氧化铁基异质结构纳米材料的制备及光电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电功能材料铁基氧化物及其复合物,具有较好的光电性质,可以应用到光催化、太阳电池及光电子器件等领域。它们优异的光电活性是与光生电荷的迁移行为密切相关的。因此,研究材料的微观的光生电荷载流子的行为特性对于其在光电领域的应用是十分必要的。本论文的工作主要是探讨了光电材料的光生电荷行为特性所表现出来的光电性质与光电活性的关系。首先利用表面光电压技术、Kelvin探针技术及瞬态光电压技术研究了一维有序的α-Fe_2O_3纳米棒阵列结构区别于体相α-Fe_2O_3的特殊的光电性质,证明了α-Fe_2O_3纳米棒阵列结构的量子尺寸效应。然后在这种阵列结构的基础上,与TiO_2构筑成具有异质界面的FTO/TiO_2/Fe_2O_3复合材料电极结构,比较了复合材料电极与单层α-Fe_2O_3纳米棒阵列电极的光电催化活性,测试结果表明复合材料料电极具有较好的光电催化降解染料的活性,同时探讨了复合材料电极相对于单层薄膜电极光生电荷运动行为的变化。最后,设计制备了α-Fe_2O_3纳米粒子包覆锐钛矿型TiO_2微米棒的异质结构复合物粉体,测试了其可见光催化降解有机染料的活性,说明了异质结构复合物优于单独的α-Fe_2O_3和TiO_2微米棒的光催化活性,并利用表面光伏技术证明了材料的光电活性与其本身的光电压性质的内在关系。
Nanomaterials with photoelectric properties are applied to the photocatalysis, solar cell, biological sensor and photoelectric device, etc., following the development of the technology. Iron oxide attracts much attention for its special photoelectric properties among the various nanomaterials. Iron oxide with low band gap of 2.2 eV could absorb most of visible light. Moreover, iron oxide has many morphologies and it will appear some new photoelectric properties for iron oxide with particular structure and dimension. At the same time, poor conductivity, facility to recombine for electron-hole pairs in iron oxide are inhibiting its promising applications. In recent years, many approaches against its drawbacks have been made to improve the photoelectric properties. Among these methods, more efforts have been focused on the polycrystalline heterostructures based on the iron oxide. For this heterogeneous structural material, we could not only utilize the virtues of the iron oxide, but also accelerate the separation of the electons and holes under the influence of heterojunction between two different materials, which could promote the photoelectric activity of the materials. Therefore, the behaviors of photogenerated charges, including the generation, separation, transportation and recombination of the photoexcited charge carriers, directly determine the photoelectric performance of the materials. The surface photovoltage (SPV) technique is a well-suitable and more direct method to characterize the behavior of the photoinduced charges.
     In this thesis, we studied the photoelectric properties of theα-Fe_2O_3 nanorod array that are different from the bulk Fe_2O_3 by Kelvin probe system, SPV technique and the transient photovoltage (TPV) technique at first. And then the FTO/TiO_2/Fe_2O_3 two-layered film electrode was prepared based on the FTO/Fe_2O_3 film eldctrode. We compared the photocatalytic activity of the two electrodes and discussed the behaviors of the photogenerated charge carriers at the FTO/TiO_2/Fe_2O_3 two-layered film electrode. At last, we synthesized the Fe_2O_3/TiO_2 composites by coating TiO_2 microrods with Fe_2O_3 nanoparticles and tested the photocatalytic activity of the heterogeneous composites. The relationship between the photocatalytic activity and the photoelectric properties was demonstrated by the SPV and TPV spectra.
     The main results of this paper are illustrated as follows:
     1. Anα-Fe_2O_3 nanorod array was prepared by the hydrothermal method, and we have studied the photoelectric property and the kinetics of this structure by the SPV and the TPV technology. When theα-Fe_2O_3 nanorod array is excited from the surface, the SPV response takes place only in the ultraviolet region where the photonic energy is much larger than the bulk band gap and exhibits a quantum size effect. The photogenerated electrons transfer to the nanorod surface as a result of the high density of surface states. When the light is incident from the interface between the substrate and the nanorod array, the SPV response extends from ultraviolet to visible region due to the influence of the built-in field at the interface between the substrate and the bottom of the nanorod array, which corresponds to the band-to-band transition and exhibits the bulk property of theα-Fe_2O_3. The photogenerated charges of theα-Fe_2O_3 nanorod array are prone to separate and also to recombine upon illumination. From the comparison of photovoltage properties between theα-Fe_2O_3 nanorod array and theα-Fe_2O_3 nanorod powders, we could find the SPV spectra of theα-Fe_2O_3 nanorod powders only reflect the properties of bulk Fe_2O_3. These results on the behaviors of the photogenerated charge transfer at the surface and the interface of theα-Fe_2O_3 nanorod array could reflect the photoelectric activity of this material. So the information provided in this chapter may provide useful supports for the practical application ofα-Fe_2O_3 nanorod array in solar cell, photocatalysis and sensors.
     2. Based on the Fe_2O_3 nanorod array, we prepared the FTO/TiO_2/Fe_2O_3 two-layered film electrode which had the heterogeneous structure. We tested the photoelectric activity by degrading orangeⅡvia combined electro-oxidation and photocatalysis and studied the photoelectric properties of the FTO/TiO_2/Fe_2O_3 two-layered film electrode by electrochemical system, the SPV and the TPV systems. The influences of the hetero-interface between the Fe_2O_3 and TiO_2 on the behaviors of photoexcited charges were discussed. We could obtain the conclusions as follows. The working electrode could generate more photogenerated charges under the excitation of the visible light. The photoelectric activity of the working electrode could be improved by combining the applied electric field on the base of visible light irradiation. Compared the experimental results of photoelectric catalytic (PEC) degradation of organic dye, the PEC activity of the FTO/TiO_2/Fe_2O_3 two-layered film electrode was superior to the FTO/Fe_2O_3 single-layered film electrode. From the TPV and SPV spectra, we could observe that the photogenerated electrons and holes were easier to separate and difficult to recombination under the effect of the hetero-interface in the FTO/TiO_2/Fe_2O_3 two-layered film electrode. Therefore, these results could provide useful information for the application of those two electrodes in photoelectric device.
     3. The Fe_2O_3/TiO_2 hetero-structural composites with three mass ratios (Fe_2O_3 vs. TiO_2) by Fe_2O_3 nanoparticles covered TiO_2 microrods were prepared. The photocatalytic experimental results revealed that the Fe_2O_3/TiO_2 composites with hetero-structure were more active than the corresponding bare Fe_2O_3 or bare TiO_2 in the photodegradation of orange II under visible light illumination. Furthermore, the higher the mass ratio of Fe_2O_3 vs. TiO_2 is, the better the photocatalytic activity is for the composites. By comparing the photovoltaic property of pure Fe_2O_3 with that of Fe_2O_3/TiO_2 heterogeneous composites, we observed that the hetero-interface between Fe_2O_3 and TiO_2 imposed an important influence on the behaviors of photogenerated charge carriers. Moreover, the characteristics of the photogenerated charges were associated with the photocatalytic activity. With respect to the pure Fe_2O_3, the photoexcited electrons and holes of the Fe_2O_3/TiO_2 composites were prone to separate under the effect of interfacial electric field under visible light irradiation, which resulted in the enhanced photocatalytic activity of Fe_2O_3/TiO_2 hetero-structural composites. The quantity of the Fe_2O_3 coated on the TiO_2 microrods influenced the interfacial electric field and thus the transfer behaviors of the photogenerated charges, as revealed by the SPS and TPV characterizations. As a result, the photodegrading rates towards orange II were distinct from each other for the Fe_2O_3/TiO_2 composites with different mass ratios. Therefore, the results presented in this work may provide well-suitable and more direct methods to evaluate the photoelectric activities of the advanced materials for practical application such as photocatalysis.
引文
[1] RIFE R. THOMAS T W. NORBERG D W. FOURNIER R L. RINKER F G. BONOMO M S. Chemical Demilitarization: Disposing of the Most Hazardous Wastes [J]. Environmental Progress, 1989, 8(3): 167-175.
    [2] POJASEK R B. Toxic and Hazardous Waste Disposal [M[. Ann Arbor Science: Ann Arbor, MI, 1979, Vols. I-IV.
    [3] KIM B J. GEE C 5. BANDY J T. HUANG C S. Journal of the Water Pollution Control Federation, 1991, 63: 501-509.
    [4] FREEMAN H M. Incinerating Hazardous Wastes [M]. Lancaster: Technomic Publishing Corporation, 1988.
    [5] DE RENZO D J. Biodegradation Techniques for Industrial Organic Wastes [M]. Park Ridge, NJ: Noyes Data Corporation, 1980.
    [6] KARAKITSOU K E. VERYKIOS X E. Effects of Altervalent Cation Doping of Titania on Its Performance as a Photocatalyst for Water Cleavage [J]. Journal of Physical Chemistry, 1993, 97(6): 1184-1189.
    [7] GR?TZEL M. Artificial Photosynthesis: Water Cleavage Into Hydrogen and Oxygen by Visible Light [J]. Accounts of Chemical Research, 1981, 14(12): 376-384.
    [8] KALYANASUNDARAM K. BORGARELLO E. DUONGHONG D. GR?TZEL M. Cleavage of Water by Visible-Light Irradiation of Colloidal CdS Solutions; Inhibition of Photocorrosion by RuO2 [J]. Angewandte Chemie International Edition in English, 1981, 20(11): 987-988.
    [9] DUONGHONG D. BORGARELLO E. GR?TZEL M. Dynamics of Light-induced Water Cleavage in Colloidal Systems [J]. Journal of the American Chemical Society, 1981, 103(16): 4685-4690.
    [10] BORGARELLO E. KIWI J. PELIZZETTI E. VISCA M. GRATZEL M. Photochemical Cleavage of Water by Photocatalysis [J]. Nature, 1981, 289, 158-160.
    [11] WOLD A. Photocatalytic Properties of Titanium Dioxide (TiO2) [J]. Chemistry of Materials, 1993, 5(3): 280-283.
    [12] KUDO A. Photocatalyst Materials for Water Splitting [J]. Catalysis Surveys Asia, 2003, 7(1): 31-38.
    [13] XIN JIANG X. WANG. T. Influence of Preparation Method on Morphology and Photocatalysis Activity of Nanostructured TiO2 [J]. Environmental Science & Technology, 2007, 41(12): 4441-4446.
    [14] WANG C C. ZHANG Z B. YING J Y. Photocatalytic Decomposition of Halogenated Organics Over Nanocrystalline Titania [J]. NanoSmactared Materials, 1997, 9(1-8): 583-586.
    [15] LIN Y. Photocatalytic Activity of TiO2 Nanowire Arrays [J]. Materials Letters, 2008, 62(8-9): 1246–1248.
    [16] ZHANG J. XU Q. FENG Z C. LI M J. LI C. Importance of the Relationship Between Surface Phases and Photocatalytic Activity of TiO2 [J]. Angewandte Chemie International Edition, 2008, 47(9):1766-1769.
    [17] ZU J. REN J. HUO Y N. BIAN Z F. LI H X. Nanocrystalline Fe/TiO2 Visible Photocatalyst with a Mesoporous Structure Prepared via a Nonhydrolytic Sol Gel Route [J]. Journal of Physical Chemistry C, 2007, 111(51): 18965-18969.
    [18] XIN B F. WANG P. DING D D. LIU J. REN Z Y. FU H G.. Effect of Surface Species on Cu-TiO2 Photocatalytic Activity [J]. Applied Surface Science, 2008, 254(9): 2569–2574.
    [19] JAKOB M. LEVANON H. KAMAT P V. Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level [J]. Nano Letters, 2003, 3 (3): 353-358.
    [20] SUBRAMANIAN V. WOLF E E. KAMAT P V. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration [J]. Journal of the American Chemistry Society, 2004, 126 (15): 4943–4950.
    [21] HIRAKAWA T. KAMAT P V. Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO2 Clusters [J]. Langmuir, 2004, 20 (14): 5645-5647.
    [22] HIRAKAWA T. KAMAT P V. Charge Separation and Catalytic Activity of Ag@TiO2 Core?Shell Composite Clusters under UV?Irradiation [J]. Journal of the American Chemistry Society, 2005, 127 (11): 3928-3934.
    [23] BELLARDITA M. ADDAMO M. PAOLA A D. PALMISANO L. VENEZIA A M. Preparation of N-doped TiO2: Characterization and Photocatalytic Performance Under UV and Visible Light [J]. Physical Chemistry Chemical Physics, 2009, 11(20): 4084–4093.
    [24] ASAHI R. MORIKAWA T. OHWAKI T. AOKI K. TAGA Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science, 2001, 293(5528): 269-271.
    [25] IRIE H. WATANABE Y. HASHIMOTO K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders [J]. Journal of Physical Chemistry B, 2003, 107(23): 5483-5486.
    [26] HONG X. WANG Z. CAI W. LU F. ZHANG J. YANG Y. MA N. LIU Y. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide [J]. Chemistry of Materials, 2005, 17(6): 1548-1552.
    [27] OHNO T. AKIYOSHI M. UMEBAYASHI T. ASAI K. MITSUI T. MATSUMURA M. Preparation of S-doped TiO2 Photocatalysts and Their Photocatalytic Activities Under Visible Light [J]. Applied Catalysis A: General, 2004, 265(1): 115-121.
    [28] ZHU S B. XU T G. FU H B . ZHAO J C. ZHU Y F. Synergetic Effect of Bi2WO6 Photocatalyst with C60 and Enhanced Photoactivity under Visible Irradiation [J]. Environmental Science & Technology, 2007, 41(17): 6234-6239.
    [29] TANG J W. ZOU Z G. YE J H. Efficient Photocatalysis on BaBiO3 Driven by Visible Light [J]. Journal of Physical Chemistry C, 2007, 111(34): 12779-12785.
    [30] LIU T X. LI X Z. LI F B. Development of a Photocatalytic Wet Scrubbing Process for Gaseous Odor Treatment [J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3617-3622.
    [31] SCHROPP R E. ZEMAN M. Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and Device Technology [M]. Norwell: KluwerAcademic Publishers, 1998.
    [32] EMERY A G K. HISHIKAWA Y. WARTA W. Short Communication Solar cell efficiency tables [J]. Progress in Photovoltaics: Research and Applications, 2008, 16(1): 61–67.
    [33] GR?TZEL. M. Dye-sensitized Solar Cells [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4, 145–153.
    [34] OLSON D C. PIRIS J. COLLINS R T. SHAHEEN S E. GINLEY D S. Hybrid Photovoltaic Devices of Polymer and ZnO Nanofiber Composites [J]. Thin Solid Films, 2006, 496(1): 26–29.
    [35] GREENE L E. LAW M. YUHAS B D. YANG P D. ZnO?TiO2 Core?Shell Nanorod/P3HT Solar Cells [J]. Journal of Physical Chemistry C, 2007, 111(50): 18451–18456.
    [36] PASQUIER A D. MASTROGIOVANNI D D T. KLEIN L A. WANG T. GARFUNKEL E. Photoinduced Charge Transfer Between Poly(3-hexylthiophene) and Germanium Nanowires [J]. Applied Physical Letters, 2007, 91(18): 183501-1-183501-3.
    [37] FAN Z Y. RAZAVI H. DO J W. MORIWAKI A. ERGEN O. CHUEH Y L. LEU P W. HO J C. TAKAHASHI T. REICHERT L A. NEALE S. YU K. WU M. AGER J W. JAVEY A. Three-dimensional Nanopillar-array Photovoltaics On Low-cost and Flexible Substrates [J]. Nature Materials, 2009, 8(8): 648–653.
    [38] CUI J B. GIBSON U J. A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells [J]. The Journal of Physical Chemistry C, 2010, 114(14): 6408-6412.
    [39] SHALOM M. ALBERO J. TACHAN Z. MARTINEZ-FETTERO E. ZABAN A. PALOMARES E. Quantum Dot?Dye Bilayer-Sensitized Solar Cells: Breaking the Limits Imposed by the Low Absorbance of Dye Monolayers [J]. The Journal of Physical Chemistry Letters, 2010, 1(7): 1134-1138.
    [40] SHANKAR K. MOR G K. PRAKASAM H E. VARGHESE O K. GRIMES G A. Self-Assembled Hybrid Polymer-TiO2 Nanotube Array Heterojunction Solar Cells [J]. Langmuir, 2007, 23(24): 12445-12449.
    [41] SNAITH H J. DUCATI C. SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency [J]. Nano Letters, 2010, 10(4): 1259-1265.
    [42] LEVENTIS H C. KING S P. SUDLOW A. HILL M S. MOLLOY K C. HAQUE S A. Nanostructured Hybrid Polymer-Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks [J]. Nano Letters, 2010, 10(4): 1253-1258.
    [43] SUN Z X. XU L. GUO W H. XU B B. LIU S P. LI F Y. Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates [J]. Journal of Physical Chemistry C, 2010, 114(11): 5211–5216.
    [44] ZHANG Y. IIJIMA S. Elastic Response of Carbon Nanotube Bundles to Visible Light [J]. Physical Review Letters, 1999, 82(17): 3472.
    [45] HU L B. ZHAO Y L. RYU K. ZHOU C W. STODDART J F. GRüNER G. Light-Induced Charge Transfer in Pyrene/CdSe-SWNT Hybrids [J]. Advanced Materials, 2008, 20(5): 939–946.
    [46] KIND H. YAN H Q. MESSER B. LAW M. YANG P D. Nanowire Ultraviolet Photodetectors and Optical Switches [J]. Advanced Materials, 2002, 14(2): 158-160.
    [47] Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing [J]. Nature Materials, 2005, 4: 435–446.
    [48] SOMERS R C. BAWENDI M G.. NOCERA D G.. CdSe Nanocrystal Based Chem-/bio- Sensors [J]. Chemical Society Reviews, 2007, 36(4): 579–591.
    [49] Goldman, E. R.; Balighian, E. D.; Mattoussi, H. M.; Kuno, K.; Mauro, J. M.; Tran, P. T.; Anderson, G. P. A Natural Bridge for Quantum Dot-Antibody Conjugates [J]. Journal of the American Chemical Society, 2002, 124(22): 6378–6382.
    [50] GILL R. ZAYATS M. WILLNER I. Semiconductor Quantum Dots for Bioanalysis [J]. Angewandte Chemie International Edition, 2008, 47(40):7602–7625.
    [51] ZHANG C Y. JOHNSON L W. Microfluidic Control of Fluorescence Resonance Energy Transfer: Breaking the FRET Limit [J]. Angewandte Chemie International Edition, 2007, 46(19): 3482–3485.
    [52] GOLDMAN E R. MEDINTZ I L. WHITLEY J L. HAYHURST A. CLAPP A R. UYEDA H T. DESCHAMPS J R. LASSMAN M E. MATTOUSSI H A. Hybrid Quantum Dot?Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor [J]. Journal of the American Chemical Society, 2005, 127(18): 6744–6751.
    [53] PATOLSKY F. GILL R. WEIZMANN Y. MOKARI T. BANIN U. WILLNER I. Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe?ZnS Quantum Dots [J]. Journal of the American Chemical Society, 2003, 125(46): 13918–13919.
    [54] SHI L F. ROSENZWEIG N. ROSENZWEIG Z. Luminescent Quantum Dots Fluorescence Resonance Energy Transfer-Based Probes for Enzymatic Activity and Enzyme Inhibitors [J]. Analytical Chemistry, 2007, 79(1): 208–214.
    [55] SCHUBERT K. KHALID W. YUE Z. PARAK W J. Fred LISDAT F. Quantum-Dot-Modified Electrode in Combination with NADH-Dependent Dehydrogenase Reactions for Substrate Analysis [J]. Langmuir, 2010, 26(2): 1395–1400.
    [56] WANG Z L. ZnO Nanowire and Nanobelt Platform for Nanotechnology [J]. Materials Science and Engineering: R: Reports, 2009, 64(3-4): 33–71.
    [57] GUDIKSEN M S. LAUHON L J. WANG J. SMITH D C. LIEBER C M. Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics [J]. Nature, 2002, 415: 617–620.
    [58] WANG Z L. Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics [J]. Advanced functional materials, 2008, 18(22): 3553–3567.
    [59] PATOLSKY F. TIMKO B P. YU G. FANG Y. GREYTAK A B. ZHENG G. LIEBER C M. Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays [J]. Science, 2006, 313(5790):1100–1104.
    [60] YAN R X. GARGAS D. YANG P D. Nanowire Photonics [J]. Nature Photonics 2009, 3: 569–576.
    [61] HU Y F. CHANG Y L. FEI P. SNYDER R. WANG Z L. Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects [J]. ACS Nano, 2010, 4(2):1234-1240.
    [62] LU L F. XU Z. ZHANG F J. ZHAO S L. WANG L W. ZHUO Z L. SONG D D. ZHU H N. WANG Y S. Using ZnS Nanostructured Thin Films to Enhance Light Extraction from Organic Light-Emitting Diodes [J]. Energy Fuels, DOI:10.1021/ef901327c.
    [63] FAN Z Y. WEN X G. YANG S H. LU J G. Controlled p- and n-type Doping of Fe_2O_3 Nanobelt Field Effect Transistors [J]. Applied Physics Letters, 2005, 87(1): 013113-1-013113-3.
    [64] CHEN H S. CHEN C W. WANG C H. CHU F C. CHAO C Y. KANG C C. CHOU P T. CHEN Y F. Color-Tunable Light-Emitting Device Based on the Mixture of CdSe Nanorods and Dots Embedded in Liquid-Crystal Cells [J]. Journal of Physical Chemistry C, 2010, 114(17): 7995-7998.
    [65] SAKURAI S. NAMAI A. HASHIMOTO K. OHKOSHI S I. First Observation of Phase Transformation of All Four Fe_2O_3 Phases (γ-ε–β-α-Phase) [J]. Journal of the American Chemical Society, 2009, 131(51): 18299–18303.
    [66] ZHANG H. WANG W W. LI H F. MENG S L. LI D Q. A Strategy to Prepare Ultrafine Dispersed Fe_2O_3 Nanoparticles [J]. Materials Letters, 2008, 62 (8-9): 1230–1233.
    [67] CHENG K. HE Y P. MIAO Y M. ZOU B S. WANG Y G. WANG T H. ZHANG X T. DU Z L. Quantum Size Effect on Surface Photovoltage Spectra: Alpha-Fe_2O_3 Nanocrystals on the Surface of Monodispersed Silica Microsphere [J]. Journal of Physical Chemistry B, 2006, 110(14): 7259 7264.
    [68] WANG X H. ZHANG L. NI Y H. HONG J M. CAO X F. Fast Preparation, Characterization, and Property Study ofα-Fe_2O_3 Nanoparticles via A Simple Solution-Combusting Method [J]. Journal of Physical Chemistry C, 2009, 113(17): 7003–7008.
    [69] KITAURA H. TAKAHASHI K. MIZUNO F. HAYASHI A. TADANAGA K. TATSUMISAGO M. Mechanochemical Synthesis ofα-Fe_2O_3 Nanoparticles and Their Application to All-solid-state Lithium Batteries [J]. Journal of Power Sources, 2008, 183(1): 418-421.
    [70] WANG W. HOWE J Y. GU B H. Structure and Morphology Evolution of Hematite (α-Fe_2O_3) Nanoparticles in Forced Hydrolysis of Ferric Chloride [J]. Journal of Physical Chemistry C, 2008, 112(25): 9203–9208.
    [71] LI L L. CHU Y. LIU Y. DONG L H. Template-Free Synthesis and Photocatalytic Properties of Novel Fe_2O_3 Hollow Spheres [J]. Journal of Physical Chemistry C, 2007, 111(5): 2123 2127.
    [72] CAO S W. ZHU Y J. Hierarchically Nanostructuredα-Fe_2O_3 Hollow Spheres: Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment [J]. Journal of Physical Chemistry C, 2008, 112(16): 6253 6257.
    [73] SRIVASTAVA H. TIWARI P. SRIVASTAVA A K. NANDEDKAR R V. Growth and Characterization ofα-Fe_2O_3 Nanowires [J]. Journal of Applied Physics, 2007, 102(5): 054303-1-054303-5.
    [74] HAN Q. LIU Z H. XU Y Y. CHEN Z Y. WANG T M. ZHANG H. Growth and Properties of Single-Crystallineγ-Fe_2O_3 Nanowires [J]. Journal of Physical Chemistry C 2007, 111(13): 5034-5038.
    [75] HAN Q. XU Y Y. FU Y Y. ZHANG H. WANG R M. WANG T M. CHEN Z Y. Defects and Growing Mechanisms ofα-Fe_2O_3 Nanowires [J]. Chemical Physics Letters, 2006, 431(1-3): 100–103.
    [76] ZHONG Z Y. HO J. TEO J. SHEN S C. GEDANKEN A. Synthesis of Porousγ- Fe_2O_3 Nanorods and Deposition of Very Small Gold Particles in the Pores for Catalytic Oxidation of CO [J]. Chemistry of Materials, 2007, 19(19): 4776-4782.
    [77] LIU H. WANG G X. PARK J. WANG J Z. LIU H K. ZHANG C. Electrochemical Performance ofα-Fe_2O_3 Nanorods as Anode Material for Lithium-ion Cells [J]. Electrochimica Acta, 2009, 54(6): 1733–1736.
    [78] TANG B. WANG G L. ZHUO L H. GE J H. CUI L J. Facile Route to a-FeOOH andα-Fe_2O_3 Nanorods and Magnetic Property ofα-Fe_2O_3 Nanorods [J]. Inorganic Chemistry, 2006, 45(13): 5196?5200.
    [79] FAN Z Y. WEN X G. YANG S H. LU J G. Controlled p- and n-type Doping of Fe_2O_3 Nanobelt Field Effect Transistors [J]. Applied physics letters, 2005, 87(1): 013113-1-013113-3.
    [80] REDDY M V. YU T. SOW C-H. SHEN Z X. LIM C T. SUBBA RAO G V. CHOWDARI B V R.α-Fe_2O_3 Nanoflakes as an Anode Material for Li-Ion Batteries [J]. Advanced Functional Materials, 2007, 17(15): 2792–2799.
    [81] ZHANG X L. SUI C H. GONG J. SU Z M. QU L Y. Preparation and Formation Mechanism of Differentα-Fe_2O_3 Morphologies from Snowflake to Paired Microplates, Dumbbell, and Spindle Microstructures [J]. Journal of Physical Chemistry C, 2007, 111(26), 9049-9054.
    [82] LI S Z. ZHANG H. WU J B. MA X Y. YANG D. Shape-Control Fabrication and Characterization of the Airplane-like FeO(OH) and Fe_2O_3 Nanostructures [J]. Crystal Growth & Design, 2006, 6(2): 351-353.
    [83] WU C Z. YIN P. ZHU X. OUYANG C Z. XIE Y. Synthesis of Hematite (α- Fe_2O_3) Nanorods: Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors [J]. Journal of Physical Chemistry B, 2006, 110(36): 17806 17812.
    [84] MITRA S. DAS S. MANDAL K. CHAUDHURI S. Synthesis of aα-Fe_2O_3 Nanocrystal in Its Different Morphological Attributes: Growth Mechanism, Optical and Magnetic Properties [J]. Nanotechnology, 2007, 18(27): 275608-1-275608-9.
    [85] ZENG S Y. TANG K B. LI T W. Controlled Synthesis ofα-Fe_2O_3 Nanorods and Its Size-dependent Optical Absorption, Electrochemical, and Magnetic Properties [J]. Journal of Colloid and Interface Science, 2007, 312(2): 513–521.
    [86] YU X L. CAO C B. AN X Q. Facile Conversion of Fe Nanotube Arrays to Novelα-Fe_2O_3 Nanoparticle Nanotube Arrays and Their Magnetic Properties [J]. Chemistry of Materials, 2008, 20(5): 1936–1940.
    [87] KIM C H. CHUN H J. KIM D S. KIM S Y. PARK J. Magnetic Anisotropy of Vertically Alignedα-Fe_2O_3 Nanowire Array [J]. Applied Physics Letters, 2006, 89(22): 223103-1-223103-3.
    [88] VAYSSIERES L. SATHE C. BUTORIN S M. SHUH D K. NORDREN J. GUO J. One-dimensional Quantum-confinement Effect inα-Fe_2O_3 Ultrafine Nanorod Array [J]. Advanced Materials, 2005, 17(19): 2320-2323.
    [89] VAYSSIERES L. Advanced Semiconductor Nanostructures [J]. Comptes Rendus Chimie, 2006, 9(5-6): 691–701.
    [90] LI Z G. CAI W P. DUAN G T. LIU P S. Magnetic Step Regions inα-Fe_2O_3 Nanostructured Ring Arrays [J]. Physica E, 2008, 40(3): 680–683.
    [91] MOHAPATRA S K. JOHN S E. BANERJEE S. MISRA M. Water Photooxidation by Smooth and Ultrathinα-Fe_2O_3 Nanotube Arrays [J]. Chemistry of Materials, 2009, 21(14): 3048-3055.
    [92] CHEN J. XU L. LI W. GOU X.α-Fe_2O_3 Nanotubes in Gas Sensor and Lithium-ion Battery Applications [J]. Advanced Materials, 2005, 17(5): 582–586.
    [93] JAIN G. BALASUBRAMANIAN M. XU J J. Structural Studies of Lithium Intercalation in a Nanocrystallineα-Fe_2O_3 Compound [J]. Chemistry of Materials, 2006, 18(2): 423–434.
    [94] ZHONG Z Y. HO J. SHEN S. GEDNKEN A. Synthesis of Porousα-Fe_2O_3 Nanorods and Deposition of Very Small Gold Particles in the Pores for Catalytic Oxidation of CO [J]. Chemistry of Materials, 2007, 19(19): 4776–4782.
    [95] WANG Y. CAO J L. WANG S R. GUO X Z. ZHANG J. XIA H J. ZHANG S M. WU S H. Facile Synthesis of Porousα-Fe_2O_3 Nanorods and Their Application in Ethanol Sensors [J]. Journal of Physical Chemistry C, 2008, 112(46): 17804–17808
    [96] HU X L. YU J C. GONG J N. LI Q. LI G S.α-Fe_2O_3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties [J]. Advanced Materials, 2007, 19(17): 2324–2329.
    [97] KAY A. CESAR I. GR?TZEL M. New Benchmark for Water Photooxidation byNanostructuredα-Fe_2O_3 Films [J]. Journal of the American Chemical Society, 2006, 128(49): 15714 15721.
    [98] DURET A. GR?TZEL M. Visible Light-Induced Water Oxidation on Mesoscopicα-Fe_2O_3 Films Made by Ultrasonic Spray Pyrolysis [J]. Journal of Physical Chemistry B, 2005, 109(36): 17184 -17191.
    [99] LEE H. YU M K. PARK S. MOON S. MIM J J. JEONG Y Y. KANG H-W. JON S. Thermally Cross-Linked Superparamagnetic Iron Oxide Nanoparticles: Synthesis and Application as a Dual Imaging Probe for Cancer in Vivo [J]. Journal of the American Chemical Society, 2007, 129(42): 12739-12745.
    [100] KALAMBUR V S. LONGMIRE E K. BISCHOF J C. Cellular Level Loading and Heating of Superparamagnetic Iron Oxide Nanoparticles [J]. Langmuir 2007, 23(24): 12329-12336.
    [101] CESAR I. KAY A. MARTINEZ J G. GR?TZEL M. Translucent Thin Film Fe_2O_3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure -Directing Effect of Si-Doping [J]. Journal of the American Chemical Society, 2006, 128(14): 4582-4583
    [102] WANG Y. WANG S R. ZHAO Y Q. ZHU B L. KONG F H. WANG D. WU S H. HUANG W P. ZHANG S M. H2S Sensing Characteristics of Pt-dopedα-Fe_2O_3 Thick Film Sensors [J]. Sensors and Actuators B, 2007, 125(1): 79–84.
    [103] DANEK M. JENSEN K F. MURRAY C B. BAWENDI M G. Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe [J]. Chemistry of Materials, 1996, 8(1): 173-180.
    [104] DABBOUSI B O. RODRIGUEZ-VIEJO J. MIKULEC F V. HEINE J R. MATTOUSSI H. OBER R. JENSEN K F. BAWENDI M G. (CdSe) ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites [J]. The Journal of Physical Chemistry B 1997, 101(46): 9463-9475.
    [105] TAK Y. HONG S J. LEE J S. YONG K. Fabrication of ZnO/CdS Core/shell Nanowire Arrays for Efficient Solar Energy Conversion [J]. Journal ofMaterials Chemistry, 2009, 19(33): 5945–5951.
    [106] PENG X G. SCHLAMP M C. KADAVANICH A V. ALIVISATOS A P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/ShellNanocrystals with Photostability and Electronic Accessibility [J]. Journal of the American Chemical Society, 1997, 119(30): 7019-7029.
    [107] MALIK M A. O’BRIEN P. REVAPRASADU N. A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides [J]. Chemistry of Materials, 2002, 14(5): 2004-2010.
    [108] REISS P. BLEUSE J. PRON A. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion [J]. Nano Letters, 2002, 2(7): 781-784.
    [109] SKUMRYEV V. STOYANOV S. ZHANG Y. HADJIPANAYIS G. GIVORD D. NOGUES J. Beating the Superparamagnetic Limit with Exchange Bias [J]. 2003, 423: 850-853.
    [110] ZENG H. LI J. WANG Z L. LIU J P. SUN S. H. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles [J]. Nano Letters, 2004, 4(1): 187-190.
    [111] MAIRA A J. YEUNG K L. LEE C Y. Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts [J]. Journal of Catalysis, 2000, 192(1): 185-196.
    [112] XU Z L. SHANG J. LIU C M. XPS Study of Plasma Treated Carbon Layers Deposited on Porous Silicon [J]. Materials Science and Engineering: B, 1999, 56(1): 1–4.
    [113] VORONTSOV A V. STOYANOVA I V. KOZLOV D V. Kinetics of the Photocatalytic Oxidation of Gaseous Acetone over Platinized Titanium Dioxide [J]. Journal of Catalysis, 2000, 189(2): 360–369.
    [114] OHTANI B. IWAI K. NISHIMOTO S. Role of Platinum Deposits on Titanium(IV) Oxide Particles: Structural and Kinetic Analyses of Photocatalytic Reaction in Aqueous Alcohol and Amino Acid Solutions [J]. Journal of Physical Chemistry B, 1997, 101 (17): 3349–3359.
    [115] ZHENG Y H. ZHENG L R. ZHAN Y Y. LIN X Y. ZHENG Q. WEI K M. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, andPhotocatalysis [J]. Inorganic Chemistry, 2007, 46(17): 6980-6986.
    [116] COSTI R. SAUNDERS A E. ELMALEM E. SALANT A. BANIN U. Visible Light-Induced Charge Retention and Photocatalysis with Hybrid CdSe?Au Nanodumbbells [J]. Nano Letters, 2008, 8(2): 637-641.
    [117] ZHANG H T. WU X B. WANG Y M. CHEN X Y. LI Z S. YU T. YE J H. ZOU Z G. Preparation of Fe_2O_3/SrTiO3 Composite Powders and Their Photocatalytic Properties [J]. Journal of Physics and Chemistry of Solids, 2007, 68(2): 280–283.
    [118] HUANG H J. LI D Z. LIN Q. ZHANG W J. SHAO Y. CHEN Y B. SUN M. FU X Z. Efficient Degradation of Benzene over LaVO4/TiO2 Nanocrystalline Heterojunction Photocatalyst under Visible Light Irradiation [J]. Environmental Science & Technology, 2009, 43(11): 4164–4168.
    [119] LIU H Y. GAO L. Preparation and Properties of Nanocrystallineα-Fe_2O_3-Sensitized TiO2 Nanosheets as a Visible Light Photocatalyst [J]. Journal of the American Ceramic Society, 2006, 89(1): 370–373.
    [120] BRAHIMI R. BESSEKHOUAD Y. BOUGUELIA A. TRARI M. CuAlO2/TiO2 Heterojunction Applied To Visible Light H2 Production [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186 (2-3): 242–247.
    [121] LV J. KAKO T. LI Z S. ZOU Z G. YE J H. Synthesis and Photocatalytic Activities of NaNbO3 Rods Modified by In2O3 Nanoparticles [J]. Journal of Physical Chemistry C, 2010, 114(13): 6157-6162.
    [122] WANG G M. YANG X Y. QIAN F. ZHANG J Z. LI Y. Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation [J]. Nano Letters, 2010, 10(3): 1088–1092.
    [123] LESCHKIES K S. DIVAKAR R. BASU J. ENACHE-POMMER E. BOERCKER J E. CARTER C B. KORTSHAGEN U R. NORRIS D J. AYDIL E S. Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices [J]. Nano Letters, 2007, 7(6): 1793-1798.
    [124] YIN Y X. JIN Z G. HOU F. Enhanced Solar Water-splitting Efficiency UsingCore/sheath Heterostructure CdS/TiO2 Nanotube Arrays [J]. Nanotechnology, 2007, 18(49): 495608-1-495608-6.
    [125] MOTOYOSHI R. OKU T. SUZUKI A. KIKUCHI K. KIKUCHI S. Fabrication and Characterization of Titanium Dioxide / Copper Indium Disulfide Solar Cells [J]. Journal of the Ceramic Society of Japan, 2010, 118(1): 30-33.
    [126] SONG X F. WANG Z J. LIU Y B. WANG C. Li L J. A Highly Sensitive Ethanol Sensor Based on Mesoporous ZnO–SnO2 Nanofibers [J]. Nanotechnology, 2009, 20(7): 075501 (5pp).
    [127] CHEN Y J. ZHU C L. WANG T H. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures [J]. Nanotechnology, 2006, 17(12): 3012–3017.
    [128] WANG Z J. LI Z Y. SUN J H. ZHANG H N. WANG W. ZHENG W. WANG C. Improved Hydrogen Monitoring Properties Based on p-NiO/n-SnO2 Heterojunction Composite Nanofibers [J]. Journal of Physical Chemistry C, 2010, 114(13): 6100-6105.
    [129] WANG K. VYGRANENKO Y. NATHAN A. ZnO-based p-i-n and n-i-p Heterostructure Ultraviolet Sensors: A Comparative Study [J]. Journal of Applied Physics, 2007, 101(11): 114508-1-114508-5.
    [130] WANG G L. XU J J. CHEN H Y. FU S Z. Label-free Photoelectrochemical Immunoassay for a-fetoprotein Detection Based on TiO2/CdS Hybrid [J]. Biosensors and Bioelectronics, 2009, 25(4): 791–796.
    [131] SCHRIER J. DEMCHENKO D O. WANG L W. Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications [J]. Nano Letters, 2007, 7(8): 2377-2382.
    [132] CHUEH Y L. HSIEH C H. CHANG M T. CHOU L J. LAO C S. SONG J H. GAN J Y. WANG Z L. RuO2 Nanowires and RuO2/TiO2 core/shell Nanowires: from Synthesis to Mechanical, Optical, Electrical, and Photoconductive Properties. Advanced Materials, 2007, 19(1): 143–149.
    [133] TALAPIN D V. NELSON J H. SHEVCHENKO E V. ALONI S. SADTLER B. ALIVISATOS A P. Seeded Growth of Highly Luminescent CdSe/CdSNanoheterostructures with Rod and Tetrapod Morphologies [J]. Nano Letters, 2007, 7(10): 2951-2959.
    [134] FENG M. ZHAN H B. MIAO L. Facile Assembly of Cadmium Sulfide Quantum Dots on Titanate Nanobelts for Enhanced Nonlinear Optical Properties [J]. Applied Materials & Interfaces, 2010, 2(4): 1129-1135.
    [135] WANG Y M. YU T. CHEN X Y. ZHANG H T. OUYANG S X. LI Z S. YE J H. ZOU Z G. Enhancement of Photoelectric Conversion Properties of SrTiO3/α-Fe_2O_3 Heterojunction Photoanode [J]. Journal of Physics D: Applied Physics, 2007, 40(13):3925–3930.
    [136] GHOSH K. KUMAR M. WANG H F. MARUYAMA T. ANDO Y. Nitrogen-Mediated Wet-Chemical Formation of Carbon Nitride/ZnO Heterojunctions for Enhanced Field Emission [J]. Langmuir, 2010, 26(8): 5527-5533
    [137] XUE X Y. GUO T L. LIN Z X. WANG T H. Individual Core-shell Structured ZnSnO3 Nanowires As Photoconductors [J]. Materials Letters, 2008, 62(8-9): 1356–1358.
    [138] WANG L. WEI H W. FAN Y J. GU X. ZHAN J H. One-Dimensional CdS/α-Fe_2O_3 and CdS/Fe3O4 Heterostructures: Epitaxial and Nonepitaxial Growth and Photocatalytic Activity [J]. Jouranl of Physical Chemistry C, 2009, 113(22): 14119–14125.
    [139] LUO W J. YU T. WANG Y M. LI Z S. YE J H. ZOU Z G. Enhanced Photocurrent–voltage Characteristics of WO3/Fe_2O_3 Nano-electrodes [J]. Journal of Physics D: Applied Physics, 2007, 40(4): 1091–1096.
    [1] ZHANG H. WANG W W. LI H F. MENG S L. LI D Q. A Strategy to Prepare Ultrafine Dispersed Fe_2O_3 Nanoparticles [J]. Materials Letters, 2008, 62(8-9): 1230–1233.
    [2] JASINSKI J. PINKERTON K E. KENNEDY I M. LEPPERT V J. Surface Oxidation State of Combustion-synthesizedγ-Fe_2O_3 Nanoparticles Determined by Electron Energy Loss Spectroscopy in the Transmission Electron Microscope [J]. Sensors and Actuators B, 2005, 109(1): 19–23.
    [3] WANG X H. ZHANG L. NI Y H. HONG J M. CAO X F. Fast Preparation, Characterization, and Property Study ofα-Fe_2O_3 Nanoparticles via a Simple Solution-Combusting Method [J]. Journal of Physical Chemistry C, 2009, 113(17): 7003–7008.
    [4] KITAURA H. TAKAHASHI K. MIZUNO F. HAYASHI A. TADANAGA K. TATSUMISAGO M. Mechanochemical Synthesis ofα-Fe_2O_3 Nanoparticles and Their Application to All-solid-state Lithium Batteries [J]. Journal of Power Sources, 2008, 183(1): 418–421.
    [5] HAN Q. XU Y Y. FU Y Y. ZHANG H. WANG R M. WANG T M. CHEN Z Y. Defects and Growing Mechanisms ofα-Fe_2O_3 Nanowires [J]. Chemical Physics Letters, 2006, 431(1-3): 100–103
    [6] HAN Q. LIU Z H. XU Y Y. CHEN Z Y. WANG T M. ZHANG H. Growth andProperties of Single-Crystallineγ-Fe_2O_3 Nanowires [J]. Journal of Physical Chemistry C, 2007, 111(13), 5034-5038.
    [7] SRIVASTAVA H. TIWARI P. SRIVASTAVA A K. NANDEDKAR R V. Growth and Characterization ofα-Fe_2O_3 Nanowires [J]. Journal of Applied Physics, 2007, 102(5), 054303-1-054303-5.
    [8] LEE Y H. CHUEH Y L. HSIEH C H. CHANG M T. CHOU L J. WANG Z L. LAN Y W. CHEN C D. KURATA H. ISODA S. p-Typeα-Fe_2O_3 Nanowires and their n-Type Transition in a Reductive Ambient [J]. Small, 2007, 3(8): 1356-1361.
    [9] WEN X G.. WANG S H. DING Y. WANG Z L. YANG S H. Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays ofα-Fe_2O_3 Nanobelts and Nanowires [J]. Journal of Physical Chemistry B, 2005, 109(1), 215-220
    [10] WU C Z. YIN P. ZHU X. OOYANG X Z. XIE Y. Synthesis of Hematite (α-Fe_2O_3) Nanorods: Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors [J]. Journal of Physical Chemistry B 2006, 110(36): 17806 -17812.
    [11] ZHONG Z Y. HO J. TEO J. SHEN S C. GEDANKEN A. Synthesis of Porousα-Fe_2O_3 Nanorods and Deposition of Very Small Gold Particles in the Pores for Catalytic Oxidation of CO [J]. Chemistry of Materials, 2007, 19(19): 4776-4782.
    [12] ZENG S Y. TANG K B. LI T W. Controlled Synthesis ofα-Fe_2O_3 nanorods and its Size-dependent Optical Absorption, Electrochemical, and Magnetic Properties [J]. Journal of Colloid and Interface Science, 2007, 312(2): 513–521.
    [13] WANG Y. CAO J L. WANG S R. GUO X Z. ZHANG J. XIA H J. ZHANG S M. WU S H. Facile Synthesis of Porousα-Fe_2O_3 Nanorods and Their Application in Ethanol Sensors [J]. Journal of Physical Chemistry C 2008, 112(46): 17804–17808.
    [14] ZHONG Z Y. TEO J. LIN M. HO J. Synthesis of Porousα-Fe_2O_3 Nanorods as Catalyst Support and A Novel Method to Deposit Small Gold Colloids on Them [J]. Topics in Catalysis, 2008, 49(3-4):216–226.
    [15] LIU H. WANG G X. PARK J. WANG J Z. LIU H K. ZHANG C. Electrochemical Performance ofα-Fe_2O_3 Nanorods as Anode Material forLithium-ion Cells [J]. Electrochimica Acta, 2009, 54(6): 1733–1736.
    [16] CHEN J. XU L N. LI W Y. GOU X L.α-Fe_2O_3 Nanotubes in Gas Sensor and Lithium-ion Battery Applications [J]. Advanced Materials, 2005, 17(5): 582-586.
    [17] LIU L, KOU H Z. MO W L. LIU H J. WANG Y Q. Surfactant-Assisted Synthesis ofα-Fe_2O_3 Nanotubes and Nanorods with Shape-Dependent Magnetic Properties [J]. Journal of Physical Chemistry B, 2006, 110(31): 15218-15223.
    [18] YU X L. CAO C B. AN X Q. Facile Conversion of Fe Nanotube Arrays to Novelα-Fe_2O_3 anoparticle Nanotube Arrays and Their Magnetic Properties [J]. Chemistry of Materials, 2008, 20(5): 1936–1940.
    [19] MOHAPATRA S K. JOHN S E. BANERJEE S. MISRA M. Water Photooxidation by Smooth and Ultrathinα-Fe_2O_3 Nanotube arrays [J]. Chemistry of Materials, 2009, 21(14): 3048-3055.
    [20] ZHAN S H. CHEN D R. JIAO X L. LIU S S. Facile Fabrication of Longα-Fe_2O_3,α-Fe andγ-Fe_2O_3 Hollow Fibers Using Sol–gel Combined Co-electrospinning Technology [J]. Journal of Colloid and Interface Science, 2007, 308 (1): 265–270.
    [21] FU X Q. BEI F L. WANG X. YANG X J. LU L D. Two-dimensional Monolayers of Single-crystallineα-Fe_2O_3 Nanospheres: Preparation, Characterization and SERS Effect [J]. Materials Letters, 2009, 63(2): 185–187.
    [22] JIA C. CHENG Y. BAO F. CHEN D Q. WANG Y S. pH value-dependant Growth ofα-Fe_2O_3 Hierarchical Nanostructures [J]. Journal of Crystal Growth, 2006, 294 (2): 353–357.
    [23] LI L L. CHU Y. LIU Y. Synthesis and Characterization of Ring-likeα-Fe_2O_3 [J]. Nanotechnology, 2007, 18 (10): 105603 (6pp).
    [24] FAN H M. YOU G J. LI Y. ZHENG Z. TAN H R. SHEN Z X. TANG S H. FENG Y P. Shape-Controlled Synthesis of Single-Crystalline Fe_2O_3 Hollow Nanocrystals and Their Tunable Optical Properties [J]. Journal of Physical Chemistry C 2009, 113(22): 9928–9935.
    [25] YAMADA K I. MUKAIHATA N. KAWAHARA T. TADA H. Electrochemically Assisted Visible Light Photocatalysis in a Heterosupramolecular SystemConsisting ofα-Fe_2O_3 and Surfactant Molecular Assembly [J]. Langmuir, 2007, 23(16): 8593-8596.
    [26] BEERMANN N. VAYSSIERES L. LINDQUIST S-E. HAGFELDT A. Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite [J]. Journal of the Electrochemical Society, 2000, 147(7): 2456-2461.
    [27] LIN S S. GUROL M. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications [J]. Environmental Science and Technology, 1998, 32(10): 1417-1423.
    [28] DU W P. XU Y M. WANG Y S. Photoinduced Degradation of Orange II on Different Iron (Hydr)oxides in Aqueous Suspension: Rate Enhancement on Addition of Hydrogen Peroxide, Silver Nitrate, and Sodium Fluoride [J]. Langmuir 2008, 24(1): 175-181.
    [29] CESAR I. KAY A. GONZALEZ MARTINEZ J. GR?TZEL M. Translucent Thin Film Fe_2O_3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping [J]. Journal of the American Chemical Society, 2006, 128(14): 4582-4583.
    [30] JORAND SARTORETTI C. ULMANN M. ALEXANDER B D. AUGUSTYNSKI J. WEIDENKAFF A. Photoelectrochemical Oxidation of Water at Transparent Ferric Oxide Film Electrodes [J], Chemical Physics Letters, 2003, 376(1-2): 194–200.
    [31] FAN Z Y. WEN X G. YANG S H. LU J G. Controlled p- and n-type Doping of Fe_2O_3 Nanobelt Field Effect Transistors [J]. Applled Physics Letters, 2005, 87(1): 013113-1-013113-3.
    [32] SOMEKAW S. KUSUMOTO Y. ABDULLA-AL-MAMUN M. MURUGANANDHAM M. HORIE Y. Wet-type Fe_2O_3 Solar Cells Based on Fe_2O_3 Films Prepared by Laser Ablation: Drastic Temperature Effect [J]. Electrochemistry Communications, 2009, 11(11): 2150–2152.
    [33] LAKOWICZ J R. BEVAN D R. Effects of Asbestos, Iron Oxide, Silica, and Carbon Black on the Microsomal Availability of Benzo[a]pyrenet [J]. Biochmistry, 1979, 18(23): 5170–5176.
    [34] LINDGREN T. WANG H L. BEERMANN N. VAYSSIERES L. HAGFELDT A. LINDQUIST S-E. Aqueous Photoelectrochemistry of Hematite Nanorod Array [J]. Solar Energy Materials & Solar Cells, 2002, 71(2): 231–243.
    [35] VAYSSIERES L. SATHE C. BUTORIN S M. SHUH D K. NORDGREN J. GUO J H. One-dimensional Quantum Confinement-effect inα-Fe_2O_3 Ultrafine Nanorod Arrays [J]. Advanced Materials, 2005, 17(19): 2320-2323.
    [36] WU J-J. LEE Y-L. CHIANG H-H. WONG D K-P. Growth and Magnetic Properties of Orientedα-Fe_2O_3 Nanorods [J]. Journal of Physical Chemistry B, 2006, 110(37): 18108-18111.
    [37] KIM C H. CHUN H J. KIM D S. KIM S Y. PARKA J. MOON J Y. LEE G. YOON J. JO Y. JUNG M-H. JUNG S Il.LEE C J. Magnetic Anisotropy of Vertically Alignedα-Fe_2O_3 Nanowire Array [J]. Applied Physics Letters, 2006, 89(22): 223103-1-2231013-3.
    [38] CHUENH Y-L. LAI M-W. LIANG J-Q. CHOU L-J. WANG Z L. Systematic Study of the Growth of Aligned Arrays ofα-Fe_2O_3 and Fe3O4 Nanowires by a Vapor–Solid Process [J]. Advanced Functional Materials, 2006, 16(17), 2243–2251.
    [39] WEN X G. WANG S H. DING Y. WANG Z L. YANG S H. Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays ofα-Fe_2O_3 Nanobelts and Nanowires [J]. Journal of Physical Chemistry B, 2005, 109(1): 215-220.
    [40] VAYSSIERES L. BEERMANN N. LINDQUIST S-E. HAGFELDT A. Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides [J]. Chemistry of Materials (Communications), 2001,13(2): 233-235.
    [41] DONCHEV V. KIRILOV K. IVANOV Ts. GERMANOVA K. Surface Photovoltage Phase Spectroscopy–a Handy Tool for Characterisation of Bulk Semiconductors and Nanostructures [J]. Materials Science and Engineering B, 2006, 129(1-3): 186–192.
    [42] GURLO A. B?RSAN N. OPREA A. SAHM M. SAHM T. WEIMAR U. An n-to p-type Conductivity Transition Induced by Oxygen Adsorption onα-Fe_2O_3 [J].Applied Physics Letters, 2004, 85(13): 2280-2282.
    [43] CHENG K. HE Y P. MIAO Y M. ZOU B S. WANG Y G. WANG T H.. ZHANG X T. DU Z L. Quantum Size Effect on Surface Photovoltage Spectra: Alpha-Fe_2O_3 Nanocrystals on the Surface of Monodispersed Silica Microsphere [J]. Journal of Physical Chemistry B, 2006, 110(14): 7259-7264.
    [44] YAN Y F. AL-JASSIM M M. WEI S-H. Oxygen-vacancy Mediated Adsorption and Reactions of Molecular Oxygen on the ZnO (101-0) Surface [J]. Physical Review B, 2005, 72(16): 161307-(1-4)[R].
    [45] KRONIK L. SHAPIRA Y. Surface Photovoltage Phenomena: Theory, Experiment, and Applications [J]. Surface Science Reports, 1999, 37(1): 1-206.
    [46] MAHROV B. BOSCHLOO G. HAGFELDT A. DLOCZIK L. DITTRICH Th. Photovoltage Study of Charge Injection from Dye Molecules into Transparent Hole and Electron Conductors [J]. Applied Physics Letters, 2004, 84 (26): 5455-5457.
    [47] ZHANG Q L. WANG D J. WEI X. XIE T F. LI Z H. LIN Y H. YANG M. A Study of the Interface and the Related Electronic Properties in n-Al0.35Ga0.65N/GaN Heterostructure [J]. Thin Solid Films, 2005, 491(1-2): 242– 248.
    [48] KENNEDY J H. FRESE K W. Photooxidation of Water atα-Fe_2O_3 Electrodes [J]. Journal of the Electrochemical Society, 1978, 125(5): 709-714.
    [49] BERANEK R. NEUMANN B. SAKTHIVEL S. JANCZAREK M. DITTRICH T. TRIBUTSCH H. KISCH H. Exploring the Electronic Structure of Nitrogen-modified TiO2 Photocatalysts Through Photocurrent and Surface Photovoltage Studies [J]. Chemical Physics, 2007, 339(1-3): 11–19.
    [1] WANG C J. THOMPSON R L. BALTRUS J. MATRANGA. Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts [J]. Journal of Physical Chemistry Letters, 2010, 1(1): 48–53
    [2] WANG L. WEI H W. FAN Y J. GU X. ZHAN J H. One-Dimensional CdS/γ-Fe_2O_3 and CdS/Fe3O4 Heterostructures: Epitaxial and Nonepitaxial Growth and Photocatalytic Activity [J]. Journal of Physical Chemistry C, 2009, 113(32): 14119–14125.
    [3] LIU J. GENG B Y. WANG S Z. Preparation and Usage of ZnS/Phosphate Heterostructured Hemispheres in Enhanced Photocatalytic Activities [J]. Crystal Growth & Design, 2009, 9(10): 4384-4390.
    [4] ZHENG Y H. ZHENG LR. ZHAN Y Y. LIN X Y. ZHENG Q. WEI K. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis [J]. Inorganic Chemistry, 2007, 46(17): 6980-6986.
    [5] YU H B. CHEN S. QUAN X. ZHAO H M. ZHANG Y B. Fabrication of a TiO2-BDD Heterojunction and its Application As a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(VI) [J]. Environmental Science & Technology, 2008, 42(10): 3791–3796.
    [6] MOR G K. VARGHESE O K. WILKE R H T. SHARMA S. SHANKAR K. LATEMPA T J. CHOI K-S. GRIMES C A. p-Type Cu-Ti-O Nanotube Arrays and Their Use in Self-Biased Heterojunction Photoelectrochemical Diodes for Hydrogen Generation [J]. Nano Letters, 2008, 8(7): 1906-1911.
    [7] ZHANG Y. XIE T F. JIANG T F. WEI X. PANG S. WANG X. WANG D J. Surface Photovoltage Characterization of a ZnO Nanowire Array/CdS Quantum Dot Heterogeneous Film and its Application for Photovoltaic Devices [J]. Nanotechnology, 2009, 20(15): 155707-1-155505-6.
    [8] ZENG B Q. XIONG X Y. CHEN S. WANG W Z. WANG P Z. REN Z F. Field Emission of Silicon Nanowires Grown on Carbon Cloth [J]. Applied Physical Letters, 2007, 90(3): 033112-1-033112-3.
    [9] Banerjee D. JO S H. REN Z F. Enhanced Field Emission of ZnO Nanowires [J], Advanced Materials, 2004, 16(22): 2028 -2032.
    [10] CHEN Y J. ZHU C L. SHI X L. CAO M S. JIN H B. The Synthesis and Selective Gas Sensing Characteristics of SnO2/α-Fe_2O_3 Hierarchical Nanostructures [J]. Nanotechnology, 2008, 19(20), 205603-1-205603-5. .
    [11] SI S F. LI C H. WANG X. PENG Q. LI Y D. Fe_2O_3/ZnO Core–shell Nanorods for Gas Sensors [J]. Sensors and Actuators B, 2006, 119(1): 52–56.
    [12] CHEN Y. CRITTENDEN J C. HACKNEY S. SUTTER L. HAND D W. Preparation of a Novel TiO2-based p-n Junction Nanotube Photocatalyst [J]. Environmental Science & Technology, 2005, 39(5): 1201–1208.
    [13] YU H. QUAN X. CHEN S. ZHAO H. TiO2-Multiwalled Carbon Nanotube Heterojunction Arrays and Their Charge Separation Capability [J]. Journal of Physical Chemistry C, 2007, 111(35): 12987–12991.
    [14] LEE M K. SHIH T H. High Photocatalytic Activity of Nanoscaled Heterojunction of ZnS Grown on Fluorine and Nitrogen Co-doped TiO2 [J]. Journa of the Electrochemical Society, 2007, 154(4): 49–51.
    [15] DEKA S. FALQUI A. BERTONI G. SANGREGORIO C. PONETI G. MORELLO G. GIORGI M D. GIANNINI C. CINGOLANI R. MANNA L. COZZOLI P D. Fluorescent Asymmetrically Cobalt-Tipped CdSe@CdS Core@Shell Nanorod Heterostructures Exhibiting Room-Temperature Ferromagnetic Behavior [J]. Jouranl of the American Chemical Society, 2009, 131(35): 12817–12828.
    [16] PELEGRINI R T. FREIRE R S. DURAN N. BERTAZZOLI R. Photoassisted Electrochemical Degradation of Organic Pollutants on a Dsa Type Oxide Electrode: Process Test for a Phenol Synthetic Solution and Its Application for the E1 Bleach Kraft Mill Effluent [J]. Environmental Science & Technology, 2001, 35(13): 2849–2853.
    [17] AN T. XIONG Y. LI G. ZHA C. ZHU X. Synergetic Effect in Degradation of Formic Acid Using a New Photoelectrochemical Reactor [J]. Journal of Photochemistry and Photobiology A, 2002, 152(1-3): 155–165.
    [18] QUAN X. CHEN S. SU J. CHEN J. CHEN G. Synergetic Degradation of 2,4-D by Integrated Photo- and Electrochemical Catalysis on a Pt Doped TiO2/Ti Electrode [J]. Separation and Purification Technology, 2004, 34 (1-3): 73–79.
    [19] PINHEDO L. PELEGRINI R. BERTAZZOLI R. MOTHEO A J. Photoelectrochemical Degradation of Humic Acid on a (TiO2)0.7(RuO2)0.3DimensionallyStable Anode [J]. Applied Catalysis B, 2005, 57(2): 75–81.
    [20] ZHAO X. ZHU Y F. Synergetic Degradation of Rhodamine B at a Porous ZnWO4 Film Electrode by Combined Electro-Oxidation and Photocatalysis [J]. Environmental Science & Technology, 2006, 40(10): 3367–3372.
    [21] VAYSSIERES L. BEERMANN N. LINDQUIST S-E. HAGFELDT A. Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides [J]. Chemistry of Materials (Communications), 2001, 13(2): 233-235.
    [22]藤岛昭,相泽益男,井上澈,等.电化学测定方法[M].北京:北京大学出版社,1995.
    [23] LIU H. CHENG S A. WU M. WU H J, ZHANG J Q. LI W Z. CAO C N. Photoelectrocatalytic Degradation of Sulfosalicylic Acid and Its Electrochemical Impedance Spectroscopy Investigation [J]. Journal of Physical Chemistry A, 2000, 104(30): 7016-7020.
    [24] LENG W H. ZHANG Z. ZHANG J Q. CAO C N. Investigation of the Kinetics of a TiO2 Photoelectrocatalytic Reaction Involving Charge Transfer and Recombination through Surface States by Electrochemical Impedance Spectroscopy [J]. Journal of Physical Chemistry B, 2005, 109(31): 15008–15023.
    [25]钱新明.复合纳米材料薄膜的光电化学特性研究[D].长春:吉林大学化学学院,1999.
    [26] DONCHEV V. KIRILOV K. IVANOV Ts. GERMANOVA K. Surface Photovoltage Phase Spectroscopy–A Handy Tool for Characterisation of Bulk Semiconductors and Nanostructures [J]. Materials Science and Engineering B, 2006, 129(1-3): 186–192.
    [1] BELLARDITA M. ADDAMO M. PAOLA A D. PALMISANO L. ENEZIA A M. Preparation of N-doped TiO2: Characterization and Photocatalytic Performance Under UV and visible light [J]. Physical Chemistry Chemical Physics, 2009, 11(20): 4084–4093.
    [2] AMANO F. NOGAMI K. OHTANI B. Visible Light-Responsive Bismuth Tungstate Photocatalysts: Effects of Hierarchical Architecture on Photocatalytic Activity [J]. Journal of Physical Chemistry. C, 2009, 113(4): 1536–1542.
    [3] WANG X C. MAEDA K. CHEN X F. TAKANABE K. DOMEN K. HOU Y D. FU X Z. ANTONIETTI M. Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light [J]. Journal of the American Chemical Society, 2009, 131(5): 1680–1681.
    [4] OHNOA T. AKIYOSHI M. UMEBAYASHI T. ASAI K. MITSUI T. MATSUMURA M. Preparation of S-doped TiO2 Photocatalysts and TheirPhotocatalytic Activities Under Visible Light [J]. Applied Catalysis A: General, 2004, 265(1): 115–121.
    [5] ZHU J. REN J. HUO Y N. BIAN Z F. LI H X. Nanocrystalline Fe/TiO2 Visible Photocatalyst with a Mesoporous Structure Prepared via a Nonhydrolytic Sol-Gel Route [J]. Journal of Physical Chemistry C 2007, 111(51): 18965-18969.
    [6] LI L L. CHU Y. LIU Y. DONG L H.. Template-Free Synthesis and Photocatalytic Properties of Novel Fe_2O_3 Hollow Spheres [J]. Journal of Physical Chemistry C 2007, 111(5): 2123-2127.
    [7] MOHAPATRA S K. JOHN S E. BANERJEE S. MISRA M. Water Photooxidation by Smooth and Ultrathinα-Fe_2O_3 Nanotube Arrays [J]. Chemistry of Materials, 2009, 21(14): 3048-3055.
    [8] KAY A. CESAR I. GR?TZEL M. New Benchmark for Water Photooxidation by Nanostructuredα-Fe_2O_3 Films [J]. Journal of the American Chemical Society, 2006, 128(49), 15714-15721.
    [9] JORAND SARTORETTI C. ULMANN M. ALEXANDER B D. AUGUSTYNSKI J. WEIDENKAFF A. Photoelectrochemical Oxidation of Water at Transparent Ferric Oxide Film Electrodes [J]. Chemical Physics Letters, 2003, 376(1-2): 194–200.
    [10] WANG Y. CAO J L. WANG S R. GUO X Z. ZHANG J. XIA H J. ZHANG S M. WU S H. Facile Synthesis of Porousα-Fe_2O_3 Nanorods and Their Application in Ethanol Sensors [J]. Journal of Physical Chemistry C 2008, 112(46): 17804–17808.
    [11] CHEN J. XU L N. LI W Y. GOU X L.α-Fe_2O_3 Nanotubes in Gas Sensor and Lithium-ion Battery Applications [J]. Advanced Materials, 2005, 17(5): 582-586.
    [12] SOMEKAW S. KUSUMOTO Y. ABDULLA-AL-MAMUN M. MURUGANANDHAM M. HORIE Y. Wet-type Fe_2O_3 Solar Cells Based on Fe_2O_3 Films Prepared by Laser Ablation: Drastic Temperature Effect [J]. Electrochemistry Communications, 2009, 11(11): 2150–2152.
    [13] WANG X H. Li ZHANG L. NI Y H. HONG J M. CAO X F. Fast Preparation, Characterization, and Property Study ofα-Fe_2O_3 Nanoparticles via a SimpleSolution-Combusting Method [J]. Journal of Physical Chemistry C, 2009, 113(17): 7003–7008.
    [14] ZENG S Y. TANG K B. LI T W. Controlled Synthesis ofα-Fe_2O_3 Nanorods and Its Size-dependent Optical Absorption, Electrochemical, and Magnetic Properties [J]. Journal of Colloid and Interface Science, 2007, 312(2): 513–521.
    [15] FAN H M. YOU G J. LI Y. ZHENG Z. TAN H R. SHEN Z X. TANG S H. FENG Y P. Shape-Controlled Synthesis of Single-Crystalline Fe_2O_3 Hollow Nanocrystals and Their Tunable Optical Properties [J]. Journal of Physical Chemistry C 2009, 113(22): 9928–9935.
    [16] JING Z H. Fabrication and Gas Sensing Properties of Ni-doped Gamma-Fe_2O_3 by Anhydrous Solvent Method [J]. Materials Letters, 2006, 60(28): 3315–3318.
    [17] WANG Y. WANG S R. ZHAO Y Q. ZHU B L. KONG F H. WANG D. WU S H. HUANG W P. ZHANG S M. H2S Sensing Characteristics of Pt-dopedα-Fe_2O_3 Thick Film Sensors [J]. Sensors and Actuators B: Chemical, 2007, 125(1): 79-84.
    [18] WATANABE A. KOZUKA H. Photoanodic Properties of Sol-Gel-Derived Fe_2O_3 Thin Films Containing Dispersed Gold and Silver Particles [J]. Journal of Physical Chemistry B 2003, 107(46): 12713-12720.
    [19] CESAR I. KAY A. GONZALEZ MARTINEZ J. GR?TZEL M. Translucent Thin Film Fe_2O_3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping [J]. Journal of the American Chemical Society, 2006, 128(14): 4582-4583.
    [20] HUANG H J. LI D Z. LIN Q. ZHANG W J. SHAO Y. CHEN Y B. SUN M. FU X Z. Efficient Degradation of Benzene Over LaVO4/TiO2 Nanocrystalline Heterojunction Photocatalyst Under Visible Light Irradiation [J]. Environmental Science and Technology., 2009, 43(11): 4164–4168.
    [21] JING L Q. SUN X J. SHANG J. CAI W M. XU Z L. DU Y G. FU H G. Review of Surface Photovoltage Spectra of Nanosized Semiconductor and Its Applications in Heterogeneous Photocatalysis [J]. Solar Energy Materials & Solar Cells, 2003, 79(2): 133-151.
    [22] LIU H Y. GAO L. Preparation and Properties of Nanocrystallineα-Fe_2O_3-Sensitized TiO2 Nanosheets as a Visible Light Photocatalyst [J]. Journal of the American Ceramic Society, 2006, 89(1): 370–373.
    [23] XIA H L. ZHUANG H S. ZHANG T. XIAO D C. Visible-light-activated Nanocomposite Photocatalyst of Fe_2O_3/SnO2 [J]. Materials Letters, 2008, 62(6-7): 1126–1128.
    [24] LIU X W. FANG Z. ZHANG X J. ZHANG W. WEI X W. GENG B Y, Preparation and Characterization of Fe3O4/CdS Nanocomposites and Their Use as Recyclable Photocatalysts [J]. Crystal Growth and Design, 2009, 9(1): 197-202.
    [25] ZHANG H T. WU X B. WANG Y M. CHEN X Y. LI Z S. YU T. YE J H. ZOU Z G. Preparation of Fe_2O_3/SrTiO3 Composite Powders and Their Photocatalytic Properties [J]. Journal of Physics and Chemistry of Solids, 2007, 68(2): 280–283.
    [26] LUO W J. YU T. WANG Y M. LI Z S. YE J H. ZOU Z G. Enhanced Photocurrent–voltage Characteristics of WO3/Fe_2O_3 Nano-electrodes [J]. Journal of Physics D: Applied Physics, 2007, 40(4): 1091–1096.
    [27] ZHANG Y. XIE T F. JIANG T F. WEI X. PANG S. WANG X. WANG D J. Surface Photovoltage Characterization of a ZnO Nanowire Array/CdS Quantum Dot Heterogeneous Film and Its Application for Photovoltaic Devices [J]. Nanotechnology, 2009, 20(15): 155707.
    [28] IVANOVSKAYA M I. KOTSIKAU D A. TAURINO A. SICILIANO P. Structural Distinctions of Fe_2O_3–In2O3 Composites Obtained by Various Sol–gel Procedures, and Their Gas-sensing Features [J]. Sensors and Actuators B, 2007, 124(1): 133-142.
    [29] SI S F. LI C H. WANG X. Q. PENG Q. LI Y D. Fe_2O_3/ZnO Core–shell Nanorods for Gas Sensors [J]. Sensors and Actuators B, 2006, 119(1): 52–56.
    [30] XIONG G. JOLY A G. HOLTOM G P. WANG C M. MCCREADY D E. BECK K M. HESS W P. Excited Carrier Dynamics ofα-Cr2O3/α-Fe_2O_3 Core-Shell Nanostructures [J]. Journal of Physical Chemistry B, 2006, 110(34): 16937-16940.
    [31] ZOU X X. LI G D. GUO M Y. LI X H. LIU D P. SU J. CHEN J S. Heterometal Alkoxides as Precursors for the Preparation of Porous Fe– and Mn–TiO2 Photocatalysts with High Efficiencies [J]. Chemistry A European Journal, 2008, 14(35): 11123– 11131.
    [32] ZHOU W. FU H G. PAN K. TIAN C G. QU Y. LU P P. SUN C C. Mesoporous TiO2/α-Fe_2O_3: Bifunctional Composites for Effective Elimination of Arsenite Contamination through Simultaneous Photocatalytic Oxidation and Adsorption [J]. The Journal of Physical Chemistry C, 2008, 112(49): 19584–19589.
    [33] VAYSSIERES L. An aqueous Solution Approach to Advanced Metal Oxide Arrays on Substrates [J]. Applied Physics A: Materials Science & Processing, 2007, 89(1): 1-8.
    [34] DONCHEV V. KIRILOV K. IVANOV Ts. GERMANOVA K. Surface Photovoltage Phase Spectroscopy–a Handy Tool for Characterisation of Bulk Semiconductors and Nanostructures [J]. Materials Science and Engineering B, 2006, 129(1-3): 186–192.
    [35] MAHROV B. BOSCHLOO G. HAGFELDT A. DLOCZIK L. DITTRICH Th. Photovoltage Study of Charge Injection From Dye Molecules into Transparent Hole and Electron Conductors [J]. Applied Physics Letters, 2004, 84 (26): 5455-5457.
    [36] ZHANG Q L. WANG D J. WEI X. XIE T F. LI Z H. LIN Y H. YANG M. A Study of the Interface and the Related Electronic Properties in n-Al0.35Ga0.65N/GaN Heterostructure [J]. Thin Solid Films, 2005, 491(1-2): 242– 248.
    [37] KENNEDY J H. FRESE K W. Journal of the Electrochemical Society, 1978, 125,709-714.
    [38] ZHANG X. ZHANG L Z. XIE T F. WANG D J. Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2 Heterostructures [J]. Journal of Physical Chemistry C , 2009, 113(17): 7371–7378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700