叔膦催化合成卤代联烯及其Suzuki交叉偶联反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卤代联烯具有很高的反应活性,能发生取代、加成、偶联等多种反应,是有机合成的重要中间体,广泛应用于各类天然产物和药物分子的合成中。但目前报道的各种卤代联烯的合成方法都存在着产率低、选择性差、操作复杂、污染严重等缺点。尤其是用二氯亚砜、浓盐酸等做卤代试剂时,对环境污染更加严重。有机催化是近期发展起来的模拟酶催化,是一个热门的新领域。它效率高、选择性好、反应条件温和,用有机催化方法合成卤代联烯符合绿色化学要求,是理想的方向。
     首次研究了N-卤代丁二酰亚胺(NXS)/三苯基膦体系下由炔丙基醇合成卤代联烯的反应,该反应包括卤代、氧化、异构化等过程。发现三苯基膦在其中起到了促进卤代以及脱氧的作用,通过以上研究,本文设计了叔膦/1,4苯二酚/N-卤代丁二酰亚胺这一新的有机催化卤代体系。在该催化体系中,5 mol%叔膦即可顺利催化N-氯代丁二酰亚胺(NCS)对炔丙基醇卤代,一步合成氯代联烯。该方法具有选择性好、产率良好、操作简便、环境污染小等优点。优于已有文献报道方法。
     筛选了叔膦催化剂,发现三环己基膦效果最佳。三苯基膦次之,在研究机理的过程中发现它不仅是催化剂而且是脱氧剂,常见的还原剂在该反应中并不能脱除炔醇羟基中的氧,但它们能将三苯氧膦还原成三苯基膦,从而实现催化循环。多元酚是有效的还原剂,其中1,4-苯二酚(HQ)性能最佳。
     在总结实验证据基础上,提出了由炔丙醇和HQ/NCS/PPh3制备氯代联烯可能的反应机理。包括三苯基膦与N-卤代丁二酰亚胺反应生成卤代三苯基膦正离子活性中间物,它对羟基实施卤代。三苯基膦脱除羟基中的氧生成三苯氧膦。1,4-苯二酚将三苯氧膦还原成三苯基膦,完成催化循环,
     筛选出了无还原剂存在时的最佳反应条件:炔丙基醇(1.0 mmol)、NXS(1.55 mmol)、PPh3(1.50 mmol)、CH2Cl2(5 mL)、-15-25℃下搅拌1h。在此条件下氯代联烯的产率最高可达88%,溴代联烯的产率最高可达86%。有还原剂存在时的最佳反应条件:炔丙基醇(1.00 mmol)、NCS(1.55 mmol)、HQ(1.5 mmol)、PPh3(5 mmol%)、CH2Cl2(5 mL),室温下搅拌24 h,氯代联烯产率最高可达85%。合成的氯代联烯和溴代联烯均未见文献报道。
     Suzuki交叉偶联反应是重要的现代有机合成方法。用卤代联烯Suzuki交叉偶联反应合成含联烯结构的分子为合成药物、天然化合物探讨一个新路线的工作也具有实际意义。但卤代联烯基作为Suzuki交叉偶联反应底物之前则极少有文献报导。为此,研究了溴代联烯与芳基硼酸的Suzuki交叉偶联反应。发现二-(二苯基膦乙酸)钯是芳基溴代联烯Suzuki交叉偶联反应的有效催化剂,在室温下的催化活性很高,最高产率达93%;研究二-(二苯基膦乙酸钯)催化1-溴-1-丁基-3-(4’-溴苯基)-1,2丙二烯(3c)与苯硼酸Suzuki交叉偶联反应,发现它能高选择性地催化溴代联烯上的C-Br而不是溴苯基上的C-Br参加反应。
     二-(二苯基膦乙醇)-二氯合镍也能有效地催化芳基溴代联烯Suzuki交叉偶联反应。最高产率达87%。
     生成的含联烯结构的交叉偶联产物均未见文献报道。
Haloallenes which has been recognized as important fundamental organic units are often used as intermediates for the preparation of natural products and pharmaceuticals due to their high reactivity in substitution, addition, coupling and other reactions. However, the reported methods for the synthesis of haloallenes have many disadvantages such as low-yield, poor selectivity, complex manipulation and serious pollution problems. Especially, dichlorosulfoxide, concentrated hydrochloric acid and other halogenated reagents have caused severe damage to the environment. Recently, the field of enzyme catalysis and organocatalysis has been rapidly developing and attracted an increasing number of research groups around the world. Chemical transformations in this field generally possess advantages such as high efficiency, good selectivity and mild conditions, thus the synthesis of halo-allenes directed by the concept of organocatalysis is according to green chemistry concepts and would be an ideal strategy.
     The reaction of propargyl alcohols with N-halogenated succinimide under the NCX/PPh3 system providing chloroallenes or bromoallenes via three stages including halogenation, oxidation and isomerization was firstly studied. It is found that PPh3 not only facilitate the step of halogenation but also act as a deoxidant. Base on this result, we proposed the triphosphine/ 1,4-hydroquinone/NXS as an novel organocatalytical system for the halogenation reaction. In this catalytical system, propargyl alcohols could be halogenated by NCS in presence of only 5 mol% of triphosphine to afford chloroallenes in one step. This method possesses a series of merits containing good selectivity, high yield, simple manipulation and limited pollution which is better than reported methods.
     Triphosphines was found to be catalyst in the employed systerms, and demonstrates that Cy3P is the best catalyst, PPh3 as the second one. The research on the mechanism reveals that the triphosphine acts as catalyst and deoxidant at the same time. Generally, the oxygen atom of the propargyl alcohols can not be absorbed by reductant directly. However, the deoxidant can reduce triphenylphosphine oxide to triphenylphosphine which achieves the catalytical cycles.. Polyphenols were the effective reductant and 1,4-dihydroxybenzene was the best one.
     Based on the obtained results, a proposed mechanism of the halogenation of propargyl alcohols under the HQ/NCS/PPh3 system was tentatively given. In this mechanism:hydroxyl was halogenated by Cl-PPh3 cation as the active intermediate generated by the reaction of triphenylphosphine with N-halogenated succinimide. Then the oxygen atom in hydroxyl was removed by triphenylphosphine giving triphenylphosphine oxide. At last, triphenylphosphine oxide was reduced to triphenylphosphine by 1,4-dihydroxybenzene and start a new catalytical cycle.
     The optimized condition in the absence of reductant:propargyl alcohol (1.0 mmol), NXS (1.55 mmol), triphenylphosphine (1.50 mmol), CH2Cl2 (5 mL) and stirred for 1 h under-15 to 25℃. Under this condition, up to 88% and 86% yields can be obtained for chloroallene and bromoallene, respectively. In the presence of reductant:propargyl alcohol (1.0 mmol), NCS (1.55 mmol), HQ (1.5 mmol), triphenylphosphine (5 mmol%), CH2Cl2 (5 mL) and stirred for 24 h under room temperature. All the chloroallenes and bromoallenes are new compounds.
     Suzuki cross-coupling reaction is one of the most important methods in modern organic synthesis. An investigation of the Suzuki cross-coupling reaction of haloallenes to synthesize natural products and pharmaceuticals containing allene structure was extraordinary significance. However, up to now only a few reports could be found in this area. Thus, suzuki cross-coupling of bromoallene and arylboric acid was studied and found that di[2-(diphenylphosphino)acetic acid] palladium was an very effective catalyst, even under room temperature the yield can reach up to 93%. It was found that C-Br on bromoallene rather than on benzene ring readily took part in Suzuki cross-coupling reaction between 1-bromo-l-butyl- (4-bromophenyl)-1,2-propadiene and aryl boric acid catalyzed by di[2-(diphenylphosphino)acetic acid] palladium.
     NiCl2(Ph2PCH2CH2O)2 was also found to be a effective catalyst for the Suzuki reaction and led up to 87% yield.
     All cross-coupling products of bromoallene are new compounds.
引文
[1]Burton B S, Pechmann H V. Action of phosphoric chloride on ethyl acetonedicarboxylate[J]. Ber. Dtsch. Chem. Ges.1887,20,145-149.
    [2]Schuster H F, Coppda G M. "allenes in organic synthesis" [M]. John Wiley&Sons:New York,1988
    [3]Landor S R. "The Chemistry of the Allenes", Volumes 1-3[M]. London, Academic Press,1982.
    [4]Taylor D R. The Chemistry of Allenes[J]. Chem. Rev.,1967,67:317-359.
    [5]Hoffmann-Roder A, Krause N. Synthesis and Properties of Allenic Natural Products and Pharmaceuticals[J]. Angew. Chem. Int. Ed.,2004,43:1196-1216.
    [6]Ogasawara M. Catalytic enantioselective synthesis of axially chiral allenes[J]. Tetrahedron: Asymmetry.,2009,20:259-271.
    [7]Ma S M. ElectrophiliccAddition and Cyclization Reactions of Allenes[J]. Accounts Of Chemical Research,2009.42(10),1679-1688.
    [8]Banide E V, Oulie P, McGlinchey M J. From allenes to tetracenes:syntheses, structures, and reactivity of the intermediates[J]. Pure and Applied Chemistry.,2009,81(1):1-17.
    [9]Shen H C. Recent advances in syntheses of heterocycles and carbocycles via homogeneous gold catalysis. Part 1:Heteroatom addition and hydroarylation reactions of alkynes, allenes, and alkenes[J]. Tetrahedron,2008,64(18):3885-3903.
    [10]North M. Synthesis of β,γ-Unsaturated Acids from Allenes and Carbon Dioxide[J]. Angew. Chem., Int. Ed.,2009,48(23):4104-4105.
    [11]潘峰,傅春玲,麻生明.联烯的自由基反应[J].有机化学,2004,24(10):1168-1190.
    [12]李林涛,麻生明.1,2-联烯基酮的合成与反应[J].有机化学.,2000,20(6):850-860.
    [13]Ma S M, Yu Z Q. Oxidative Cyclization-Dimerization Reaction of 2,3-Allenoic Acids and 1,2-Allenyl Ketones:An Efficient Synthesis of 4-(3'-Furanyl)butenolide Derivatives[J]. Angew. Chem. Int. Ed.,2002,41(10):1775-1778.
    [14]Sandra F, Maureen M L L, Marcel S F L, et al. Expanding the Field of Phosphorus-Containing Fatty Acid Derivatives:Synthesis of 1,2-Oxaphospholene Derivatives and Alkenyl Phosphonates froma-Keto Allenes[J]. Eur. J. Org. Chem.,2003,4874-4878.
    [15]Mashall J A, Sehon C A. Synthesis of Furans and 2, S-Dihydrofurans by Ag(I) Catalyzed Isomerization of Allenones, Akynyl Allylic Alcohols, and Allenylcarbinols[J]. J. Org. Chem.,199560: 5966-5968.
    [16]Ma S M, Yu Z Q, Gu Z H. Pd11-Catalyzed Oxidative Dimeric Cyclization-Coupling Reaction of 2,3-Allenoic Acids:An Efficient Synthesis of Bibutenolide Derivatives[J]. Chem. Eur. J.,2005,11: 2351-2356.
    [17]Ma S M, Yu Z Q. "Walking" of the C-C π Bond over LongDistances in Pd-Catalyzed Reactions of 2,3-Allenoic Acids with w-1-Alkenyl Halides[J]. Angew. Chem. Int. Ed.,2003,42:1955-1957.
    [18]邓有前,顾振华,麻生明.2,3-联烯醇及其衍生物的反应[J].有机化学,2006,26(11):1468-1484.
    [19]LanY F, Hammond G B. Functionalization of Monofluoroallene and the Synthesis of Aryl-Substituted Conjugated Fluorodienes[J]. Org. Lett.,2002,4(14):2437-2439.
    [20]Ma S M. Transition Metal-Catalyzed/Mediated Reaction of Allenes with a Nucleophilic FunctionalityConnected to the a-Carbon Atom[J]. Acc.Chem.Res.,2003,36:701-712.
    [21]Ma S M. Some Typical Advances in the Synthetic Applications of Allenes[J] Acc.Chem.Res.,2005, 105:2829-2871.
    [22]魏琦,麻生明.1,2-联烯亚砜和1,2-联烯砜的反应[J].有机化学,2002,22(4):254-261.
    [23]Shepard M S, Carreira E M. Enantioselective Allene/Enone Photocycloadditions:The Use of an Inexpensive Optically Active 1,3-Disubstituted Allene[J]. Tetrahedron.,1997,53:16253-16276.
    [24]Tamaru Y, Nagao K. Palladium-Catalyzed [2,3] Rearrangement of Alkyl Allyl Sulfites to Alkyl Allylsulfonates[J].J. Org. Chem.,1990,55:1823-1829.
    [25]Block E, Putman D. Allenyl Chloromethyl Sulfones:New Dienophile-Diene Synthons. A Simple Iterative Ring crowing Procedure'[J]. J. Am. Chem. Soc.,1990,112:4072-4074.
    [26]Celmer W D, Solomons I A. The Structure of the Antibiotic Mycomycin[J]. J. Am. Chem. SOc,1952, 74:1870-1871
    [27]Kinnel R, Duggan A J, Eisner T J. Meinwald. Panacene:an aromatic bromoallene from a sea hare (Aplysia brasiliana) [J]. Tetrahedron Lett.,1977,3913-3916.
    [28]Suzuki M, Kurosawa E. Constituents of marine plants. Part 61. A C15 non-terpenoid from the red alga Laurencia okamura[J]i.Phytochemistry,1985,24:1999-2002.
    [29]Suzuki M, Sasage Y, IKura M, Hikichi K, Kurosawa E. Constituents of marine plants. Part 72. Structure revision of okamurallene and structure elucidation of further C15 non-terpenoid bromoallenes from Laurencia intricata[J]. Phytochemistry,1989,28:2145-2148.
    [30]Cox P J, Imre S, Islimyeli S, Thomson R H. Obtusallene 1, a new halogenated allene from Laurencia obtuse[J]. Tetrahedron. Lett.,1982,23:579-580.
    [31]Ciavatta M L, Gavagnin M, Puliti R, Cimino G, Martinez E, Ortea J, Mattia C. Dactylallene:a novel dietary C15 bromoallene from the Atlantic anaspidean mollusk Aplysia dactylomela[J]. Tetrahedron, 1997,53(51):17343-17350.
    [32]Wright A D, Koenig M G, Sticher O. New Sesquiterpenes And C15 Acetogenins From The Marine Red Alga Laurencia Implicata[J],J. Nat. Prod.,1991,54:1025-1033.
    [33]Kurata K, Furusaki A, Suehiro K, Katayama C, Suzuki T. Isolaurallene,A New Nonterpenoid C15-Bromoallene Form The Red Alga Laurencia Nipponica Yamadal[J]. Chem. Lett.,1982,1031-1034.
    [34]Suzuki M, Kawamoto T, Vairappan C S, Ishii T, Abe T, Masuda M. Halogenated metabolites from Japanese Laurencia spp[J]. Phytochemistry,2005,66:2787-2793.
    [35]Vairappan C S, Suzuki M, Ishii T, Okino T, Abe T, Masuda M. Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp[J]. Phytochemistry,2008,69(13):2490-2494.
    [36]Suzuki M, Takahashi Y, Itoh T, Abe T. Masuda, M. Brominated metabolites from an Okinawan Laurencia intricata[J]. Phytochemistry,2002,60(8):861-867.
    [37]Suzuki M, Takahashi Y, Matsuo Y, Masuda M P. A Brominated C15 nonterpenoid from Laurencia pannosa[J]. Phytochemistry,1996,41(4):1101-1103.
    [38]Okamoto Y, Nitanda N, Ojika M, Sakagami Y. Aplysiallene,a new bromoallene as an Na, K,-ATPase inhibitor from the sea hare, Aplysia kurodai[J]. Biosci.Biotechnol. Biochem.2001,65(2):474-476.
    [39]Feldman K S, Mechem C C, Nader L. Total Synthesis of (±)-Panacene[J]. J. Am. Chem. Soc,1982, 104:4011-4012.
    [40]Feldman K S. Biomimetic synthesis of (±)-panacene[J].Tetrahedron Lett.,1982,23:3031-3034;
    [41]Sabot C, Berard D, Canesi S. Expeditious Total Syntheses of Natural Allenic Products via Aromatic Ring Umpolung[J]. Organic Letters.,2008,10(20):4629-4632.
    [42]Crimmins M T, Tabot E A. Total Synthesis of (+)-Prelaureatin and (+)-Laurallene[J]. J. Am. Chem. Soc.2000,122:5473-5476.
    [43]Fujiwara K. Total synthesis of medium-ring ethers from Laurencia red algae[J]. Top Heterocyclic Chemistry,2006,5:97-148.
    [44]Crimmins M T, Emmitte K A, Choy A L. Ring Closing Metathesis for the Formation of Medium Ring Ethers the Total Synthesis of (-)-Isolaurallene[J]. Tetrahedron,2002,58:1817-1834.
    [45]Crimmins M T, Emmitte K A. Asymmetric Total Synthesis of (-)-Isolaurallene [J]. J.Am. Chem. Soc, 2001,123:1533-1534;
    [46]Grese T A, Hutchinson K D. Overman, L E. General Approach to Halogenated Tetrahydrofuran Natural Products from Red Algae of the Genus Lawencia. Total synthesis of (±)-kumausallene and (±)-1-epi-kumausallene[J]. J. Org. Chem.1993,58:2468-2477.
    [47]Evans P A, Murthy V S, Roseman J D, Rheingold A L. Enantioselective Total Synthesis of the Nonisoprenoid Sesquiterpene (-)-Kumausallene[J]. Angew. Chem. Int. Ed.,1999,38:3175-3177.
    [48]Dembitsky V M, Maoka T. Allenic and cumulenic lipids[J]. Progress in Lipid Research,2007, 46(6):328-375.
    [49]Cooper G F, Wren D L, Jackson D Y, Beard C C, Galeazzi, E, et al. Synthesis of the Four Stereoisomers of Enprostillf[J]. J. Org. Chem.,1993,58:4280-4286.
    [50]Castelhano A., Pliura P H, Taylor G J, Hsieh K C, Krantz A. Allenic Suicide Substrates. New Inhibitors of Vitamin B6 Linked Decarboxylasest[J]. J. Am. Chem. Soc.,1984,106,2734-2735.
    [51]Phadtare S, Zemlicka J. Nucleic Acid Derived Allenols:Unusual Analogues of Nucleosides with Antiretroviral Activity[J]. J. Am. Chem. Soc,1989,111:5925-5931.
    [52]Tang C J, Wu Y. On the synthesis of cepacin A[J]. Tetrahedron,2007,63(23):4887-4906.
    [53]Vaz B, Dominguez M, Alvarez R, de Lera Angel R. Total synthesis of peridinin and related C37-norcarotenoid butenolides[J]. Chem.A.Eur.J.2007,13(4):1273-1290.
    [54]D'Aniello F, Mann A, Taddei M.1,3-Stereocontrol with Bromoallenes. Synthesis of N-Boc-ADDA, the Unique Amino Acid Present in Several Inhibitors of Serine/Threonine Phosphatases[J]. J. Org. Chem.,1996,61(15):4870-4871.
    [55]Jacobs T L, Brill W F. Haloallenes[J]. J. Am. Chem. Soc.1953,75:1314-1317.
    [56]Koenig B, Eilers B. Triphenylphosphine-catalyzed isomerization of propargyl bromide to l-bromopropadiene[J]. Synth. Commun.,1997,27(10):1685-1688.
    [57]Jacobs T L, Petty W L, Teach E G. The Reaction of Propargyl Alcohols with Thionyl Chloridel[J]. J. Am. Chem. Soc. 1960,82:4094-4097.
    [58]Hennion G F, Lynch C A Jr. Chlorides Derived from 1-Ethynylcyclohexanol[J]. J. Org. Chem.1960, 25:1330-1333.
    [59]Jacobs T L, Fenton D M.Aryl-Substituted Propargyl Alcohols and Related Compounds[J]. J. Org. Chem.1965,30:1808-1812.
    [60]Jacobs T L, Hall C, Babbe D A. Prempree,P.Aryl-Substituted Propargyl Alcohols and Related Compounds. 11.1-Mesityl-1,3-diphenyl-2-propyn-l-ol and 1-(α-Naphthyl)-1,3-diphenyl-2-propyn-l-ol [J]. J. Org. Chem.1967,32:2283-2286.
    [61]Hennion G F, Sheehan J J, Maloney D E. The Reaction of DimethylethynylCarbinol with Hydrochloric Acid[J]. J. Am. Chem. Soc.1950,72:3542-3545.
    [62]Elsevier C J, Vermeer P. Stereochemistry of the HCuX2-Induced Formation of 1-Halo-3-phenylpropadienes from 1-Phenyl-2-propyn-l-ol and Some of Its Derivatives [J]. J. Org. Chem.1984,49:1649-1650
    [63]Karunakar G V, Periasamy M. Conversion of Propargyl Alcohols to Chloroallenes and Arylalkynes Using the TiCl4/R3N Reagent System[J]. J. Org. Chem.2006,71:7463-7466.
    [64]Elsevier C J, Meijer J, Tadema G, Stehouwer P M, Bos H J T. Vermeer, P. A Highly Stereoselective Synthesis of Allenic Halides by means of Halocuprate-Induced Substitution in Propargylic Methanesulfonates[J]. J. Org. Chem.1982,47:2194-2196.
    [65]Elsevier C J, Vermeer 1 P, Gedanken LA, Rungel W. Synthesis and Absolute Configurations of Halogenoallenes[J]. J. Org. Chem.1985,50:364-367.
    [66]Elsevier C J, Mooiweer H H. Synthesis and Stereochemistry of Allenes.2. Absolute Configurations of 1-Halogeno-3,4,4-trimethylpenta-1,2-dieneasn d 3,4,4-Trirnethylpent-1-yn-3-ol[J]. J. Org. Chem.1987, 52:1536-1539
    [67]Elsevier C J, Bos H J T. Vermeer P. Synthesis and Structure of Side Chain Haloallenes in the Steroid Series[J] J. Org. Chem.1984,49:379-381.
    [68]Flood T, Peterson P E. Preparation of a Terminal Allene,3-Haloallene, and 3-Acylallene from a. Propargyltrimethylsilane[J]. J. Org. Chem.,1980,45(24):5006-5007.
    [69]Shi M, Zhao G L, Aza-Baylis-Hillman Reactions of N-(Arylmethylene) diphenylphosphinamides with Activated Olefins in the Presence of Various Lewis Bases[J]. Adv. Synth. Catal.2004,346, 1205-1219.
    [70]Shi Y L, Xu Y M, Shi M. Aza-Baylis-Hillman Reaction of b-Substituted Activated Olefins with N-Tosyl Imines[J] Adv. Synth. Catal.2004,346,1220-1230.
    [71]Shi Y L, Shi M Shi. Chiral Thiourea-Phosphine Organocatalysts in the Asymmetric Aza-Morita-Baylis-Hillman Reaction[J]. Adv. Synth. Catal.2007,349,2129-2135.
    [72]Tang X, Zhang B, He Z G, Gao R L, He Z J. 1,3,5-Triaza-7-phosphaadamantane (PTA):A Practical and Versatile Nucleophilic Phosphine Organocatalyst[J]. Adv. Synth. Catal.2007,349,2007-2017
    [73]Meng X, Huang Y, Chen R. A novel selective aza-Morita-Baylis-Hillman (aza-MBH) domino reaction and aza-MBH reaction of N-sulfonated imines with acrolein catalyzed by a bifunctional phosphine organocatalyst[J]. Chem. Eur. J.,2008,14(23),6852-6856.
    [74]Ma S M, Ning G, Gao J. Chiral Bifunctional Organocatalysts in Asymmetric Aza-Morita-Baylis-Hillman Reactions of Ethyl (Arylimino)acetates with Methyl Vinyl Ketone and Ethyl Vinyl Ketone[J]. J. Org.Chem.2007,72(25),9779-9781
    [75]Cho C W, Krische M J. Regio-and Stereoselective Construction of y-Butenolides through Phosphine-Catalyzed Substitution of Morita-Baylis-Hillman Acetates:An Organocatalytic Allylic Alkylation[J]. Angew. Chem. Int. Ed.2004,43:6689-6691
    [76]Lu X Y, Zhang C, Xu Z R, Reactions of Electron-Deficient Alkynes and Allenes under Phosphine Catalysis[J]. Acc. Chem. Res.2001,34:535-544.
    [77]Lu X Y, Du Y S, Lu C. Synthetic methodology using tertiary phosphines as nucleophilic catalysts[J].. Pure Appl. Chem.2005,77:1985-1990.
    [78]Zhang C M, Lu X Y. Phosphine-Catalyzed Cycloaddition of 2,3-Butadienoates or 2-Butynoates with Electron-Deficient Olefins. A Novel [3+2]Annulation Approach to Cyclopentenes[J]..J. Org. Chem. 1995,60:2906-1908.
    [79]Regan A J, Michael J K. Asymmetric total synthesis of the iridoid beta-glucoside (+)-geniposide via phosphine organocatalysis[J].. Org.lett.2009,11 (8):1849-1851.
    [80]Schuler M, Duvvuru D, Retailleau P, Betzer J F, Marinetti A. New Access to Trisubstituted 3-Pyrrolines under Phosphine Catalysis[J]. Org.Lett.,2009,11 (19):4406-4409.
    [81]Henry C E, Kwon O. Phosphine-Catalyzed Synthesis of Highly Functionalized Coumarins[J]. Org. Lett,2007,9 (16):3069-3072.
    [82]Creech G S, Kwon O. Alcohol-Assisted Phosphine Catalysis:One-Step Syntheses of Dihydropyrones from Aldehydes and Allenoates[J].Org.lett.2008,10 (3):429-432.
    [83]Zhu G X, Chen Zh G, Jiang Q Zh, Xiao D M, Cao P, Zhang X M. Asymmetric [3+2] Cycloaddition of 2,3-Butadienoates with Electron-Deficient Olefins Catalyzed by Novel Chiral 2,5-Dialkyl-7-phenyl-7-phosphabicyclo[2.2.1]heptanes[J]. J.Am. Chem. Soc.1997,119:3836-3837.
    [84]Arnaud V, Armen P, Nicolas F B, Pascal R, Angela M.2-Phospha[3]ferrocenophanes with Planar Chirality:Synthesis and Use in Enantioselective Organocatalytic [3+2] Cyclizations. [J]. J. Am. Chem. Soc,2008,130 (43):14030-14031.
    [85]Zhu X F, Lan J, Kwon O. An Expedient Phosphine-Catalyzed [4+2] Annulation:Synthesis of Highly Functionalized Tetrahydropyridines[J]. J. Am. Chem. Soc.2003,125:4716-4717.
    [86]McClure J D. Triarylphosphine-Catalyzed Dimerization of Acrylonitrile and Related Reactions [J]. J. Org. Chem.1970,35:3045-3048.
    [87]Wang L C, Luis A L, Agapiou K, Jang H Y, Krische M J. Organocatalytic Michael Cycloisomerization of Bis(enones):The Intramolecular Rauhut-Currier Reaction[J]. J. Am. Chem. Soc. 2002,124:2402-2403
    [88]Frank S A, Mergott D J, Roush W R. The Vinylogous Intramolecular Morita-Baylis-Hillman Reaction: Synthesis of Functionalized Cyclopentenes and Cyclohexenes with Trialkylphosphines as Nucleophilic Catalysts[J]. J. Am. Chem. Soc.2002,124:2404-2405.
    [89]Carolina G, Maria L, Caroline M, et al. Michael additions catalyzed by phosphines. An overlooked synthetic method[J]. Tetrahedron, (2005),61 (36):8598-8605.
    [90]Stewart I C, Bergman R G, Toste F D. Phosphine-Catalyzed Hydration and Hydroalkoxylation of Activated Olefins:Use of a Strong Nucleophile to Generate a Strong Base[J]. J. Am. Chem.Soc.2003, 125:8696-8697.
    [91]Trost B M, Kazmaier U. Internal Redox Catalyzed by Triphenylphosphine[J]. J. Am. Chem. Soc.1992, 114:7933-7935.
    [92]Guo X, Lu X Y. Reinvestigation on the Catalytic lsomerisation of Carbon-Carbon Triple Bonds[J]. Perkin Trans.1 1993,1921-1923.
    [93]Cathy K W K, Michael Y F, Cynthia S L L. Patrick, H. T., The phosphine-catalyzed alkyne to 1,3-diene isomerization reaction[J]. Synthesis,2008,15:2307-2317.
    [94]Kazmaier U. A Short Synthesis of Conjugated Unsaturated Alcohols, Tetrahedron[J].1998,54: 1491-1496.
    [95]lass Y, Rahim H S, Afsaneb Z. A New and Effkient Route to 6Carboxymethylcoumarins Mediated by Vinyltriphenylphosphonium Salt[J]. Tetrahedron Lett.1998,39:2391.
    [96]Trost B M, Li C J. Novel "Umpolung" in C-C Bond by Triphenylphosphine[J]. J. Am. Chem. Soc. 1994,116:3167-3168.
    [97]Trost B M, Dake G R. Nucleophilic a-Addition to Alkynoates. A Synthesis of Dehydroamino Acids[J]. J. Am. Chem. Soc.1997,119:7595-7596.
    [98]Trost B M, Li C J. Phosphine- Catalyzed Isomerization-Addi tion of Oxygen Nucleophiles to 2-Alkynoates[J]. J. Am. Chem. Soc.1994,116:10819-10820.
    [99]Vedejs E, Daugulis O, Tuttle N. Desymmetrization of meso-Hydrobenzoin Using Chiral, Nucleophilic Phosphine Catalysts[J]. J. Org. Chem.2004,69:1389-1392.
    [100]Wang X, Fang F, Zhao Ch, Tian Sh K. Dual-reagent organocatalysis with a phosphine and electron-deficient alkene:application to the Henry reaction[J]. Tetrahedron Lett.,2008,49 (45): 6442-6444.
    [101]Xu Y, Jin F, Huang W. Facile nucleophilic addition of thiols to 1,1-difluoroallene:a convenient approach to γ,γ-difluoroallyl sulphides[J]. J.Fluorine Chem.1995,70:5-6.
    [102]Hammond G B. Nucleophilic and electrophilic substitutions of difluoropropargyl bromides[J]. J.Fluorine. Chem.,2006,127 (4-5):476-488.
    [103].Caporusso A M, Geri R, Polizzi C. Lardicci, L.,Copper catalyzed aminolysis of bromoallenes as a new efficient route to propargylamines. Tetrahedron Lett[J].1991,32 (50):7471-7472.
    [104]Markl G, Bauer W.λ3-Phosphaallene und λ3-Phosphabutatriene durch umylidierung von λ5-Phosphaallenen und Aλ3-Phosphabutatrienen. Tetrahedron. Lett[J].1993,34 (18):2915-2918.
    [105]Xu L b, Huang X, Zhong F. Intermolecular Tandem Addition-Cyclization of Bromoallenes:A Facile Synthesis of Methylenecyclopropyl Carboxylates and Polysubstituted Furans[J]. Org. Letter.2006,8 (22):5061-5064.
    [106]Dolbier Jr W R, Wicks G E, Burkholder C R. The Cycloadditions of Nitrones with Fluoroallene[J]. J. Org. Chem.1987,52:2196-2201.
    [107]Dolbier W R, Purvis G D, Seabury M J, Wicks G E, Burkholder C R. The regiochemistry and stereochemistry of 1,3-dipolar cycloadditions of 1-fluoro- and 1,1-difluoroallene[J]. Tertrahedron, 1990,46 (24):7991-8004.
    [108]Dolbier R, Burkholder C R, Winchester W R.1,3-Dipolar Cycloadditions to Difluoroallene:The Regiochemistry of Diazoalkane Additions. [J]. J.Org.Chem.1984,49:1518-1522.
    [109]Dolbier W R, Burkholder C R. The thermal isomerization of 2-fiuoro-l-methylenecyclopropane[J]. Tetrahedron. Lett.1983,24 (12):1217-1220.
    [110]Ohno H, Hamaguchi H, TanakaT. Stereoselective Synthesis of Chiral 2,3-cis-2-Ethynylaziridines by Base-Mediated Intramolecular Amination of Bromoallenes[J]. Org. Lett.,2001,3 (15):2269-271.
    [111]Ohno H, Ando K, Hamaguchi H, Takeoka Y, Tanaka T A. Highly cis-Selective Synthesis of 2-Ethynylaziridines by Intramolecular Amination of Chiral Bromoallenes:Improvement of
    Stereoselectivity Based on the ComputationalInvestigation[J]. J. Am.Chem.Soc,2002,124:15255-15266.
    [112]Ohno H, Hamaguchi H, Ohata M, Tanaka T. Bromoallenes as Synthetic Equivalents of Allyl Dications:Synthesis of Medium-Sized Nitrogen Heterocycles through the Cyclization of Bromoallenes in the Presence of a Palladium(0) Catalyst and an Alcohol[J]. Angew.Chem.Int.Ed., 2003,42:1749-1753.
    [113]Ohno H, Hamaguchi H, Ohata M, Kosaka S, Tanaka T. Palladium(0)-Catalyzed Synthesis of Medium-Sized Heterocycles by Using Bromoallenes as an Allyl Dication Equivalent[J]. J. Am. Chem Soc.2004,126:8744-8754.
    [114]Hamaguchi H, Ohno H, Tanaka T. Bromoallenes as Allyl Dication Equivalents in the Absence of Palladium(0):Synthesis of Bicyclic Sulfamides by Tandem Cyclization of Bromoallenes [J]. Angew.Chem.Int.Ed.2005,44:1513-1517.
    [115]Hamaguchi H, Kosaka S, Ohno H, Fujii N, Tanaka T. Bromoallenes as allyl dication equivalents in the presence or absence of palladium(0):direct construction of bicyclic sulfamides containing five-to eight-membered rings by tandem cyclization of bromoallenes[J]. ChemA. Eur. J.,2007,13(6): 1692-1708.
    [116]Sromek A W, Rubina M, Gevorgyan V.1,2-Halogen Migration in Haloallenyl Ketones: Regiodivergent Synthesis of Halofurans[J]. J. Am.Chem.Soc,2005,127(30):10500-10501.
    [117]Corey E J, Boas N W. Stereochemistry of the SN2' displacement of chiral 1,3-disubstituted bromoallenes to form chiral acetylenes [J]. Tetrahedron Lett.1984,25(29):3059-3062
    [118]Caporusso A M, Polizzi C, Lardicci L. Reactions of 3-alkyl- and 3,3-dialkyl-l-bromoallenes with organocuprates:effects of the nature of the cuprate reagent on the regio- and stereoselectivity[J]. Tetrahedron Lett.1987,28 (48):6073-6076
    [119]D'Aniello F, Mann A, Taddei M.1,3-Stereocontrol with Bromoallenes. Synthesis of N-Boc-ADDA, the Unique Amino Acid Present in Several Inhibitors of Serine/Threonine Phosphatases[J]. J. Org.Chem.,1996,61:4870-4871
    [120]Chemla F, Bernard N, Normant J. A New Diastereodivergent Synthesis of 1,2-Disubstituted Homopropargylic Alcohols[J]. Eur.J.Org.Chem.1999,2067-2078.
    [121]Caporusso A M, Filippi S, Barontini F, Salvadori P. Coupling of chiral 1-bromo-1,-dienes with zinc-based cuprates:a new procedure for the regio and stereoselective synthesis of unctionalized acetylenic compounds[J]. Tetrahedron. Lett.,2000,41:1227-1230.
    [122]Conde J J, Mendelson W. Synthesis of SB 222618. A potential PDE IV inhibitor[J]. Tetrahedron Lett.,2000,41:811-814.
    [123]Caporusso A M, Zampieri A, Aronica L A, Banti,D. Stereoselective Synthesis of Chiral 3-Aryl-l-alkynes from Bromoallenes and Heterocuprates[J]. J. Org.Chem.,2006,71:1902-1910.
    [124]Caporusso A M, Aronica L A, Geri R, Gori M. One pot stereoselective synthesis of chiral a, ω-diynes from bromoallenes and organobis(heterocuprates)[J]. J. Organometallic.Chem.,2002,648 (1-2):109-118.
    [125]D'Aniello F, Schoenfelder A, Mann A, Taddei M. Stereospecific Substitution of Silylated Bromoallenes with Organocopper Reagents [J]. J. Org.Chem.,1996,61:9631-9636.
    [126]Elservier C J, Vermeer P. Stereochemistry of the Palladium(0)-Catalyzed Phenylation of 1-Halogenoallenes[J]. J.Org.Chem.,1985,50:3042-3045.
    [127]Saalfrank R W, Deutscher C, Bauer W.1-Halo-substituted allenes. Part 11., Yne-allenes from 1-bromoallenes and trimethylstannylacetylenes via palladium-mediated C-C coupling reactions[J]. Eur. J.Org.Chem.1999,2367-2372.
    [128]Vaz B, Pereira R, Perez M, Alvarez R, deLera A R. Stereoselective Stille Coupling of Enantiopure Haloallenes and Alkenylstannanes for the Synthesis of Allenyl Carotenoids.Experimental and Computational Studies[J]. J. Org. Chem.,2008,73 (17):6534-6541.
    [129]Caporusso A M, Setimo D, Lardicci L. Metal catalysis in organic reactions.17. A nickel-promoted route to substituted allenes by reaction of 1-bromo-1,2-dienes with alkyl metals[J]. Tetrahedron Lett. 1985,26 (41):5101-5104
    [130]Toda F, Takehira Y. New synthetic routes to conjugated diallenes from bromoallenes and prop-2-ynyl acetates. Novel carbon-carbon coupling with copper(I) chloride[J]. Chem.Commun.1975, 5:174.
    [131]Fouguet E, Pereyre M, Rodriguez A L, New Monoorganostannanes as Efficient Reagents for Palladium-Catalyzed Coupling Reactions[J]. J. Org. Chem.1997,62:5242-5243.
    [132]Trost B M, Stiles D T, Synthesis of Allenamides by Copper-Catalyzed Coupling of Allenyl Halides with Amides, Carbamates, and Ureas[J]. Org.Lett.,2005,7:2117-2120.
    [133]Miyaura N, Yanagi T, Suzuki A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases[J]. Synth. Commun.,1981,11 (7):513-519.
    [134]Aliprantis A O, Canary J W. Observation of catalytic intermediates in the Suzuki reaction by electrospray mass spectrometry[J]. J. Am. Chem. Soc,1994,116 (15):6985-6986.
    [135]何仁,陶晓春,张兆国.金属有机化学[M].上海:华东理工大学出版社,2007.
    [136]Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboron compounds[J]. Chem. Rev.,1995,95 (7):2457-2483.
    [137]Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles[J]. J. Organomet. Chem.,1999,576 (1-2):147-168.
    [138]Kotha S, Lahiri K, Kashinath D. Recent applications of the Suzuki-miyaura cross-coupling reaction in organic synthesis[J]. Tetrahedron,2002,58 (48):9633-9695.
    [139]Hassan J, Sevignon M, Gozz C, et al. Aryl-aryl bond formation one century after the discovery of the ullmann reaction[J]. Chem. Rev.,2002,102 (5):1359-1469.
    [140]Tsuji J. Palladium Reagents and Catalysts[M]. Wiley, Chichester/New York:1995.
    [141]Fiaud J C, Legros J Y. Handbook of Palladium-Catalyzed Organic Reactions[M]. Academic Press, London:1997.
    [142]Stanforth S P. Catalytic cross-coupling reactions in biaryl synthesis[J]. Tetrahedron,1998,54 (3): 263-303.
    [143]Beletskaya I P. Palladium catalyzed C-C and C-heteroatom bond formation reactions[J]. Pure and Appl Chem,1997,69 (3):471-476.
    [144]杜卫红,安忠维,徐茂梁.过渡金属催化不对称偶联反应及其在液晶合成中的应用[J].分子催化,1997,11(1):72-80.
    [145]Netherton M R, Dai C, Neuschutz K, Fu G C. Room-Temperature Alkyl-Alkyl Suzuki Cross-Coupling of Alkyl Bromides that Possess β Hydrogens[J]. J. Am.Chem Soc.2001,123: 10099-10100.
    [146]Kirchhoff J H, Netherton M R, Hills I D, Fu G C. Boronic Acids:New Coupling Partners in Room-Temperature Suzuki Reactions of Alkyl Bromides. Crystallographic Characterization of an Oxidative-Addition Adduct Generated under Remarkably Mild Conditions[J].J. Am. Chem Soc.2002, 124:13662-13663.
    [147]Zhou J, Fu G C. Suzuki Cross-Couplings of Unactivated Secondary Alkyl Bromides and Iodides[J]. J. Am.Chem. Soc.2004,126:1340-1341.
    [148]Brenstrum T, Gerristma D A, Adjabeng G M, Frampton C S, Britten J, Robertson A J, McNulty J, Capretta A. Phosphaadamantanes as Ligands for Palladium Catalyzed Cross-Coupling Chemistry: Library Synthesis, Characterization.and Screening in the Suzuki Coupling of Alkyl Halides and Tosylates Containing β-Hydrogens with Boronic Acids and Alkylboranes[J]. J. Org. Chem.2004,69: 7635-7639.
    [149]Miyaura N, Yamada K, Suginome H, Suzuki A. Novel and Convenient Method for the Stereo- and Regiospecific Synthesis of Conjugated Alkadienes and Alkenynes via the Palladium-Catalyzed Cross-Coupling Reaction of 1-Alkenylboranes with Bromoalkenes and Bromoalkynes[J]. J. Am. Chem. Soc.1985,107:972-980
    [150]Miyaura N, Ishiyama T, Sasaki H, Ishikawa M, Satoh M, Suzuki A. Palladium-Catalyzed Inter- and Intramolecular Cross-Coupling Reactions of B-Alkyl-9-borabicyclo [3.3.1]nonane Derivatives with 1-Halo-1-alkenes or Haloarenes.Syntheses of Functionalized Alkenes, Arenes, and Cycloalkenes via a Hydroboration-Coupling Sequence[J]. J. Am. Chem. Soc.1989,111:314-321.
    [151]Berthiol F, Doucet H, Santelli. Synthesis of Polysubstituted Alkenes by Heck Vinylation or Suzuki Cross-Coupling Reactions in the Presence of a Tetraphosphane-Palladium Catalyst[J]. Eur. J. Org. Chem.2003,6:1091-1096.
    [152]Chang Y F, Jiang Y R, Cheng W C. Traceless sulfone linker cleavage triggered by ozonolysis: solid-phase synthesis of diverse α-β-unsaturated carbonyl compounds[J]. Tetrahedron Letters,2008, 49:543-547.
    [153]Fristrup P, Tanner D, Norrby P O. Updating the Asymmetric Osmium-Catalyzed Dihydroxylation (AD) Mnemonic:Q2MM Modeling and New Kinetic Measurements[J]. Chirality,2003,15:360-368.
    [154]Li J H, Li J L, Wang D P, Pi S F, Xie Y X, Zhang M B, Hu X C. Cul-Catalyzed Suzuki-Miyaura and Sonogashira Cross-Coupling Reactions Using DABCO as Ligand[J]. J. Org. Chem.2007,72: 2053-2057.
    [155]Marcial M M, Francesca P, Roser P. Preparation of 1,3-Diarylpropenes by Phosphine-Free Palladium(0)-CatalyzedS uzuki-Type Coupling of Allyl Bromides with Arylboronic Acids[J]. J. Org. Chem.1995,60:2396.-2397.
    [156]Varma R S, Naicker K P. Synthesis of allylbenzenes by cross-coupling of allyl bromide with arylboronic acids using a palladium chloride and tetraphenylphosphonium bromide intercalated clay catalyst[J]. Green Chemistry.1999,1247-249.
    [157]Singh R, Viciu M S, Kramareva N, Navarro O, Nolan S P. Simple (Imidazol-2-ylidene)-Pd-Acetate Complexes as Effective Precatalysts for Sterically Hindered Suzuki-Miyaura Couplings[J]. Org. Lett., 2005,7:1829-1832
    [158]Vanessa KY L, Wong M K, Che CM. Gold-Catalyzed Highly Enantioselective Synthesis of Axially Chiral Allenes[J]. Org. Lett.,2008,10 (3):517-519
    [159]Saalfrank R W, Haubner M, Deutscher C, Bauer W, Clark T. Cation-Mediated, Substituent-Controlled, C2-C7 Cycloaromatization of an Enyne-Allene[J]. J. Org. Chem.1999,64: 6166-6168.
    [160]Guo M P, Jian F F, He R. Efficient synthesis of fluorinated biphenyl derivatives via Pd-catalyzed Suzuki coupling reactions in aqueous solvents at room temperature[J]. Journal of Fluorine Chemistry.2006,127:177-181.
    [161]Zhou L, Miao Q Q, He R, Feng X J, Bao M. Ni-catalyzed cross-coupling reaction of aryl chlorides with arylboronic acids in IP A without using a reducing reagent[J]. Tetrahedron Lett.2007, 48:7899-7902.
    [162]Tang J T, Zhu J 1, Shen Z X, Zhang Y W. Efficient and convenient oxidation of organic halides to carbonyl compounds by H2O2 in ethanol[J]. Tetrahedron Lett.2007,48 (11):1919-1921.
    [163]Sugimoto O, Mori M, Moriya K, Tanji K. Application of Phosphonium Salts to the Reactions of Various Kinds of Amides[J]. Helv. Chim. Acta.2001,84,1112-1118.
    [164]Tanji K, Koshio J, Sugimoto O. Microwave-Assisted Dehydration and Chlorination Using Phosphonium Salt[J]. Synth. Commun.2005,35:1983-1987.
    [165]Takahashi Y, Tsutsumi K, Nakagai Y, Morimoto T, Kakiuchi K, Ogoshi S, Kurosawa H. Mono-and Dipalladium Movement on the П-Conjugated Five-Carbon Chain[J]. Organometallics, (2008),27 (2), 276-280.
    [166]郭孟萍.P(?)O、P(?)N螯合钯配合物催化Suzuki偶联反应研究:TFT用液晶化合物的合成[D].大连:大连理工大学,2005.
    [167]周丽.镍配合物催化氯代芳烃的Suzuki交叉偶联反应及相关反应研究[D].大连:大连理工大学,2009.
    [168]Soolingen J V, Verkruijsse H D, Keegstra M A, et al. Nickel-catalyzed cyanation of 2- and 3-bromothiophene[J]. Synth. Commun.,1990,20 (20):3153-3156.
    [169]Bean F R, Johnson J R. Derivatives of phenylboronic acid, their preparation and action upon bacteria. Ⅱ. Hydroxyphenylboronic acids[J]. J. Am. Chem. Soc,1932,54:4415-4425.
    [170]Chen C, Yang L M. Nickel(II)-aryl complexes as catalysts for the Suzuki cross-coupling reaction of chloroarenes and arylboronic acids[J]. Tetrahedron Lett.,2007,48 (13):2427-2430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700