已成为现代科学研究中越来越重要的工具。强磁场可分为稳态强磁场和脉冲强磁场,稳态强磁场持续时间长,但设备和运行成本高,且磁场强度相对较低。脉冲强磁场磁场强度高,但是持续时间短,无法满足某些科学实验的要求,且短脉冲条件下信号的测量较为困难。长脉冲强磁场结合了脉冲磁场磁场强度和稳态磁场持续时间上的双重的优势,能进一步拓展强磁场在科学上的应用,具有重要的科学意义。
     目前常用的脉冲强磁场电源包括电容器储能电源和脉冲发电机型电源。电容器储能密度较低,场地和成本投入大,因此更适合驱动短脉冲磁体。脉冲发电机电源能量大,且可控性好,但是控制复杂,且输出纹波难以去除。而蓄电池电源能量大,且输出为直流,不存在纹波问题。本文提出采用蓄电池组作为长脉冲强磁场的电源。
     论文首先对铅酸蓄电池脉冲高倍率放电进行了理论与实验研究。测试了铅酸蓄电池的脉冲高倍率放电极限性能,对放电的电流、电压以及内阻等关键参数进行了实际测试。随机选取一只蓄电池进行了持续性放电,以测试其对脉冲高倍率放电的承受能力,进一步验证蓄电池组脉冲电源建设的可行性。
     脉冲磁体是脉冲强磁场装置的核心。结合蓄电池脉冲放电参数,作者进行了长脉冲磁体与电源的组合优化研究。针对长脉冲磁体最为关键的温升问题,分析了磁体形状和体积与磁体温升之间的关系,揭示增大体积降低温升的方法和电源容量之间的矛盾关系。结合蓄电池供电电路进行了脉冲磁体的电、磁、热多物理场耦合分析,研究温升导致的参数变化对放电过程和磁场波形的影响,提出通过控制磁体温升改善长脉冲磁场波形的方案。
     根据本文长脉冲磁体设计理论,优化设计了一套40T长脉冲磁体和电源方案。由于长脉冲磁体电源电压低,电流持续时间长,导致导体截面积增大,带来了磁体结构设计和加工上的问题。本文引入水冷磁体的helix线圈结构,并根据脉冲磁体的特点对helix线圈结构进行了改进。将水冷通道改为优化了的层间加固,并将线圈端部闭合回路切开以避免感应涡流所带来的电磁力。
     脉冲磁体能否正常工作以及所能达到的最高磁场强度指标,很大程度上取决于磁体加工制造过程,工艺上的任何一点小缺陷都有可能导致脉冲磁体的破坏或寿命缩短。针对helix线圈在加工、绝缘、加固以及组装等环节上的问题,本文都提出了相应的解决办法。对铜皮外线圈的电极焊接以及绕制过程也进行了详细的介绍。
     作者在国家脉冲强磁场科学中心(筹)完成了整套长脉冲强磁场装置的建设和调试工作。本文还将对整个装置系统的构成以及其他关键部件进行介绍,并给出电源和磁体的最终测试结果。
     在长脉冲强磁场系统的基础上,作者还进行了高稳定度长脉冲强磁场实现方法的探讨。通过磁体和电源的组合或施加一些辅助手段,可以达到更高稳定度的长脉冲强磁场。本文对几种方式的可行性以及所能达到的磁场稳定度水平进行了相应的介绍。
High magnetic field, as a kind of extreme condition, has become a more and moreimportant tool in modern scientific research. High magnetic field is divided intocontinuous high magnetic field and pulse high magnetic field. The continuous highmagnetic field can last for a long time, but the investment and operation cost is very high,also the field intensity is low. The pulse high magnetic field has high field intensity, butthe field can only last for a very short time. It can’t satisfy some of the scientific research,besides, the signal acquisition is relatively difficult in short pulse magnetic field. Longpulse high magnetic field combined the advantages of field intensity and lasting time, canimprove the use of high magnetic in scientific research.
     The pulsed power system used in WHMFC consists of parallel capacitor banks andpulsed generator. As a low energy density storage system, the capacitor banks arenormally used for generating short pulsed magnetic field. Although the pulsed generatorhas a high energy density and good control characteristics, it always suffers from thecomplex control method and high harmonic interference output. Compared with the twopower system referred before, the battery bank has the merits of high energy storage, DCcurrent output and no harmonic interference. Hence, a battery bank is adopted as thepower of the pulsed magnetic field.
     Firstly, the pulsed discharge characteristics of the battery bank are studied in theoryand experiment. The pulsed discharge characteristics of the lead-acid battery are measured,including the current, voltage and the resistance. The experiment results certificates thedesign well.
     The pulsed magnet is the key of the pulsed magnetic field facility. Based on thepulsed discharge parameters of the battery, the author has done a study about long pulsedmagnets and the optimization of the power supply. For analyzing the most critical problemof temperature rise in the long pulsed magnets, the relationship between the magnettemperature rise with the magnet shape and volume, revealed the contradictoryrelationship between the volume increases to reduce the temperature rise and the capacityof power supply. And Combined with the battery-powered circuit, the author conducted a pulse magnet electric, magnetic, thermal multi-physics coupling analysis, analyzed theinfluences of temperature rise resulting from the parameter change on the dischargeprocess and the magnetic-field waveform. Proposed to improve the long-pulsed magneticfield waveform by controlling the magnet temperature rise, the final magnet optimizationprocess is to seek the optimum configuration relationship between the power supplycapacity and the magnetic field strength and pulse width.
     According to the design theory of the pulsed magnetic field, a40T long pulsedmagnet system is designed. Due to the large volume of the pulsed magnet, it is difficult instructure design and manufacturing. This paper presents an optimized helix magnet coil,which has inner distribution reinforcement instead of cooling channel and a slit in the endsof the coil in order to avoid the electromagnetic force induced by the eddy current.
     The manufacture process of the magnet is very important because it often decideswhether the pulse magnet can work properly and the highest magnetic field intensity it canreach. Any small defect in the process may cause damage or shorten the life of a pulsemagnet. This paper has proposed solutions for problems existing in the processing,insulation, reinforcement and assembly process of the Helix inner coil. And the electrodewelding and the winding process of the outer copper coil are also described in detail.
     The author has completed the construction of the long pulse high magnetic fielddevice at Wuhan National High Magnetic Field Center. The composition of this apparatussystem and other critical components are desired in this paper, and the final test results ofthe power and magnet are also given.
     Based on the long pulse high magnetic field system, the author has also discussed themethod for building high stability long pulse high magnetic field, which can be realized bythe combination of magnet and power or imposing some auxiliary means. Comparison onthe feasibility and stability level between several methods has been made in the paper.
     Finally, the author summarizes these studies and discussed on further improvementand development of the magnets and power.
引文
[1] Klitzing. K. Von, Dorda. G and Pepper. M. New Method for High-AccuracyDetermination of the Fine-Structure Constant Based on Quantized Hall Resistance(Nobel Lecture). Phys. Rev. Lett.,1980,43(45):494~497
    [2] Stumer. H. L, C. A and T. D. C. Fractional Quantization of the Hall Effect (NobelLecture). Phys. Rev. Lett.,1983,50:953~956
    [3] P. C. Lauterbur. All science is interdisciplinary–from magnetic moments tomolecules to men. Angewandte Chemie International Edition,2005
    [4] Fritz Herlach and N. Miura. High Magnetic Fields Science and Technology. USA:World Scientific Publishing Co.,2003
    [5] F. Herlach. Strong and ultrastrong magnetic fields and their applications. New York:Springer-Verlag Press,1985
    [6]廖孟杨.核磁共振成像技术.第一版.武汉:武汉大学出版社,1994
    [7]张裕恒.强磁场下的科学研究.物理,2009,38(5):320~327
    [8]叶朝辉.磁共振成象新进展.物理,2004,33(1):12~17
    [9] J. Haase, D. Eckert and H. Siegel et al. NMR in pulsed high magnetic fields.Journal of Magnetism and Magnetic Materials,2004,272:1623~1625
    [10] Meier B, Greiser S and Haase J et al. NMR signal averaging in62T pulsed fields. JMagn Reson.,2011,210(1):1~6
    [11] Jürgen Haase, D. Eckert and H. Siegel et al. Nuclear magnetic resonance in pulsedhigh-field magnets. Concepts in Magnetic Resonance Part B: Magnetic ResonanceEngineering,2003,19B(1):9~13
    [12] A. G. Mamalis and D. E. Manolakos. Electromagnetic forming and powderprocessing: Trends and developments. Appl Mech Rev,2004,57(4):299~324
    [13]李春峰,于海平.电磁成形技术理论研究进展.塑性工程学报,2004,12(5):1~7
    [14] S. F. Golovashchenko. Material Formability and Coil Design in ElectromagneticForming. Journal of Materials Engineering and Performance,2007,16(3):314~320
    [15] N Hirano, S Nagaya and M Takahashi et al. Development of magnetic refrigeratorfor room temperature application. AIP Conference Proceedings,2002
    [16] E. Bruck. Developments in magnetocaloric refrigeration. J. Phys. D: Appl. Phys,2005,38:381~391
    [17] Tsukasa Kiyoshi, Shinji Matsumoto and M. Kosuge. Superconducting Inserts inHigh-Field Solenoids. IEEE Transactions on Applied Superconductivity,2002,12(1):470~475
    [18] F. Bitter. The design of powerful electromagnets: part IV—the new magnet lab atM.I.T. Rev. of Sci. Instr,1939:373~381
    [19] M. D. Bird. Florida-Helix Resistive Magnets. IEEE Transactions on AppliedSuperconductivity,2004,14(2):1271~1275
    [20] NHMFL. http://www.magnet.fsu.edu/.2012
    [21] F. Bitter. The design of powerful electromagnets: part II—the magnetizing coil.Rev. of Sci. Instr,1939:482~488
    [22] H. J. Schneider-Muntau. Generation of very high continuous fields by polyhelixand polyhelix hybrid magnets. Magnetics, IEEE Transactions on,1982,18(6):1565~1570
    [23] H. J. Schneider-Muntau. Polyhelix magnets. Magnetics, IEEE Transactions on,1981,17(5):1775~1778
    [24] F. Lecouturier, J. Billette and J. Beard et al. Copper/Stainless Steel PolyhelixMagnets. Applied Superconductivity, IEEE Transactions on,2012,22(3):4300404
    [25] F. Debray, J. Dumas and C. Trophime et al. DC High Field Magnets at the LNCMI.Applied Superconductivity, IEEE Transactions on,2012,22(3):4301804
    [26] P. Fazilleau, C. Berriaud and R. Berthier et al. Final Design of the New GrenobleHybrid Magnet. Applied Superconductivity, IEEE Transactions on,2012,22(3):4300904
    [27] P. Rub and W. Joss. A new type of radially cooled helices designed for a25Tmagnet. Magnetics, IEEE Transactions on,1996,32(4):2570~2573
    [28] Portugall O., P. N. and M. H. U. et al. Megagauss magnetic field generation insingle-turn coils: new frontiers for scientific experiments. Journal of Physics D:Applied Physics,1999,32(18):2354~2366
    [29] N. Miura and Y. H. Matsuda. New Megagauss Laboratory of ISSp at Kashiwa.Physica B,2001(294-295):562~567
    [30] F. Herlach. The technology of pulsed high field magnets. Magnetics, IEEETransactions on,1988,24(2):1049~1051
    [31]彭涛,辜承林.脉冲强磁场及其发展动态.电工技术杂志(5)
    [32]彭涛,辜承林.强磁场发展动态与趋势.物理(5)
    [33]彭涛,辜承林.放电过程中脉冲磁体的热传导.强激光与粒子束(5)
    [34]彭涛,李亮.脉冲磁体中电磁与温度场耦合的有限元分析.原子能科学技术(0)
    [35] L. Li and F. Herlach. Deformation analysis of pulsed magnets with internal andexternal reinforcement. Meas. Sci. Technol.,1995(6):1035~1042
    [36]彭涛,辜承林.脉冲强磁体中应力的有限元分析.核技术(0)
    [37]严陆光.强脉冲储能电源的进展.电工电能新技术(1)
    [38]王莹.电感储能强脉冲电源及其断路开关.电工电能新技术(0)
    [39] P. L. Kapitza. A Method of Producing Strong Magnetic Fields. Proc. R. Soc. Lond.A.,1924,105:691~710
    [40]郭芳,唐跃进,任丽等.超导电感储能脉冲输出电路设计及其关键问题.华中科技大学学报(自然科学版),2009(1):119~122
    [41] H. F. Ding, C. X. Jiang and T. H. Ding et al. Prototype Test and Manufacture of aModular12.5MJ Capacitive Pulsed Power Supply. Applied Superconductivity,IEEE Transactions on,2010,20(3):1676~1680
    [42] J. Jorling, J. Hofmann and T. H. G. G. Weise et al.49MJ pulsed power facility toproduce high magnetic fields. Pulsed Power Conference,200716th IEEEInternational.2007:1513~1516
    [43] J. Wosnitzaa, A. D. Bianchia and J. Freudenbergerb et al. Dresden pulsed magneticfield facility. Journal of Magnetism and Magnetic Materials,2007,310:2728~2730
    [44] H. Bluhm著,江伟华,张弛译.脉冲功率系统的原理与应用.北京,清华大学出版社,2008
    [45] H. J. Boenig. The Los Alamos600MJ,1500MW Inertial Energy Storage AndPulsed Power Unit. Pulsed Power Conference,1991. Digest of Technical Papers.Eighth IEEE International.1991:719~722
    [46]刘威葳.高稳定度平顶长脉冲强磁场电源系统的研究[博士学位论文].武汉:华中科技大学:2011
    [47]肖后秀.脉冲强磁场装置及脉冲平顶磁场实现方法的实现[博士学位论文].武汉:华中科技大学:2009
    [48]李凯.利用超大容量电容器改善内燃机车柴油发电机组的电启动性能.机车电传动,2002(2):37~39
    [49]李志强,钟辉煌,樊玉伟等.新型电感储能脉冲功率驱动源.强激光与粒子束,2010(4):735~738
    [50] HLD. http://www.hzdr.de/hld.2012
    [51] J. R. Miller. The NHMFL45T hybrid magnet system: past, present, and future.IEEE Transactions on Applied Superconductivity,2003,13(1)
    [52] F. Debray, J. Dumas and C. Trophime et al. DC High Field Magnets at the LNCMI.Applied Superconductivity, IEEE Transactions on,2012,22(3):4301804
    [53] M. D. Bird, S. Bole and Y. M. Eyssa et al. Design of resistive inserts for theNHMFL45-T hybrid magnet. Magnetics, IEEE Transactions on,1994,30(4):2192~2195
    [54] J. Sims, A. Baca and G. Boebinger et al. First100T non-destructive magnet.Applied Superconductivity, IEEE Transactions on,2000,10(1):510~513
    [55] C. A. Swenson, J. R. Sims and D. G. Rickel. Performance of First90T InsertMagnet for US-DOE100T Multi-Shot Pulsed Magnet Program. Megagaussmagnetic field generation and related topics,2006ieee international conference on.2006:207~215
    [56] J. Bacon, A. Baca and H. Coe et al. First100T non-destructive magnet outer coilset. Applied Superconductivity, IEEE Transactions on,2000,10(1):514~517
    [57] J. R. Sims, T. Dominguez and T. E. Northington et al. Prototype tests anddescription of a60tesla quasi-continuous magnet. Magnetics, IEEE Transactionson,1994,30(4):2208~2210
    [58] L. J. Campbell, H. J. Boenig and D. G. Rickel et al. Design and analysis ofhigh-field quasi-continuous magnets. Magnetics, IEEE Transactions on,1994,30(4):2222~2225
    [59] J. Schillig, H. Boenig and M. Gordon et al. Operating experience of the UnitedStates National High Magnetic Field Laboratory60T Long Pulse Magnet. AppliedSuperconductivity, IEEE Transactions on,2000,10(1):526~529
    [60] J. B. Schillig, H. J. Boenig and J. D. Rogers et al. Design of a400MW powersupply for a60T pulsed magnet. Magnetics, IEEE Transactions on,1994,30(4):1770~1773
    [61] J. R. Sims, J. B. Schillig and G. S. Boebinger et al. The U.S. NHMFL60T longpulse magnet. Applied Superconductivity, IEEE Transactions on,2002,12(1):480~483
    [62] L. J. Campbell, H. J. Boenig and D. G. Rickel et al. Status of the NHMFL60teslaquasi-continuous magnet. Magnetics, IEEE Transactions on,1996,32(4):2454~2457
    [63] D. Hongfa, L. Weiwei and D. Xianzhong et al. Design and Analysis of a CombinedPower Supply for High-Field Quasi-Continuous Magnets. AppliedSuperconductivity, IEEE Transactions on,2012,22(3):5400904
    [64] S. Zherlitsyn, A. D. Bianchi and T. Herrmannsdoerfer et al. Coil Design forNon-Destructive Pulsed-Field Magnets Targeting100T. AppliedSuperconductivity, IEEE Transactions on,2006,16(2):1660~1663
    [65] S. Zherlitsyn, B. Wustmann and T. Herrmannsdorfer et al. Status of thePulsed-Magnet-Development Program at the Dresden High Magnetic FieldLaboratory. Applied Superconductivity, IEEE Transactions on,2012,22(3):4300603
    [66] J. Wosnitza, A. D. Bianchi and T. Herrmannsdorfer et al. Recent Developments atthe Dresden High Magnetic Field Laboratory. Megagauss magnetic field generationand related topics,2006ieee international conference on.2006:197~206
    [67] S. Zherlitsyn, T. Herrmannsdorfer and B. Wustmann et al. Design and Performanceof Non-Destructive Pulsed Magnets at the Dresden High Magnetic Field Laboratory.Applied Superconductivity, IEEE Transactions on,2010,20(3):672~675
    [68] G. Aubert, F. Debray and W. Joss et al. The20MW-50mm bore diameter magnetof the Grenoble High Magnetic Field Laboratory. Applied Superconductivity, IEEETransactions on,2000,10(1):455~457
    [69] H. J. Schneider-Muntau and J. C. Vallier. The Grenoble hybrid magnet. Magnetics,IEEE Transactions on,1988,24(2):1067~1069
    [70] M. Ohl, P. Sala and H. J. Schneider-Muntau et al. Operating experience with theGrenoble Hybrid Magnet system. Applied Superconductivity, IEEE Transactionson,1993,3(1):66~70
    [71] G. Aubert, F. Debray and W. Joss et al. The20MW-50mm bore diameter magnetof the Grenoble High Magnetic Field Laboratory. Applied Superconductivity, IEEETransactions on,2000,10(1):455~457
    [72] E. Mossang, F. Debray and H. Jongbloets et al. The Grenoble High Magnetic FieldLaboratory as a user facility. Applied Superconductivity, IEEE Transactions on,2000,10(1):1538~1541
    [73] T. Lncmp-Team. The LNCMP: a pulsed-field user-facility in Toulouse. Physica B:Physics of Condensed Matter,2004,346:668~672
    [74] S. A. J. Wiegers, A. den Ouden and J. Rook et al. Conceptual Design of the45THybrid Magnet at the Nijmegen High Field Magnet Laboratory. AppliedSuperconductivity, IEEE Transactions on,2010,20(3):688~691
    [75] S. A. J. Wiegers, J. Rook and A. den Ouden et al. Design and Construction of a38T Resistive Magnet at the Nijmegen High Field Magnet Laboratory. AppliedSuperconductivity, IEEE Transactions on,2012,22(3):4301504
    [76] K. Rosseel, A. Lagutin and F. Herlach et al. Magnet and wire technology at theK.U.Leuven Pulsed Field laboratory. Applied Superconductivity, IEEETransactions on,2002,12(1):707~710
    [77] L. van Bockstal, G. Heremans and L. Li et al. The development of highperformance pulsed magnets at the Katholieke Universiteit Leuven. Magnetics,IEEE Transactions on,1994,30(4):1657~1662
    [78] L. Liang, D. Hongfa and P. Tao et al. The Pulsed High Magnetic Field Facility atHUST, Wuhan, China and Associated Magnets. Applied Superconductivity, IEEETransactions on,2008,18(2):596~599
    [79]邱宁,邵淑芳,彭子龙.强磁场实验装置(稳态).中国科学院院刊(1)
    [80] K. Guangli. A40T Hybrid Magnet Under Construction in China. AppliedSuperconductivity, IEEE Transactions on,2010,20(3):680~683
    [81] D. Hongfa, D. Tonghai and L. Liang et al. Design of a12MJ capacitor bank of thepulsed high magnetic field facility at HUST, Wuhan, China. Electrical Machinesand Systems,2008. ICEMS2008. International Conference on.2008:712~717
    [82] L. Li, T. Peng and H. X. Xiao et al. Magnet Development Program at the WHMFC.Applied Superconductivity, IEEE Transactions on,2012,22(3):4300304
    [83] D. Hongfa, L. Weiwei and D. Xianzhong et al. Design and Analysis of a CombinedPower Supply for High-Field Quasi-Continuous Magnets. AppliedSuperconductivity, IEEE Transactions on,2012,22(3):5400904
    [84] X. Yun, Y. Rui and X. Yingmeng et al. Design of a Novel Pulsed Power System forRepetitive Pulsed High Magnetic Fields. Applied Superconductivity, IEEETransactions on,2012,22(3):5400104
    [85] D. Hongfa, H. Jihui and L. Weiwei et al. Design of a135MW Power Supply for a50T Pulsed Magnet. Applied Superconductivity, IEEE Transactions on,2012,22(3):5400504
    [86]卢国琦,董保光,杨景德.铅蓄电池原理与制造.第一版.北京:国防工业出版社,1988:353
    [87]施锡林.铅蓄电池.第一版.北京:人民邮电出版社,1988:112
    [88]孙成.电动车铅酸蓄电池高倍率放电性能的改进.电池(1)
    [89]徐金明.铅酸蓄电池的性能分析及运行维护要点.云南水力发电(0)
    [90]朱松然,张勃然.铅蓄电池技术.第一版.北京:机械工业出版社,1988:498
    [91] K. Boettger. An Analytical Description of Storage Battery Characteristics underHigh-Rate Discharge Conditions. Telecommunications Energy Conference,1984.INTELEC '84. International.1984:434~441
    [92] T. Tsujikawa, K. Yabuta and T. Matsushita. Development of High-rate DischargeStationary VRLA Battery. Telecommunications Energy Conference,2006.INTELEC '06.28th Annual International.2006:1~6
    [93]魏晓斌,张磊,谢楠.阀控式铅酸蓄电池提前失效原因分析及对策.通信电源技术(2)
    [94]王军,吕以亮,韩小涛等.6GFM-200蓄电池高倍率充/放电性能测试.蓄电池(2)
    [95]冯慈章.电磁场.第二版.北京:高等教育出版社,1999
    [96]张宝裕,刘恒基.磁场的产生.第一版.北京:机械工业出版社,1987:288
    [97]杨传普,孙敏,杨泽富.电路理论—时域与频域分析.武汉:华中科技大学出版社,2003
    [98] L. Liang. High Performance Pulsed Magnets: Theory, Design and Construction[博士学位论文]: K.U. Leuven,1998
    [99]倪樵,李国清,钱勤.材料力学.武汉:华中科技大学出版社,2006
    [100]陈建桥.材料强度学.武汉:华中科技大学出版社,2008
    [101]彭涛.脉冲强磁体分析设计的理论与实践[博士学位论文].武汉:华中科技大学:2005
    [102]张海峰,杨大勇,任连生等.电加工机床专用数控转台精度分析技术的研究.航空制造技术(1)
    [103]汤漾平,段正澄,李鹤九.多用途五轴联动激光加工系统.制造技术与机床,1997(11):12~13
    [104]徐路宁,王霄,张永康.激光加工管材的研究.电加工与模具(3)
    [105]罗学科,李跃中.数控电加工机床.第一版.北京:化学工业出版社,2003
    [106]机械工业部苏州电加工机床研究所.电加工.第一版.北京:机械工业出版社,1988
    [107]王新荣,任福君.空间曲面零件电火花线切割加工新技术.制造技术与机床(9)
    [108]王新荣,姜永成,张霞等.电火花数控线切割加工应用扩展技术研究.佳木斯大学学报(自然科学版)(3)
    [109]任福君,刘晋春,赵万生等.电火花线切割极坐标加工系统运动规律分析.制造技术与机床(1)
    [110]王新荣,任福君,张霞.复杂曲面电火花线切割多轴联动加工运动学的建立.佳木斯大学学报(自然科学版)(1)
    [111]王新荣,王冬,杨丽华.线切割五轴联动加工技术开发与仿真.工具技术(0)
    [112]马明霞,王先逵,刘晋春.电火花线切割加工窄螺旋槽柔性联轴节.电加工(0)
    [113]顾曾迪,陈根宝.有色金属焊接.第二版.北京:机械工业出版社,1995
    [114] Wen Jialiang and L. Zhengzhi. A Study of High-Power Thyristor Switch ofPoloidal-Field Power Supply System in HT-7U Super-Conductive Tokamak.Plasma Science and Technology,2001,3(5):1005~1010
    [115]温家良,傅鹏. EAST托克马克大功率双向直流快速晶闸管开关可靠关断理论分析及参数优化设计.中国电机工程学报,2005,25(14):62~66
    [116] Li Ding and F. Peng. Design and Test Results for the15kA Thyristor SwitchNetwork of EAST. IEEE6th International IPEMC’09,2009:2599~2602
    [117] J. Wu and Z. Wang. Experiment and Simulation Studies of Current Distribution inParalleled Thyristors. Industry Applications Conference,2006,5:2276~2283
    [118] Teske C J and B. Lee. Design and Tests of a13-kA/6.5-kV Thyristor Switch for aPulsed Inductive Plasma Source. IEEE Transactions on Plasma Science,2010,38(7):1675~1681
    [119]陈坚.电力电子学.第二版.北京:高等教育出版社,2004
    [120]李皎明,余岳辉.晶闸管的瞬态热阻抗及其结温温升研究.半导体情报,2001,38(2):52~55
    [121]李维波.基于Rogowski线圈的大电流测量传感理论研究与实践[博士学位论文].武汉:华中科技大学:2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700