煤制气酚氰废水萃取—高级氧化—生化处理工艺与工程化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤制气废水的成分复杂,含有挥发酚、氰化物等有毒物质,其主要危害在于其毒理性。该类废水中COD浓度一般在10000~20000mg/L左右,挥发酚在2000-5000mg/L左右,氨氮在500~800mg/L左右,氰化物在100~200mg/L左右。目前,国内大多数煤制气废水处理系统都是采用一级处理或二级处理工艺,工业应用上仍然难以做到达标排放。本课题在对煤制气废水成分研究的基础上,针对其主要成分,先在实验室从溶剂萃取法、Fenton氧化法、高效菌的筛选及培养、厌氧氨氧化法四个方面进行了研究,通过实验检测每种方法的不同工艺阶段的出水水质指标,探讨工艺的主要运行参数,为工业化应用提供理论依据,然后将实验室的研究成果用于工业化实践,耦合串联溶剂萃取法、Fenton氧化法、生化处理法三种技术,在衡阳某陶瓷厂对其煤制气废水进行实际性处理。研究表明:
     1、采用N503(或P507)作为萃取剂,NaOH作为反萃剂,最佳萃取工艺条件为:萃取pH为3,萃取温度为30℃,萃取时间为10min,萃取剂浓度为70%(有机相中比例),萃取体系相比为3:1。经萃取反应后,废水中的COD、酚、NH3-N等有害物质均有所去除,但萃取对煤制气废水中的氰去除效果不明显。其中COD由14000mg/L下降至700mg/L,挥发酚由3100mg/L下降至31mg/L, NH3-N由650mg/L下降至540mg/L;最佳反萃取工艺条件为:Na0H浓度为15%-20%,油水比为3时,两萃取剂的再生性能最好,N503、P507对COD去除率分别达到94.86%和94.85%,对酚的去除率分别达到99.2%与99.0%。萃取剂经循环使用100次后,萃取效果较稳定。萃取反应为后续的二级处理提供了有利的条件。
     2、萃取反应过后的废水仍难以达标排放,部分有毒、有害物质,尤其是氰化物未被去除,因此采用Fenton法进行二级处理,为后续生化处理提供条件。综合正交试验和单因素试验得出Fenton反应最佳条件:pH值为3,H2O2浓度为1000mg/L, FeSO4浓度为100mg/L,反应时间10min。废水出水pH值为3、COD为210mg/L,氨氮含量为513mg/L,挥发酚、氰化物均未能检出。
     3、经Fenton反应二级处理后,氨氮浓度仍然偏高,因此在实验室研究了采用厌氧氨氧化工艺对废水进行三级处理。采用城市污水处理厂活性污泥作为启动UASB厌氧氨氧化反应器的接种污泥,采用自配高氮模拟废水,经过145d培养后,成功培养出厌氧氨氧化菌。然后将实际废水导入反应器中,经过40d的调试运行。实验结果表明:出水COD由210mg/L降为40mg/L左右,NH4+-N由513mg/L降低到300mg/L左右。厌氧氨氧化反应最佳工艺条件为:温度30℃、pH值7.8、HRT为24h。
     4、论文研究了含酚废水高效降解菌的筛选,以便于指导工业上生化处理。从湖南某陶瓷厂的煤制气废水排放中的好氧池采集废水作为样本。通过富集、分离、纯化、筛选得20多株高效降酚微生物菌株,有5株菌株的最高耐受浓度可达2500mg/L。对其中一株最高耐受度达3000mg/L的菌种(SP1)进行了深入研究,研究结果表明:当苯酚浓度为2500 mg/L时,该菌株在60 h降解率达95.9%以上,最适生长条件为25℃、pH6.5、葡萄糖500 mg/L。进过16S rDNA鉴定,结果表明:SP1菌种属于Klebsiella sp.(克雷伯氏菌属),与已知降酚菌Klebsiella oxytoca strain(产酸克雷伯氏菌)的相似性仅87%,是一株新发现的高效降酚微生物菌株。
     5、将萃取法、高级氧化物、高效降酚菌的利用、生化处理四种方面的实验成果,实际应用于某陶瓷厂的煤制气废水的处理。对工艺流程进行了设计,并通过调试运行,确定了适宜的工艺流程和工艺参数,取得了很好的处理效果,实现了煤制气废水的达标排放或循环使用。
The coal gasification wastewater with complicated composition includes toxic materials such as volatile phenol and cyanide. The toxicological effects are the main damage. The concentrations of COD, volatile phenol, ammonia nitrogen and cyanide in coal gasification wastewater are 12000~20000mg/L,2300~5000mg/L,500~800mg/Land 100~200mg/L respectively. At present the main treatment technology of coal gasification wastewater are primary and secondary treatment processes in China, while the quality of effluent cannot meet the discharge standard. Based on the components analysis in the coal gasification wastewater, solvent extraction technology, Fenton oxidization technology, screening and culture of high efficient bacteria and anaerobic ammonia oxidation technology have been all studied. The operation parameters and efficiency of the technologies were detected respectively by experiments, providing theoretical basis for the industrial application of coal gasification wastewater treatment. Besides, the results of experiments were applied to site operation in ceramics factory in Hengyang. The results showed that:
     1. The extraction conditions are:pH 3.0, temperature 30℃, extraction time 10min, extractant concentration 70%, extraction system phase ratio 3:1. The influent concentrations of COD, volatile phenol and ammonia nitrogen are 14000mg/L,3100mg/L and 650mg/L During extraction, the effluent concentrations of COD, volatile phenol and ammonia nitrogen decreased to 700mg/L,31mg/L and 540mg/L respectively, while the removal of cyanide was low. The extractant can be recycling used for 100 times at least.
     2. Secondary Fenton process can remove toxic materials in the extraction effluent, which is good for follow-up biochemical process. The optimal conditions have been obtained by orthogonal test and single factor test:pH 3.0, 1000mg/L of H2O2, 100mg/L of FeSO4, duration of experiment 10min. The pH of effluent is 3. The concentrations of COD, ammonia nitrogen are 210mg/L and 513mg/L. volatile phenol and cyanide cannot be detected in the effluent.
     3. The follow-up process of Fenton oxidation is anaerobic ammonia oxidation. The inoculants of is the. The experiment cultivated anaerobic ammonia bacteria in the UASB reactor for 145 hours, which is inoculated activate sludge from urban sewage treatment plant. After 40 days'operation, the concentration of COD and NH4+-N in effluent decreased to 40mg/L and 300mg/L respectively. The reaction conditions are:temperature 30℃, pH 7.8, HRT 24h.
     4.20 phenol degrading germs has been bred from sewage of aerobic facility of ceramics factory using the method of enrichment, separation, purification and screening. Maximum tolerable concentration of 5 germs can reach 2500 mg/L. one of the germ (SP1) whose maximum tolerable concentration reached 3000 mg/L was studied. The result showed that the degradation rate can reach 95.9% after 60h as the concentration of phenol was 2500mg/L and the most suitable conditions were 25℃, pH6.5, and 500 mg/L of glucose. DNA identification result turned out that SP1, whose similarity to known phenol degrading germs Klebsiella oxytoca strain is only 87%, belongs to Klebsiella sp and is a newly discovered kind. Double-chamber microbial fuel cell was constructed with the SP1 as catalyst. The effect of phenol degrading and productivity was studied with the high-phenol containing wastewater as fuel. The results showed that:After the microbial fuel cell running 100h, the removal rate of phenol and COD reached up to 85.5% and 90.4%, and the maximum output voltage is 121mV.
     5.The experiment results of extraction, Fenton oxidization, utilization of phenol degrading germs and biochemical treatment were applied to the site operation in a ceramics factory, choosing suitable process and parameters, have obtained good results and realized recycling and discharging up to standard.
引文
[1]冯立波.煤气化废水萃取脱酚及其深度处理.2006,大连理工大学硕士学位论文.
    [2]刘相伟.工业含酚废水处理技术的现状和发展[J].工业水处理,1988,18(2):4-7.
    [3]史晓燕,肖波,杨家宽等.焦化废水处理技术的发展[J].环境技术,2003,6:44-48.
    [4]周群英.含酚废水高温生物处理效果的研究[J].城市环境与城市生态,1998,11(2):47-49.[7] Wang C X, Tambo N, Matsui Y. Kinetic study of fluidized pellet bed processes[J], Water SRT-Aqua,1993,42(3):68-69.
    [5]周红星.焦化废水联合处理方法的试验研究.2009,北京工业大学硕士学位论文.
    [6]Tambo N, Wang X C. The mechanism of pellet flocculation in a fluidized-bed operation[J], Water SRT-Aqua,1993,42(1):57-58.
    [7]王雷.HTS反应器在焦化废水处理中的应用研究.2005,北京工业大学硕士学位论文.
    [8]钟宏,曾荣兴,田君一.高炉煤气洗涤水的絮凝沉降处理[J].矿冶工程.1995,12(4):24-26.
    [9]杨义燕,李芮丽,党广悦等.络合萃取法处理工业含酚废水[J].环境科学,1994,16(2):35-36.
    [10]朱凌峰,罗琳,蒋宏国等.Fenton试剂处理稻壳热解发电含酚废水的实验研究[J].北方环境,22(2):95-96.
    [11]林琳,堵国成,陈坚厌.厌氧氨氧化生物脱氮技术的研究进展[J].工业微生物,2003,33(2):51-55.
    [12]WHO Environmental health criteria,93:Chlorophenols other than pentachlorophenols. World Health Organization, Geneva.(1989)
    [13]余水静,李杰庆,宋秋华等(2005)两株苯酚降解菌的分离及降解特性的初步研究.生物技术,15(3):62-64.
    [14]LoT. C. et al. Handbook of Solvent Extraction [M]. New York:Wiley Inter science,1983.
    [15]戴猷元,徐丽莲,杨义燕.基于可逆络合反应的萃取分离方法[J].化工进展,1991,10(1):30-34.
    [16]戴猷元,孙魏,蔡薇等.络合萃取法处理含酚废水技术经济分析[J].环境科学,1998,19(5):6-9.
    [17]苏海佳,徐丽莲,戴猷元.有机胺类稀溶液的络合萃取[J].化工学报,1997,48(6):713-720.
    [18]庞世平.N-503萃取焦化废水的研究[J].山西化工,2003,23(1):9-12.
    [19]戴酞元,杨义燕,杨天雪.络合萃取法处理含酚废水技术[J].化工进展,1991,1(6):44-45.
    [20]江燕斌,钱宇,黄理纳等.炼油碱渣废水处理—萃取脱酚实验研究[J].化学工程,2000,28(5):39-41.
    [21]Li Z, WuMH, Jiao Z etal. Extraction of phenol from wastewater by N-octanoylpyrrolidine[J]. Journal of Hazardous Materials,2004,114:111-114.
    [22]殷中意,郑旭煦,向夕品等.固定相络合萃取剂处理水中苯酚的性能研究[J].重庆环境科学,2002,24(5):45-47.
    [23]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社.2003:274-284.
    [24]相欣奕,郑怀礼.Fenton反应处理染料废水研究进展[J].重庆建筑大学学报,2004.26(4):126-130.
    [25]Zepp RG, FaustBC and HoigneJ. Hydroxyl radical formation inaqueous reaction pH=3-8 of iron with hydrogen per-oxidation:The photo-Fenton reaction. Environmental Science andTechnology.1992,26(2):313-320.
    [26]许景文.过氧化氢—铁盐化学氧化法用于有机废水深度处理[J].环境污染与防治,1985,7(5):1-6.
    [27]Xu Xiangrong, Li Huabin, Wang Wenhua, etal. Degradation of dyessolutions by the Fenton process[J]. Chemosphere.2004,57(7):595-600.
    [28]王罗春,闻人勤.Fentons试剂在处理难降解有机废水及其应用[J].环境保护科学.2001,27(5):11-14.
    [29]徐勇弟,徐寿昌.几种类Fenton试剂的氧化特性及在工业废水处理中的应用[J].上海环境科学,1994,13(3):26-28.
    [30]钟理,陈建军.高级氧化处理有机污水技术进展[J].工业水处理.2002,22(1):1-5.
    [31]张国卿,王罗春,徐高田,等.Fenton试剂在处理难降解有机废水中的应用[J],工业安全与环保.2004,30(3):17-20.
    [32]Sheng H Lin, Cho C Lo. Fenton process for treatment of desizing wastewater[J]. Water Research.2004.31(8):2050-2056.
    [33]许景文.过氧化氢—铁盐化学氧化法用于有机废水深度处理[J].环境污染与防治,1985,7(5):1-6.
    [34]魏风玉,彭书传,邓传芸等.Fe2+-H2O2氧化法处理氨基酸工业废水[J].环境污染与防治,1998,20(4):20-22.
    [35]徐向荣,王文华等.Fenton试剂与染料溶液的反应[J].环境科学,1999,20(3):72-74.
    [36]郑俊,王晓焱.酸性凝聚—过氧化氢氧化法处理染色废水[J].环境工程,1990,7(5):1-3.
    [37]彭贤玉.Fenton-混凝沉淀法处理焦化废水的试验研究.2006,湖南大学硕士学位论文.
    [38]祝万鹏,杨志华等.Fe2+-H2O2法处理DSD酸13生产氧化母液的研究[J].环境科学,1995,16(1):19-22.
    [39]彭贤玉.Fenton-混凝沉淀法处理焦化废水的试验研究.2006,湖南大学硕士学位论文.
    [40]于庆满.混凝-Fenton试剂氧化深度处理焦化废水的研究.2006,武汉科技大学硕士学位论文.
    [41]吴红伟,等.氧化塘深度处理焦化废水的初步研究[J].环境污染与防治,1998,20(2):56-57.
    [42]杨晓奕,等.湿式氧化法处理剩余污泥的研究[J].给水排水,2003,29(7):23-24.
    [43]常蕴玉,吴真洁,李光明等.CL02氧化,混凝沉降法处理煤气洗涤水的研究[J].环境保护科学,2004,30:19-20.
    [44]殷光瑾,等.利用烟道气处理焦化剩余氨和全部焦化废水[J].冶金环境保护,1999,(4):35-37.
    [45]王玉桃,高滨.焦化废水和高炉煤气洗涤水的治理与应用[J].工业水处理,2002,22(9):48-49.
    [46]国家环境保护总局.水和废水监测分析方法(第四版).,2002北京:中国环境科学出版社.
    [47]刘旭光,邵世光(2009)一株苯酚高效降解菌2N-17的分离鉴定及其降解特性.湖北农业科学,48(4):830-833.
    [48]赵淑云.焦化酚氰污水的生化处理[J].冶金环境保护,1999,(4):23-28.
    [49]张晓健,等.焦化废水中几种难降解有机物的厌氧生物降解特性[J].环境工程,1996,12(1):41-42.
    [50]R·E斯皮思.工业废水的厌氧生物技术[M].李亚新译,北京:中国建筑工业出版社,2001,7(6):78-79.
    [51]王璟,等.应用生物强化技术处理焦化废水难降解有机物[J].城市环境与城市生态,2000,13(6):35-37.
    [52]沈耀良,王宝贞.废水生物处理新技术(理论与应用)[M].北京:中国环境科学出版社,1999,21(6):37-38.
    [53]Van de Graaf A A, Mulder A, de Bruijin P.Autotrophic growth of anaerobic ammonium oxidation microorganism inafluidized bed reactor[J]. Microbiology,195,142(8):2187-2196.
    [54]Strous M,van Gerven E,Zheng P, etal.Ammonium removal from concentrated wastestreams with the anaerobic ammonnium oxidation(Ananunox)Processin different reactor configurations [J]. Water Res,1997,31(8):1955-1962.
    [55]贾呈玉,李道棠,杨虹.低碳氮比废水生物脱氮新技术[J].上海环境科学,2003,22(5):349-352.
    [56]Van der star WR L,Abma WR,Bolmmers D,ex al.startup of reactor for anoxic ammonium oxidation:experiences from the first full-scale anammox reactor in Rotterdam[J].Water Res,2007,41(18):4149-4163.
    [57]WHO Environmental health criteria,93:Chlorophenols other than pentachlorophenols. World Health Organization, Geneva.(1989)
    [58]余水静,李杰庆,宋秋华等(2005)两株苯酚降解菌的分离及降解特性的初步研究.生物技术,15(3):62-64.
    [59]骆海萍,宋海红,刘广立,张仁铎(2007)填料型微生物燃料电池对高浓度苯酚的降解及产电性能特性研究.第五届环境模拟与污染控制学术研讨会论文集.
    [60]孙茜,赵立新,吴英微生物燃料电池对废水中对硝基苯酚的去除哈尔滨工程大学材料科学与化学工程学院,黑龙江哈尔滨150001大庆石油学院机械科学与工程学院,黑龙江大庆163318)
    [61]骆海萍,刘广立,张仁铎(2008)以苯酚为燃料的微生物燃料电池产电特性.28(7):1279-1283.[15]谢晴,杨嘉伟,王彬,冷庚,但德忠(2010)用于污水处理的微生物燃料电池研究最新进展.水处理技术,36(3):10-16.
    [62]谢晴,杨嘉伟,王彬,冷庚,但德忠(2010)用于污水处理的微生物燃料电池研究最新进展.水处理技术,36(3):10-16.
    [63]Harold Wright, James A Nicell (1999) Characterization of soybean peroxidase for the treatment of aueous phenols. Bioresource Technology, (70):69-79.
    [64]沈晓林.焦化废水处理全面达标试验与探讨[J].冶金环境保护,2002,10(4):90-92.
    [65]王绍文,秦华.焦化废水处理达标排放与回用技术可行性报告.中冶集团冶建总院环保研究设计院.2004,(10)8:66-67.
    [66]刘林昌,等.生物铁法在焦化污水处理上的应用[J].冶金环境保护(马鞍环境保护),1999,(1):12-23.
    [67]许东海,等.焦化废水净化处理回用技术应用实例[J].江苏环境科学,2003,6(3):26-28.
    [68]高肖智,陈家华.发生炉煤气含酚污水治理[J].冶金环保情报,1997,1:54-55.
    [69]张益民,周建昂,杨林等,煤气厂废水处理试验及分析研究[J].山西化工,2000,20(4):14-15.
    [70]徐颖,朱加征.物化-生化工艺处理煤气洗涤废水的实验研究[J].环境科学与技 术,2004,27(3):22-23.
    [71]沈明伟,朱昌洛,李华伦.P507-煤油体系在钒铝萃取分离中的试验研究[J].矿产综合利用,2007,4:14-18.
    [72]Li Z, WuMH, Jiao Z etal. Extraction of phenol from wastewater by N-octanoylpyrrolidine[J]. Journal of Hazardous Materials,2004,114:111-114.
    [73]庞世平.N-503萃取焦化废水的研究[J].山西化工,2003,23(1):9-12.
    [74]佟丽萍,唐霞,朱宝花等.含酚废水处理方法的选择[J].工业水处理,1998,18(5):36-37.
    [75]廖华,吴芳,罗爱平,等.废旧镍氢电极材料中镍合钴的回收[J].五邑大学学报,2003,17(1):52-56.
    [76]沈明伟,朱昌洛,李华伦.P507-煤油体系在钒钼萃取分离中的试验研究[J].矿产综合利用,2007,4:14-18.
    [77]朱萍,古国榜,贾宝琼.P507从酸性硫脲浸金液中回收金[J].过程工程学报,2002,2(2):142-143.
    [78]董彦杰,于新桥.2-乙基己基膦酸单(2—乙基己基)酯萃取钯(Ⅱ)的热力学研究[J].化工冶金,1995,16(1):73-74.
    [79]崔秋生,柴高贵,郭建光,等.络合离心萃取法在高浓度含酚废水处理中的应用[J].煤化工,2009.1:42-43.
    [80]周少奇,姚俊芹.UASB厌氧氨氧化反应器启动研究[J].食品与生物技术学报,2005,24(6):2-3.
    [81]Strous, M., Kuenen, J. G., Jetten, M. S. M. Key physiology of anaerobic ammonium oxidation[J]. Applied & Environmental Mierobiology.2004,65(7):3248-3250.
    [82]Sehmidtl, SliekersO, SehmidM, Cirpusl, StrousM, BoehE, KuenenJG, Jetten MSM.Aerobic and anaerobic ammonia oxidizing bacteria-competitors or natural partners[J]. FEMS Microbiol Ecol,2002,39(3):175-181.
    [83]王丹丹,曹敬华,夏夕娟.UASB反应器处理城市(生活)污水[J].西南给排水,30(4):15-16.
    [84]康琼仙,康建雄孙,路璐等.UASB-SBR工艺处理高浓度有机农药废水中试研究[J]环境科学与技术,2007,30(7):82-83.
    [85]陈学民,王利杰,伏小勇.UASB反应器常温处理生活污水中试的启动研究[J].给水排水,2002,28(3):16-17.
    [86]Egli K, Fanger U, Alvarez PJJ, Siegrist H, van der Meer JR, Zehnder A J B.Enrichment and characterization of anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J].Arch Microbiol,2001,175(3):195-207.
    [87]郑平,冯孝善.废物生物处理.北京:高等教育出版社,2006,401-405.
    [88]张少辉,郑平,华玉妹.反硝化生物膜启动厌氧氨氧化反应器的研究[J]..环境科学学报,2004,24(2):220-224.
    [89]杨洋,左剑恶,沈平等.接种不同普通污泥的厌氧氨氧化反应器的启动运行研究[J].环境科学,2004,25(6):39-42.
    [90]Mike SM Jetten,Marc S,Katinka T, etal.The anaerobic oxidation of ammonium[J]. FEMS Microbiol Revi,1998,22(5):421-437.
    [91]魏学军,邓华,谈红.厌氧氨氧化反应器的启动及运行[J].新疆环境保护,2002,24(1):17-21.
    [92]Strous M, Heijnen JJ, Kuenen JG,etal. The sequeneing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl Microbiol Biotechnol,1998,50:589-596.
    [93]左剑恶,杨洋,蒙爱红.厌氧氨氧化工艺在UASB反应器中的启动运行研究[J].上海环境科学,2003,22(10):665-667.
    [94]WHO Environmental health criteria,93:Chlorophenols other than pentachlorophenols. World Health Organization, Geneva.(1989)
    [95]余水静,李杰庆,宋秋华等(2005)两株苯酚降解菌的分离及降解特性的初步研究.生物技术,15(3):62-64.
    [96]Harold Wright, James A Nicell (1999) Characterization of soybean peroxidase for the treatment of aueous phenols. Bioresource Technology, (70):69-79.
    [97]刘旭光,邵世光(2009)一株苯酚高效降解菌2N-17的分离鉴定及其降解特性.湖北农业科学,48(4):830-833.
    [98]WHO Environmental health criteria,93:Chlorophenols other than pentachlorophenols. World Health Organization, Geneva.(1989)
    [99]余水静,李杰庆,宋秋华等(2005)两株苯酚降解菌的分离及降解特性的初步研究.生物技术,15(3):62-64.
    [100]骆海萍,宋海红,刘广立,张仁铎(2007)填料型微生物燃料电池对高浓度苯酚的降解及产电性能特性研究.第五届环境模拟与污染控制学术研讨会论文集.
    [101]孙茜,赵立新,吴英微生物燃料电池对废水中对硝基苯酚的去除哈尔滨工程大学材料科学与化学工程学院,黑龙江哈尔滨150001大庆石油学院机械科学与工程学院,黑龙江大庆163318)
    [102]骆海萍,刘广立,张仁铎(2008)以苯酚为燃料的微生物燃料电池产电特性.28(7):1279-1283.[15]谢晴,杨嘉伟,王彬,冷庚,但德忠(2010)用于污水处理的微生物燃料电池研究最新进展.水处理技术,36(3):10-16.
    [103]谢晴,杨嘉伟,王彬,冷庚,但德忠(2010)用于污水处理的微生物燃料电池研究最新进展.水处理技术,36(3):10-16.
    [104]齐文启,连军,孙宗光《地表水和污水监测技术规范》(HJ/T 91)中国环境监测总站;中国环境监测总站北京;
    [105]周群英,高廷耀等《环境工程微生物学实验指导》高等教育出版社第三版
    [106]卢圣栋等《现代分子生物学实验技术》中国协和医科大学出版社第二版
    [107]国家环境保护总局.水和废水监测分析方法(第四版).,2002北京:中国环境科学出版社.
    [108]Bastos AE, Moon DH, Rossi A, et al (2000) Salt tolerant phenol degrading microorganisms isolated from Amazonian soil samples. Arch Microbiol,174(5):346-352.
    [109]Semple KT, Cain RB (1996) Biodegradation ofphenols by the alga Ochromonas anica. Appl Environ Microbiol, (4):1265-1273.
    [110]卢圣栋等《现代分子生物学实验技术》中国协和医科大学出版社第二版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700