7个鼻咽癌相关基因单核苷酸多态性的筛查及其与鼻咽癌易感性的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国人鼻咽癌(nasopharyngeal carcinoma,NPC)发病率居世界各民族之首,尤其高发于南方各省。流行病学调查结果表明NPC有显著的种族易感性和家族集聚现象,是一个多基因遗传病,涉及多种瘤基因、抑瘤基因的改变。病因学研究表明遗传因素、环境因素和EB病毒感染与NPC有关。国内外研究结果表明至今还没有发现公认的明确的鼻咽癌特异性致癌基因,但发现了一些与之密切相关的基因。
     筛查和验证疾病相关基因的方法不少,而单核苷酸多态性(single nucleotide polymorphism,SNPs)作为第三代遗传标记因其分布密度高、遗传稳定性强和易实现分析的自动化的特性,被认为是目前人类遗传性和遗传相关性疾病的诊断以及群体遗传学的研究、药物的开发和应用等方面最佳检测方法。
     本实验采用生物信息学方法搜寻筛查在遗传易感、病毒感染和化学促(致)癌等方面与鼻咽癌发病有密切关系的、具有代表性的7个基因进行SNP研究,其中YH1、NAG22、NPCR是鼻咽癌相关的抑瘤基因的侯选基因,CR2是介导EBV进入淋巴细胞的受体,TSG101是肿瘤抑制基因,同时也是体内广泛分布的一种多脏器代谢酶,CYP2E1及GSTml是体内重要的Ⅰ相代谢酶和Ⅱ相代谢酶的代表。这些基因与鼻咽癌发病机理有不同程度的关联,可以促使我们从不同角度来探讨和加深对鼻咽癌发病机理的认识。
     用测序的方法从中华民族27个个体和5个pool中共筛查出具有中华民族特征的SNP102个,其中5′Flank46个,5′UTR9个,Coding14个,Intron18个,3′UTR11个,3′Flank14个。在102个多态位点中,有73
    
    个为首次发现。14个csNP中7个为中高频位点(罕见等位基因频率为
    7.40%一32.7%),其中2个位点无氨基酸改变;余5个为低频位点(罕见
    等位基因频率为1.9%),其中1个位点无氨基酸改变。
     对102个SNP多态位点中频率大于0.01、其它数据完整的87个SNP
    进行连锁不平衡分析,结果表明有83对位点之间呈高度连锁不平衡尤况2
    l对;11了121对;刀且G221对;TSGI019对;刃尸C尺29对;GS乃nl 13
    对:CYPZEllZ对。
     采用病例一对照的方法在238例鼻咽癌患者和286例正常对照人群
    中,用RFLP一PCR、tetra一Pri~ARMS一PCR和测序分型方法对6个基因
     (K片了、C尺2、刀摊G22、N尸C尺、TSGIOI和G 57初I)eSNP12个位点、YHI
    基因调控区2个SNP位点以及通过单倍型计算获得的CYPZE13个htSNP
    位点展开基因分型,用OR值来评估这些基因的基因型与鼻咽癌表型之
    间的相对危险度,发现:
     用K日了、CRZ、入摊G22、刃尸C尺低频SNP位点(延1 .9%)进行群体
    分型实际意义不大,更不能以此单独作为某一种界标。
     Gs乃nl C1270533T为首次发现的多态位点(中国人群罕见等位基因
    rl,频率为22.2%),其96位氨基酸的第二位密码子发生了碱基颠换(CGT
    一C竹),使沁g一Leu,导致错义突变。分型结果表明,基因型TT和
    GT的RR值分别为0.170和0.605,该位点的表型与鼻咽癌无关联。
     KHZ调控区2个SNP位点(中国人群罕见等位基因频率分别为37.0%
    和38.9%),K“2 G199O158A基因型GG携带者患鼻咽癌的危险性是对照
    人群的2.3倍(95%置信区间为1.458一3.628);K阿2 G1990398T基因型
    GG携带者发生鼻咽癌的可能性是对照人群的3.166倍(95%置信区间为
    1 .784一5.619)。
     CYPZEI cSNp位点T505228A,其421位氨基酸的第三位密码子发
    生了碱基颠换(TTC一TTT),但仍编码同一蛋白Phe(F)一Phe(F),为同
    义突变。变异基因型TT的相对危险度较低(RR为0.586),与鼻咽癌表
    型之间关联程度低;非编码区SNP位点C506380A在对照人群和鼻咽
    癌患者中变异基因型AA的RR值为0.612,与鼻咽癌表型关联程度不大;
    内含子区SNP位点T49984OC的多态类型与鼻咽癌易感的关联程度较高,
    
    基因型Tl,携带者发生鼻咽癌的可能性是是对照人群的4.225倍(95%置
    信区间为1.873一9.531)。
     上述结果提示丫付2调控区SNP位点K泞2G1990158A和
    丫日2G1990398T的变异与鼻咽癌易感的关联程度较高,是鼻咽癌遗传易
    感的风险因子。CYPZEI内含子区SNP位点T499840C的变异与鼻咽癌
    也有关联,是否能成为鼻咽癌易感的标志或能成为寻找其它真正的鼻咽
    癌易感基因的路标还需进一步探讨。
Nasopharyngeal carcinoma (NPC) is a rare tumor in most parts of the world but occurs at relatively high incidence among people of southern China. The epidemiologic investigation indicates that NPC is a multi-gene hereditary disease, which relates to race and familial traits, as well as concerns with oncogenes and/or suppressor genes. The etiology studies demonstrate that environment factors and the infection of Epstein-Barr virus as well as genetic alterations play a very important role in NPC developing. Up till now there hasn't been identified own gene of NPC but some related genes.
    Single nucleotide polymorphism (SNP) is a useful genetic marker because of its high density and hereditary stability and the capacity for highly automated analysis. SNP is thought to be a powerful tool for finding the contributions of individual genes to complex, multigene diseases. Actually, genetic variations underline differences in our susceptibility to, or protection from, all kinds of disease. Knowledge of genetic variations also affects patient treatment to some degree.
    Using bioinformatics means, 7 genes were picked out to be studied , including the tumour suppressor gene candidates, such as YH1, NPCR and NAG22, EBV receptor CR2 which can guide EBV into lymphocytes, TSG101 which is a suppressor gene and multi-organ metabolic enzyme at the same time, as well as CYP2E1 and GSTm1 which are very important phase I (oxidation) and II (conjugation) metabolic enzymes.
    
    
    In order to gain SNP from these genes, 27 samples and 5 pools, which originated from the Han nationality and minority of Chinese, were examined by sequence and 102 SNP loci were discovered. There are 46 and 9 SNP in 5'Flank and 5'UTR, respectively; only 14 SNP in coding region are discovered. In 3TJTR and 3'Flank, there are 11 and 14 SNP, respectively. 73 in 102 SNP haven't been reported. 7 in 14 cSNP have moderate or high frequency (the rare allele frequency is from 7.4% to 32.7%), only 2 loci have no changes among amino acids, the rest 5 in 14 SNP have lower frequency (the rare allele gene frequency is just 1.9%), onlylof them has no change.
    87 loci of 102 SNP, which allele frequencies exceed 0.01, were analyzed by linkage disequilibrium (LD), the results showed that 83 pairs locus presented highly linkage disequilibrium each other, 21 pairs in CR2, 21 pairs in YH1, 1 pair in NAG22, 9 pairs in TSG101, 29 pairs in NPCR, 13 pairs in GSTml and 12 pairs in CYP2E1, respectively.
    In the present study, we investigated the correlation between the polymorphism of the 7 genes and NPC on a total of 238 patients and 286 controls. The PCR-RFLP and tetra-Primer ARMS-PCR analysis were used to evaluate 12 polymorphisms in the coding region of 6 genes, htSNP derived from results by calculating haplotype was also applied to estimate polymorphism in CYP2E1. The relative risk (RR) was estimated by the odds ratio (OR), to determine the association between genotype of these genes and NPC development.
    The results of all above mentioned showed that lower allele frequency of YH1, CR2, NAG22 or NPCR could not become an individual marker to analyze the correlation between the polymorphism and NPC.
    GSTml C1270533T was discovered for the first time (the rare allele frequency is 22.2%), that the second genetic code in No.96 amino acid appears variation and makes this locus a missense mutation. The genotype displayed suggested there was no association between the phenotype and NPC susceptibility (RR=0.170, 95%CI =0.95-0.306 for homozygote TT).
    
    YH1 G1990158A and YH1 G1990398T are located in regulating region and the rare allele frequency is 22.2% in Chinese. The results indicated that homozygous variant GG in YH1 G1990158A was at a 2.3-fold risk of disease (95% confidence interval = 1.458-3.628). Similarly, homozygous variant GG in YH1 G1990398T was at 3.6-fold risk of developing NPC (95% confidence interval =1.97-6.693).
    CYP2E1 T505228A is located at coding region, its third genetic code in the 421th amino acid appears variation, making this locus a synonymous mutation, the R
引文
1.闵华庆,耿贯一主编.流行病学(第3卷)第2版.北京:人民卫生出版社,1996,280-286
    2.朱世能,陆世能主编.肿瘤基础理论(第2版).上海:上海医科大学出版社,2000,21
    3.游绍进,姚开泰,曹亚.EB病毒潜伏膜蛋白与鼻咽癌的关系.中华肿瘤杂志,1996,18(1):23-25
    4. Jeannel D, Hubert A, de Vathaire F, et al. Diet, living conditions and nasopharyngeal carcinoma in Tunisia-a case-control study. Int J Cancer 1990, 46:421-425
    5. Stucker I, Hirvonen A, De Waziers I et al. Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility. Carcinogenesis. 2002, 23(9): 1475-1481
    6. Shao JY, Wang HY, Huang XM, et al. Genome-wide allelotype analysis of sporadic primary nasopharyngeal carcinoma from southern China. Int J Oncol.2000, 17(6): 1267-1275
    7. Sung NS, Zeng Y, Raab-Traub N. Alterations on chromosome 3 in endemic and nonendemic nasopharyngeal carcinoma.lnt J Cancer.2000, 86(2): 244-250
    8.姚开泰.鼻咽癌研究的回顾与展望.湖南医科大学学报.1995,20(2):99-102
    9. Mutirangura A, Tanunyutthawongese C, Porathanakasem W, et al. Genomic alterations in nasopharyngeal carcinoma: loss of heterozygosity and Epstein-Barr virus infection. Br J Cancer, 1997, 76:770-776
    10.Lo KW, Tsao SW, Leung SF, et al. Detailed deletion mapping in the short arm of chromosome 3 in nasopharyngeal carcinoma. Int J Oncol, 1994,4:1359-1364
    11.Huang DP, Lo KW, Choi PH, et al. Loss of heterozygosity on the short arm of chromosome 3 in nasopharyngeal carcinoma. Cancer Genet cytogenet, 1991, 54 (1): 91-99
    12.DP, Lo KW, Hasselt VA C, et al. A region of homozygous deletion on chromosome 9p21-22 in primaru nasopharymeal carcimoma. Cancer Res, 1994, 54:4003-4006
    13.Sun Y. Molecular oncology of human nasopharyngeal carcinoma. The Cancer J, 1995; 8(6): 325-328
    14.Knudeson AG JR, Mutation and cancer: statistical study of retinoblastoma. Proc Natl Cade Sci.USA, 1971:68:820
    15.Shao JY, Wang HY, Huang XM, et al. Genome-wide allelotype ananlysis of sporadic primary nasopharyngeal carcinoma from southern China.Int J Oncol, 2000, 17(6): 1267-1275
    16.Hu LE, Eiriksdottir G, Lebedeva T, et al. Loss of heterozygosity on chromosome arm 3p in nasopharyngeal carcinoma. Genes Chromosomes Cancer, 1996,17 (2): 118-26
    17.陈孝光,姚开泰.中国科协首届青年学术论文集.第一版.北京:中国科学技术出版社,1992,48
    18.阳剑波,唐湘娜,邓龙文等.鼻咽癌染色体9p21-22区域精细物理图谱的构建.中华肿瘤杂志,1999,21(6):419-42
    19.湛凤凰,江宁,曹利等.cCDNA代表性差异表达分析法分离鼻咽癌上皮细胞株HNE1表达差异cDNA序列的初步研究.中华医学遗传学杂志,1998,15(6):341-344
    20.余鹰,谢奕,李桂源等.应用混合探针文库筛选法克隆多个肿瘤差异表达基因.癌症,2000.19(7):709-712
    21. Hui AB, Lo KW, Leung SF, et al. Loss of heterozygosity on the long arm of chromosome 11 in nasopharyngeal carcinoma. Cancer Res, 1996, 56 (14): 325-329
    22. Mutirangura A. Tanunyutthawongese C, Kerekhanjanarong V, et al. Loss of heterozygosity for chromosome 11 in Epstein-Barr-virus associated nasopharyngeal carcinoma. J Med Assoc Thai, 1996, 79 (Supply): S65-70.
    23. Tsang YS, Lo KW, Leung SF, et al. Two distimct regions of deletion on chromosome 13q in primary nasopharyngeal carcinoma. Int J Cancer, 1999, 83(3): 305-308
    
    
    24. Hui AB, LO KW, Leung SF, et al. Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma by comparative genomic hybridisafion. Int J Cancer, 1999, 82(4): 498-503
    25.李忠花.鼻咽癌全基因组扫描和一个鼻咽癌表达上调新基因的克隆及其功能的初步研究.中南大学湘雅医学院博士论文.中南大学,2001.5
    26. Feng BJ, Huang W, Shugart YY, et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet, 2002,31 (4): 395-399
    27. Wang DG,Fan JB, Siao CJ, et al. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280:1077-1082
    28. Marshall E. Snipping a way at genome patenting. Science, 1997, 227:1752-1753
    29. Garber K. More SNPs on the way. Science, 1998,281:1788
    30. Landegren U, Nilsson M, Kwok PY. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 1998, 8(8): 769-76
    31.阮庆国,陆春叶.基因突变分析技术综述.国外医学遗传学分册.1998,21(5):225-231
    32. Akula N, Chen YS, Hennessy K et al. Utility and accuracy of template- directed dye-terminator incorporation with fluorescence-polarization detection for genotyping single nucleotide polymorphisms. Biotechniques. 2002, 32 (5): 1072-1076
    33. Glaab WE, Skopek TR. A novel assay for allelic discrimination that combines the fluorogenic 5' nuclease poiymerase chain reaction (TaqMan) and mismatch amplification mutation assay. Mutation Research. 1999, 430:1-12
    34. Tobe VO, Taylor SL, Nickerson DA. Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay. Nucleic Acids Research. 1996, 24 (19): 3728-3732
    35. Chert X, Livak KL, Kwok PY. A homogeneous, ligase-mediated DNA diagnostic test. Genome Res,1998, 8:549-556
    36. Howell WM, Jobs M, Brookes AJ. iFRET: An Improved Fluorescence System for DNA-Melting Analysis. Genome Res, 2002,12(9): 1401-7
    37. Indira Rajagopal and Kevin Ahern. Protein Sequencing in the Post- Genomic Era. Science, 2001, 21; 294:2571-2573
    38. Raitio M, Lindroos K, Laukkanen M, et al. Y-Chromosomal SNPs in Finno-Ugric-Speaking Populations Analyzed by Minisequencing on Microarrays.Genome Research, 2001, 11:471-482
    39.顾东风.在复杂性状疾病的遗传流行病学研究中应注意的几个问题.中华预防医学杂志.1998,32(3):136-138
    40.方积乾主编.医学统计学与电脑实验.第二版.上海:上海科学技术出版社.2001
    41. Weis JH, Morton CC, Bruns GAP, et al. A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to lq32. J. lmmun, 1987, 138:312-315
    42. Weis JJ, Tedder TF, Fearon DT. Identification of a 145,000 M(r) membrane protein as the C3d receptor (CR2) of human B lymphocytes. Proc. Nat. Acad. Sci, 1984, 81:881-885
    43. Yefenof E, Klein G, Jondal M et al. Surface markers on human B- and T-lymphocytes. IX. Two color immutnofluorescence studies on the association between EBV receptors and complement receptors on the surface of lymphoid cell lines. Int. J. Cancer, 1976, 17:693-700
    44. Moore MD, Cooper NR, Tack BF, et al. Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes. Proc. Nat Acad Sci, 1987, 84:9194-9198
    45. Prota AE, Sage DR, Stehle T, et al. The crystal structure of human CD21: implications for Epstein-Barr virus and C3d binding. Proc Nat Acad Sci, 2002, 99:10641-10646
    
    
    46. Lowell CA, Klickstein LB, Carter RH, et al. Mapping of the Epstein-Barr virus and c3dg binding sites to a common domain on complement receptor type2. J exp Med, 1989, 170(6) : 1931-1946
    47. Frade R, Gauffre A, Barel M, et al. EBV/C3d receptor (CR2) interacts by its intracytoplasmic carboxyl-terminal domain and two dinstinct binding sites with the p53-anti-oncoprotein and the p68 calcium binding protein. J.Immunol, 1992, 149: 3232-3238
    48. 何志巍,谢鹭,姚开泰等.一个与人鼻咽癌相关的新基因的克隆.科学通报,2000,45:1048
    49. Tomer Y, Barbesino G, Greenberg DA, et al. International Consortium for the Genetics of Autoimmune Thyroid Disease: A new Graves disease-susceptibility locus maps to chromosome 20q11. 2. Am J Hum Genet, 1998, 63: 1749-1756
    50. Bingle CD, Bingle L. Characterisation of the human plunc gene, a gene product with an upper airways and nasopharyngeal restricted expression pattern. Biochim. Biophys Acta, 2000, 1493:363-367
    51. Bingle CD, Craven CJ. PLUNC: A novel family of candidate host defence proteins expressed in the upper airways and nasopharynx. Hum Molec Genet, 2002, 1: 937-943
    52. VerPlank L, Bouamr F, LaGrassa TJ et al. TsglOl, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. PNAS, 2001, 98: 7724-7729
    53. Li L, Li X, Francke U, et al. The TSG101 tumor susceptibility gene is located in chromosome 11 band p15 and is mutated in human breast cancer. Cell, 1997, 88: 143-154
    54. Li L, Cohen SN. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell, 1996, 85: 319-329
    55. Babst M, Odorizzi G, Estepa EJ, et al. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic, 2000,1:242-258
    56. Lemmon SK, Traub LM. Sorting in the endosomal system in yeast and animal cells.Curr Opin Cell Biol, 2000,12: 457-466
    57. Xie W, Li L, Cohen SN. Cell cycle-dependent subcellular localization of the TSG101 protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Proc Natl Acad Sci USA, 1998,95(4) : 1595-1600
    58. Zhong Q, Chen Y, Jones D et al. Cell cycle-dependent subcellular localization of the TSG101 protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Cancer Res, 1998,58(13) : 2699-2702
    59. Sun Z, Pan J, Hope WX, et al. Tumor susceptibility gene 101 protein represses androgen receptor transactivation and interacts with p300. Cancer, 1999, 86(4) : 689-696
    60. Koonin EV, Abagyan RA. TSG101 may be the prototype of a class of dominant negative ubiquitin regulators. Nat Genet, 1997,16(4) :330-331
    61. Ponting CP, Cai YD, Bork P. The breast cancer gene product TSG101: a regulator of ubiquitination? J Mol Med, 1997,75(7) : 467-469
    62. Housey GM, Johnson MD. Hsiao WL, et al. Overproduction of protein kinase C causes disordered growth control in rat fibroblasts. Cell. 1988, 52(3) : 343-354
    63. Nishizuka Y. Studies and prospectives of the protein C family for cellular regulation. Cancer, 1989, 63:1892-1903
    64. Ardila-Osorio H, Clausse B, Mishal Z, et al. Evidence of LMP1-TRAF3 interacions in glycosphingolipid-rich complexes of lymphoblastoid and nasopharyngeal carcinoma cells. Int J Cancer, 1999, 81(4) : 645-649
    65. Eliopulos AG, Stack M, Dswson CW, et al. Epstein-Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-kB pathway involving TNF receptor-associared factors. Oncogene, 1997, 14: 2899-2916
    
    
    66.Itoh M, Chiba H, Noutomi T, et al. Related Articles Cleavage of Bax-alpha and Bcl-x (L) during carboplatin-mediated apoptosis in squamous cell carcinoma cell line. Oral Oncol, 2000, 36(3):277-285
    67.Yang HL, Dong YB, Elliott MJ, et al. Related Articles Caspase activation and changes in Bcl-2 family member protein dxpression associated with E2F-1-mediated apoptosis in human esophageal cancer cells. Clin Cancer Res, 2000, 6(4): 1579-1589
    68.Serrano M, Hannon G J, Beach D. A New regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 1993, 366:704-707
    69.Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: Regulation of GST* and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30:445-600
    70.Mannervik B. The isozymes of glutathione transferase..Adv. Enzym Relat Areas Molec Biol, 1985,57:357-417
    71.Mannervik B, Awasthi YC, Board PG, et al. Nomenclature for human glutathione transferases. (Letter) Biochem. J, 1992, 282:305-306
    72.Chen CL, Liu Q, Relling MV. Simultaneous characterization of glutathione S-transferase M1 and T1 polymorphisms by polymerase chain reaction in American whites and blacks. Pharmacogenetics, 1996, 6:187-191
    73.Lee E, Huang Y, Zhao B, et al. Genetic polymorphism of conjugating enzymes and cancer risk: GSTM 1, GSTT1, NAT1 and NAT2. Journal of Toxicological Sciences, 1998, 23:140-2
    74.Helzlsouer KJ, Selmin O, Huang HY, et al. Association between glutathione S-transferase M1, P1, and T1 genetic polymorphisms and development of breast cancer. Journal of the National Cancer Institute, 1998, 90:512-8
    75.Xu S, Wang Y, Roe B, et al. Characterization of the human class mu glutathione S-transferase gene cluster and the GSTM1 deletion. J Biol Chem, 1998, 273:3517-3527
    76.Zhong S, Wolf CR, Spurr NK. Chromosomal assignment and linkage analysis of the human glutathione S-transferase mu-gene (GSTM1) using intron specific polymerase chain reaction. Hum. Genet, 1992, 90:435-439
    77.McBride OW, Umeno M, Gelboin HV, et al. A Taql polymorphism in the human P450IIE1 gene on chromosome 10 (CYP2E). Nucleic Acids Res, 1987, 15:10071
    78.Okino ST, Quattrochi LC, Pendurthi UR, et al. Characterization of multiple human cytochrome P-450 1 cDNAs: the chromosomal localization of the gene and evidence for alternate RNA splicing. J Biol Chem, 1987, 262:16072-16079
    79.Kolble K. Regional mapping of short tandem repeats on human chromosome 10: cytochrome P450 gene CYP2E, D10S196, D10S220, and D10S225. Genomics, 1993, 18:702-704
    80.Botto F, Seree E, el Khyari S, et al. Tissue-specific expression and methylation of the human CYP2E1 gene. Biochemical Pharmacology, 1994, 48(6): 1059-1103
    81.Kato R. Molecular pharmacological and toxicological studies of drug- metabolizing enzymes. Yakugaku Zasshi. 1995,115(9): 661-80.
    82.李衍达.孙之荣等译.生物信息学--基因和蛋白质分析的实用指南.北京:清华大学出版社,2000.
    83.中山医学院卫生统计学教研组等.鼻咽癌的移民流行病学调查.中华医学杂志,1978,3:167
    84.Levine PH, Connelly RR, Easton JM. Demographic patterns for nasopharyngeal carcinoma in the United States. Int J Cancer. 1980, 26(6): 741-748
    85.姚开泰.从死因回顾调查资料看湖南省鼻咽癌流行病学的一些特点并探讨其发病机理.湖南医
    
    学院学报.1982,7(1):10-16
    86. Tan C, Peng C, Huang YC, et al. Effects of NPC-associated gene NAG7 on cell cycle and apoptosis in nasopharyngeal carcinoma cells. Ai Zheng. 2002, 21(5): 449-455
    87.阳剑波,宾亮华,李忠花等.精细定位和克隆9p21-22区域内鼻咽癌侯选抑瘤基因.癌症,2002,15(5):267-270
    88.湛凤凰,江宁,曹利等.cDNA代表性差异分析法分离鼻咽癌上皮细胞株HNE_1表达差异cDNA序列的初步研究.中华医学遗传学杂志,1998,15:341-344
    89.何志巍,任彩萍,许亮国等.用微阵列研究鼻咽癌与正常鼻咽组织基因表达谱.科学通报.1999,44(23):2528-2531
    90.王亚馥,戴灼华主编.遗传学.第一版.北京:高等教育出版社.2001
    91.Cairns P, Polascik TJ, Eby, et al. Frequency of homozygous deletion at P16/CDKN2 in primary human turnouts. Nature Genet, 1995, 11:210-215
    92.Weston WM, LeClair EE, Trzyna W, et al. Differential display identification of plunc, a novel gene expressed in embryonic palate, nasal epithelium, and adult lung. J Biol Chem, 1999, 274:13698-13703
    93.LeClair EE, Nguyen L, Bingle A, et al. Genomic Organization of the Mouse plunc Gene and Expression in the Developing Airways and Thymus. Biochem and Biophys Res, 2001, 284:792-797
    94.Lindahl M, Stahlbom B, Tagesson C. Identification of a new poteneial irritation marker, palate lung nasal epithelial clone protein, in human nasal lavage fluid with two-simensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight. Electrophresis, 2001, 22:1795-1800
    95.Sung YK, Moon C, Yoo JY, et al. plunc, a member of the Secretory Gland Protein Family, Is Up-regulated in Nasal Respiratory Epithelium after Olfactory Bulbectomy, J Biol Chem, 2002, 277(15): 12762-12769
    96.Humphrey MB, Herrera-Sosa H, Gonzalez G, et al. Cloning of cDNA encoding human caldesmons. Gene, 1992, 112(2): 197-204
    97.Watanabe K, Tajino T, Sekiguchi M, et al. h-Caldesmon as a specific marker for smooth muscle tumors. Comparison with other smooth muscle markers in bone tumors. Am J Surg Pathol. 2001,25(4): 455-63.
    98.张小慧,钱骏,王洁如等.染色体7q32-ter最小共同缺失区鼻咽癌抑瘤基因候选者的筛查.癌症.2000.19:961-965
    99.田芳,陈主初,段朝军等.染色体3p14.2-14.3区域一个与鼻咽癌相关新基因的克,癌症.2000.19:955-960
    100.Lux A, Bardenheuer W, Michael D, et al. Identification of novel "expressed sequence tags" within the FHIT gene licus in human chromosome region 3p14.2. Hum Genet, 1997,100:90-95
    101.Shao X, He Z, Chert Z, Yao K: Expression of an Epstein-Barr-virus receptor and Epstein-Barr-virus-dependent transformation of human nasopharyngeal epithelial cells. Int J Cancer 1997, 71:750-755.)
    102.Chang Y, Tung CH, Huang YT, et al. Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 1999, 73:8857-8866.
    103.Fingeroth JD, Weis JJ, Tedder TF, et al. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Nail Acad Sci USA, 1984, 81(14): 4510-4514
    104.Frade R, Barel M, Ehlin-Henriksson B, et al. gpl40, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor. Proc Natl Acad Sci USA, 1985, 82 (5): 1490-3.
    105.Rodriguez de Cordoba S, Lublin, DM, Rubinstein, P, et al. Human genes for three complement
    
    components that regulate the activation of C3 are tightly linked. J Exp Med, 1985, 61: 1189-1195
    106. odriguez de Cordoba S, Rubinstein P. Quantitative variations of the C3b/C4b receptor (CR1) in human erythrocyte are controlled by genes within the regulator of complement activation (RCA) gene cluster. J Exp Med, 1986, 164: 1274-1283
    107. Szakonyi Q Guthridge JM, Li D, et al. Structure of complement receptor 2 in complex with its C3d ligand. Science, 2001, 292: 1725-1728
    108. Birkeabach M, et al. Characterization of an Epstein-Barr virus receptor of human epithelial cells. J Exp Med, 1992, 176: 1405-1414
    109. Li QX, Young LS, Niedobitek C, et al. Epstein-Barr virus infeetion and replication in a human epithelial cell system. Nature, 1992, 26; 356 (6367) : 347-350
    110. Menet A, Speth C, Larcher C, et al. Epstein-barr virus infeetion of human astrocyte cell lines. J Virol, 1999,73(9) : 7722-7733
    111. Tajima M, Komuro Okinaga K. Establishment of Epstein-Barr virus-positive human gastric epithelial cell Unes. Jpn J Cancer Res. 1998, 89(3) : 262-268.
    112. Yoshiyama H, Imai S, Shimizu N, et al. Epstein-Barr virus infeetion of human gastric carcinoma cells: implication of the existence of a new virus receptor different from CD21. J Virol, 1997, 71(7) : 5688-5691
    113. Ames BN, Gold LS. Chemical carcinogenesis: too many rodent carcinogens. Proc Nalt Acad Sci USA, 1990, 87: 7772
    114. Przygodzkoi RM, Bennett WP, Guinee DG Jr, et al. P53 mutation spectrum in relation to GSTM1, CYP1A1 and CYP2E1 in surgically treated patients with non-small cell lung cancer. J Pharmacogenetics, 1998,8(6) : 503-511
    115. Kraijinovic M, Labuda D, Richer C, et al. Susceptibility to childhood acute lympho-blaseic leukemia: influence of CYP1A1, CYP2D6, GSTm1, and Gstt1 genetic polymorphisms. J Blood, 1999, 93(5) : 1495-1501
    116. Lewis DF, Loannides C, Parke DV. Cytochrome p450 anf species differences in xenobiotic metabolism and activatvation of carcinogen. J Environ Health Perspect, 1998, 106 (10) : 633-641
    117. Ingelman-Sundberg M, Johansson I, Persson I et al. Genetic polymorphism of cytochrome P450: interethnic differences and relationship to incidence of lung cancer. Pharmacogenetics, 1992, 2:264-271
    118. 周宏灏主编.遗传药理学.第一版.北京:科学出版社
    119. Nouso K, et al. Stable expression of human cytochrome P450 H E1 in mammalian cells: metabolic activation of nitrosodimethylamine and formation of adducts with celluar DNA. Cancer Res, 1992; 52: 1796-1800
    120. Umeno M, McBride OW, Yang CS, et al. Human ethanol-inducible P450ⅡE1: complete gene sequence, promoter characterization, chromosome mapping, and cDNA-directed expression. Biochemistry, 1988, 27: 9006-9013
    121. Sarmanova J, Benesova K, Gut I, et al. Genetic polymorphisms of biotransformation enzymes in patients with Hodgkin's and non-Hodgkin's lymphomas. Hum Molec Genet, 2001, 10: 1265-1273
    122. Hildesheim A, Levine PH. Etiology of nasopharyngeal carcinoma: a review. Epidemiol Rev. 1993, 15(2) : 466-485
    123. Le Marchand L, Wilkinson GR, Wilkens LR. Genetic and dietary predictoes of CYP2E1 activity: a phenotyping study in Hawaii Japancese using chlorzpxazone. Cancer Epidemiol Biomarkers Prev, 1999, 8:495-500
    124. London SJ, Daly AK, Cooper J, et al. Lung cancer risk in relation to the CYP2E1 Rsa 1 genetic
    
    polymorphism among African American and Caucasian in Los Angeles County. Pharmacogenetics, 1996,6:151-158
    125. Sun F, Tsuritani I, Honda R, et al. Association of genetic polymorphisms of alcohol-metabolizing enzymes with excessive alcohol consumption in Japanese men. Hum Genet, 1999,105: 295-300
    126. anaka F, Shiratori Y, Yokosuka O, et al. Polymorphism of alcohol-metabolizing genes affects drinking behavior and alcoholic liver disease in Japanese men. Alcohol Clin Exp Res, 1997, 21: 596-601
    127. Watanabe J, Hayashi SI, Nakachi, K, et al. Pstl and Rsal RFLPs in complete linkage disequilibrium at the CYP2E gene. Nucleic Acids Res, 1991, 18: 7194
    128. Mannervik B, Awasthi YC, Board PG, et al. Nonmenclature for human glutathione transferases.J.Biochem J, 1992, 282: 305-306
    129. Armstrong RN.Structure, catalytic mechanism, and evolution of the glutathiond transferases. J Chem Res Toricol, 1997, 10:2-18
    130. Pickett CB, Leu AYH. Glutathione-S-transferases, gene structure regulaion, and biological function. J Ann Rev Biochem, 1989,58:743-764
    131. Board P, Coggan M, Johnston P, et al. Genetic heterogeneity of the human glutathione transferases: a complex of gene families. Pharm Therap, 1990,48: 357-369
    132. Lin HJ, Han CY, Bernstein DA, et al. Ethnic distribution of the glutathione transferase Mu 1-1 (GSTM1) null genotype in 1473 individuals and application to bladder cancer susceptibility. Carcinogenesis, 1994, 15: 1077-81.
    133. Zhao B, Lee EJD, Wong JYY, et al. Frequency of mutant CYP1A1, NAT2 and GSTM1 alleles in normal Indians and Malays. Pharmacogenetics, 1995, 5: 275-80.
    134. Godschalk RWL, Dallinga JW, Wikman H, et al. Modulation of DNA and protein adducts in smokers by genetic polymorphisms in GSTM1, GSTT1, NAT1 and NAT2. Pharmacogenetics, 2001, 11: 389-398
    135. Katoh T, Nagata N, Kuroda Y, et al. Glutathione S-transferase Ml (GSTM1) and T1 (GSTT1) genetic polymorphism and susceptibility to gastric and colorectal adenocarcinoma. Carcinogenesis, 1996, 17:1855-1859
    136. Deakin M, Elder J, Hendrickse C, et al. Glutathione S-transferase GSTT1 genotypes and susceptibility to cancer: studies of interactions with GSTM1 in lung, oral, gastric and colorectal cancers. Carcinogenesis, 1996,17: 881-884
    137. Gertig DM, Stampfer M, Haiman CH, et al. Glutathione S-Transferase GSTM1 and GSTT1 polymorphisms and colorectal cancer risk: a prospective study. Cancer Epidemiology, Biomarkers and Prevendon, 1998, 7: 1001-5005
    138. Slattery ML, Potter JD, Samowitz W, et al. NAT2, GSTM-1, cigarette smoking, and risk of colon cancer. Cancer Epidemiology, Biomarkers & Prevention, 1998, 7: 1079-1084
    139. McLellan RA, Oscarson M, Alexandrie AK, et al. Characterization of a human glutathione S-transferase mu cluster containing a duplicated GSTM1 gene that causes ultrarapid enzyrne activity. Molec Pharm, 1997, 52: 958-965
    140. Carless MA, Lea RA, Curran JE, et al. The GSTM1 null genotype confers an increased risk for solar keratosis development in an Australian Caucasian population. J Invest Derm, 2002,119: 1373-1378
    141. Lee KA, Kim SH, Woo HY, et al. Increased frequencies of glutathione S-transferase (GSTM1 and GSTT1) gene deletions in Korean pacients with acquired aplastic anemia. Blood, 2001,98: 3483-3485
    142. Zhong S, Wyllie AH, Barnes D, et al. Relationship between the GSTM1 genetic polymorphism and
    
    susceptibility to bladder, breast and colon cancer. Carcinogenesis, 1993,14: 1821-1824
    143. Seidegard J, Pero RW, Markowitz MM, et al. Isoenzyme(s) of glutathione transferase (class mu) as a marker for the susceptibility to lung cancer: a follow up study. Carcinogenesis, 1990,11: 33-36
    144. Bailey LR, Roodi N, Verrier CS, et al. Breast cancer and CYPIA1, GSTM1, and GSTT1 polymorphisms: Evidence of a lack of association in caucasians and African Americans. Cancer Research, 1998, 58: 65-70
    145. Trizna Z, Clayman GL, Spitz MR, et al. Glutathione S-transferase genotypes as risk factors for head and neck cancer. Am J Surg, 1995,170:499-501
    146. Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genet, 2003, 33: 177-182
    147. Coutelle C, Ward PJ, Fleury B, et al. Laryngeal and oropharyngeal cancer, and alcohol dehydrogenase 3 and glutathione S-transferase Ml polymorphisnis. Human Genetics, 1997, 99: 319-325
    148. van Poppel G, de Vogel N, van Bladeren PJ, et al. Increased cytogenetic damage in smokers deficient in glutathione S-transferase isozyme mu. Carcinogenesis, 1992, 13: 303-305
    149. Ourenkova N, Reinikanen M, Bouchardy C, et al. Effects of glutathione S-transferases GSTM1 and GSTT1 genotypes on lung cancer risk in smokers. Pharmacogenetics, 1997,7: 515-518
    150. Koonin EV, Abagyan RA.TSG101 may be the prototype of a class of dominant negative ubiquitin regulators. (Letter) Nature Genet, 1997, 16: 330-331
    151. Watanabe M, Yanagi Y, et al. A putative tumor suppressor, TSG101, acts as a transcriptional suppressor through its coiled-coil domain. Biochem Biophys Res Commun, 1998,245 (3) : 900-905
    152. Oh H, Mammucari C, Nenci A, et al. Negative regulation of cell growth and differentiation by TSG101 through association with p21Cip1/WAF1. Proc Natl Acad Sci USA, 2002,99(8) : 5430-5
    153. Matthews CP, Shera K, Kiviat N, et al. Expression of truncated FHTT transcripts in cervical cancers and in normai human cells. Oncogene, 2001, 20(34) : 4665-75
    154. Gamis JE, von Schwedler UK, Pomillos OW, et al. Tsg101 and vacuolar protein sorting pathway are essential for HTV-1 budding. Cell, 2001, 107: 55-65
    155. Oh Y, Proctor ML, Fan YH, et al. TSG101 is not mutated in lung cancer but a shortened transcript is frequently expressed in small cell lung cancer. Oncogene, 1998, 7(9) : 1141-8
    156. Steiner P, Barnes DM, Harris WH, et al. Absence of rearrangements in the tumour susceptibility gene TSG101 in human breast cancer. (Letter) Nature Genet, 1997, 16: 332-333
    157. Haber D, Harlow E. Tumour-suppressor genes: evolving definitions in the genomic age. Nature Genet. 1997, 16: 320-322
    158. Collins FS, Partinos A, Jordan E, et al. New goals for the US. Human Genome Project:1998-2003. Science,1998,282 : 682-689
    159. Chee M, Yang R, Hubbell E et al. Accessing Genetic Information with high-Density DNA Areeays. Science, 1996, 274 (5287) : 610-614
    160. Eliot Marshall. The Huntingof the SNP. Science, 2001, 278:2047
    161. Gura T. Can SNPs Deliveron Susceptibility Genes? Science, 2001, 293: 593-595.
    162. Bougneres P. Genetics of Obesity and Type 2 Diabetes: Tracking Pathogenic Traits During the Predisease Period. Diabetes, 2002, 51: S295-303
    163. Kruglya KL. The use of a genetic map of biallelic markers in linkage studies. Nature Genetics, 1997, 17(1) : 21-24
    164. Lander, ES, Schork NJ. Genetic Dissection of complex traits. Science, 1994, 265: 2037-2047
    165. Strimatter Wj, Saunders AM, Schmechel D et al. Apolipoprotein-e highavidity binding to
    
    beta-amyloid and increased frequency of type-4 allele in late-onset familial Alzheimer-disease.Proc.Natl.Acad.Sci. USA, 1993,90:1977-1981.
    166.张思仲.基因多态性研究与遗传性疾病.中华医学杂志,2000,80(9):654-656
    167.苏智广,张思仲,候一平等.冠状动脉粥样硬化性心脏病患者脂蛋白脂酶基因的单核苷酸多态性的初步研究.中华医学遗传学杂志,2000,17(3):175—160
    168. Gather K. More SNPs on the way. Science, 1998, 281:178
    169. Martin ER, Lai EH, Gilbert JR, et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet, 2000, 67(2): 383-394
    170. Zhao LP, Aragaki C,Hsu Let al.Mapping of complex traits by single- nucleotide- polymorphisms. Am J Hum.Genet, 1998, 63:225-240
    171.王亚馥.戴灼华主编.遗传学.第1版.北京:高等教育出版社.1999
    172. Gelehrter TD, Collins FS, Ginsburg D. Principles of Medical Genetics. Second Edition. USA: Williams& Wilkins. 1998
    173. Pritchard JK, Przeworski M. Linkage diseqilibrium in humans: Models and data. Amer J Hum Genet, 2001,69:1-14
    174. Guo SW. Linkage disequilibrium measure for fine-scale mapping: A comparison. Hum Hered,1997, 47:301-314
    175. Cardon LR, Bell JL. Association study designs for complex diseases. Nature Rev Genet, 2001,2: 91-99
    176. Jorde LB. Disequilibrium and the Search for Complex Disease Genes. Genome Research, 2000, 10:1435-1444
    177. Ajioka RS, Jorde LB, Gruen JR, et al. Haplotype analysis of hemochromatosis: Evolution of different linkage disequilibrium approaches and evolution of disease chromosomes. Am J Hum Genet, 1997, 60:1439-1447
    178. Nordborg M, Tavare S. Linkage disequilibrium: what history has to tell us. Trends Genet. 2002,18(2): 83-90.
    179. Bengtsson BO, Thomson G. Measuring the strength of associations between HLA antigens and diseases. Tissue Antigens, 1981,18:356-363
    180. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequlibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet, 1993, 52:506-516
    181. Shaid DJ. Transmission desequilibrinm, family controls, and great expectations. Am J Hum Genet, 1998, 63:935-941
    182. Kaplan NL, Matein ER, Morris RW, et al. Maker selection for the transmission/disequilibrium test, in recently admixed populations. Am J Hum Genet, 1998, 62:703-712
    183. Tajima E Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989, 123 (3): 585-95.
    184. Tateno Y, Tajima E Statistical properties of molecular tree construction methods under the neutral mutation model. J Mol Evol. 1986, 23 (4): 354-61.
    185. Lander ES. The new genomics: global views of biology. SCience, 1996, 274(5287): 536-539
    186. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science, 1997, 278(5338): 631-637.
    187. Bogusld M. Functional genomics: it's all how you read it. Science, 1997, 278(5338): 601-602
    188. Henikoff S, Greene EA, Pietrokovski S, et al. Gene families: the taxonomy of protein paralogs and chimeras. Science, 1997, 278 (5338): 602-605
    
    
    189. 李璞主编.医学遗传学.北京:北京医科大学中国协和医科大学联合出版社,1999,81~101.
    190. Trisha Gura. Can SNPs Deliver on Susceptibility Genes? Science, 2001, 293: 593-595.
    191. Cariello NF, Douglas GR, Dycaico MJ, et al. Databases and software for the analysis of mutations in the human P53 gene, the human hprt gene and both the lacl and lacZ gene in transgenic rodents. Nucleic Acids Res, 1997, 25(1) : 136-137
    192. Beroud C, Soussi T.P53 and APC gene mutations: software and database. Nucleic Acids Res.1997, 25(1) : 138.
    193. Chen X, Livak KL, Kwok PY. A homogeneous, ligase-mediated DNA diagnostic test. Genome Res, 1998, 8: 549-556
    194. 192. Pennisi E.Acloserlook at SNPs suggests difficulties. Science, 1998,281: 1787-1789.
    195. 193. Botstein D, White RL, Skolnick M et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am J Hum Genet. 1980,32(3) : 314-31 .Review.
    196. Ye S, Dhillon S, Ke X, et al. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Research, 2001,29 (17) : e88
    197. Diffenbach CW, Dveksler GS. PCR Primer. A Laboratory Manual.Cold Spring Harbor Laboratory Press. 1995
    198. Seidegard J, Pero RW, Miller DG, et al. A glutathione transferase in human leukocytes as a marker for the susceptibility to lung cancer. Carcinogenesis, 1986,7:751-753
    199. Kihara M, Noda K, Okamoto N. Increased risk of lung cancer in Japanese smokers with class mu glutathione S-transferase gene deficiency. Cancer Letters, 1993, 71:151-155.
    200. Kihara M, Kihara M, Noda K. Lung cancer risk of GSTM1 null genotype is dependent on the extent of tobacco smoke exposure. Carcinogenesis, 1994,15:415-418
    201. Jahnke V, Matthias C, Fryer A, et al. Glutathione S-transferase and cytochrome P450 polymorphism as risk factors for squamous cell carcinoma of the larynx. American Journal of Surgery, 1996, 172:671-3
    202. Nazar-Stewart V, Vaughan TL, Burt RD, et al. Glutathione S-Transferase M1 and Susceptibility to Nasopharyngeal Carcinoma. Cancer Epidemiology, Biomarkers & Prevention, 1999, 8:547-551
    203. Gibson AW, Edberg JC, Wu J, et al. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol, 2001, 166(6) : 3915-22.
    204. 202. Saito T, Guan F, Papolos DF et al. Polymorphism in SNAP29 gene promoter regiem associated with schizophrenia. Mol Psychiatry, 2001, 6(2) : 193-201
    205. Jiang Z, Akey JM, Shi J et al. A polymorphism in the promoter region of catalase is associated with blood pressure levels. Hum Genet, 2001, 109(1) : 95-8
    206. Verhage BA, van Houwelingen K, Ruijter TE, et al. Single-nucleotide polymorphism in the E-cadherin gene promoter modifies the risk of prostate cancer.Int J Cancer, 2002, 100(6) : 683-5
    207. 熊炜,曾朝阳,李小玲等.NGX6基因单核苷酸多态及与鼻咽癌的相关性.生物化学与生物 物理学报,2002,34(4) :512-515
    208. Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1. 42 million single nucleotide polymorphisms. Nature, 2001,409:928-933
    209. .Nakajima T, Jorde LB, Ishigami T, et al. Nucleotide Diversity and Haplotype Structure of the Human Angiotensinogen Gene in Two Populations. Am J Hum Genet, 2002,70:10-123
    210. Trikka D, Fang Z, Renwick A, et al. Complex SNP-Based Haplotypes in Three Human Helicases: Implications for Cancer Association Studies. Genome Research, 2002,12:627-639
    
    
    211.Laura Helmuth. Map of the Human Genome 3.0.Science, 2001, 293:583-585
    212.Haplotypic analysis of the TNF locus by association efficiency and entropy. Genome Biology, 2003, 4:R24.1-R24.13
    213.Daly M, Rioux ID, Schaffiner SF, et al. High-resolution haplotype structure in the human genome. Nature genetics, 2001,29:229-232
    214.贺智敏,袁建辉,王水良等.细胞色素P4502E1基因与鼻咽癌易感性分析.癌症,199,18(5):517-519
    215.Kongruttanachokl N, Sukdikul S, Setavarin S, et al. Cytochrome P450 2E1 polymorphism and nasopharyngeal carcinoma development in Thailand: a correlative study. BMC Cancer 2001, 1:4
    216.Hildesheim A, Chen CJ, Caporaso NE, et al. Cytochrome P4502E1 genetic polymorphisms and risk of nasopharyngeal carcinoma: results from a case-control study conducted in Taiwan. Cancer Epidemiol Biomarkers Prey 1995, 4(6): 607-610
    217.Hildesheim A, Anderson LM, Chen CJ, et al. CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 1997, 89:1207-1212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700