胞浆磷脂酶A2参与高血糖加重脑缺血性损伤的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究糖尿病高血糖全脑缺血再灌注大鼠模型海马组织神经细胞凋亡及胞浆磷脂酶A2(cytoplasm phospholipase A2, cPLA2)的激活表达,探讨高血糖加重脑缺血性损伤的分子机制。
     方法SD大鼠随机分为①假手术对照组(简称Sham);②正常血糖脑缺血组(简称NCI);③糖尿病脑缺血组(简称DCI);④PD98059预防糖尿病脑缺血组(简称PD)。采用双侧颈总动脉结扎并放血法制备全脑缺血模型,各缺血组再按照缺血15min,再灌注1h、3h、6h亚组观察。采用组织病理学、TUNEL、免疫组织化学和蛋白印迹等方法,对比观察海马神经细胞的调亡、以及MAPK激酶(MEK)和cPLA2的磷酸化状态。
     结果(1)脑组织神经元凋亡: NCI组海马CA1、CA2、CA3、CA4区多数神经细胞发生凋亡,除个体差异影响外,大多数模型随着再灌注时间的逐渐延长凋亡细胞数增加;与NCI组相比,DCI组海马CA1、CA2、CA3、CA4区神经细胞发生凋亡的数目增多,并随着再灌注时间的逐渐延长海马CA1、CA2、CA3、CA4区神经细胞发生调亡的数目增加;而Sham组脑组织海马CA1、CA2、CA3、CA4区全脑缺血再灌注各时间点可见少量凋亡神经细胞。(2)磷酸化MEK1/2免疫组化及Western blot结果:观察糖尿病脑缺血全脑缺血15分钟,再灌注1、3、6小时各时间点脑组织海马CA1、CA2、CA3、CA4区神经细胞磷酸化MEK1/2的表达情况,结果发现,在NCI组磷酸化MEK1/2在各时间点均有表达,但与Sham组相比无差异;DCI组在全脑缺血15分钟、再灌注1、3、6小时各时间点脑组织海马CA2区几乎所有神经细胞都发生了凋亡改变。采用MEK1/2的特异性阻断剂PD98059后,海马CA1、CA2、CA3和CA4各区神经细胞磷酸化MEK1/2表达受到抑制;同时也可见使用PD98059后,能够明显减少DCI组全脑缺血15分钟、再灌注1、3、6小时各时间点脑组织海马CA1、CA2、CA3和CA4各区神经细胞凋亡。(3)cPLA2免疫组化结果:DCI组全脑缺血15分钟时,海马CA1、CA2、CA3、CA4区中神经细胞cPLA2的表达情况与Sham组和NCI组比较阳性表达显著增加;而在再灌注3小时,cPLA2在海马CA1、CA2、CA3、CA4区神经细胞的表达结果显示,DCI组比Sham组明显增多。同时也发现,在使用PD98059后,能够减少糖尿病脑缺血全脑缺血15分钟、再灌注1、3、6小时各时间点脑组织海马CA1、CA2、CA3和CA4区cPLA2的表达。
     结论(1)糖尿病高血糖能够加重脑缺血再灌注时海马CA1区、CA2区、CA3区、CA4区损伤,导致凋亡神经细胞明显增加。(2)糖尿病高血糖脑缺血时MEK和cPLA2激活表达显著增加,可能与海马各区神经细胞凋亡增加有关。糖尿病高血糖能够导致ERK1/2上游激酶MEK激活增加,使ERK1/2信号通路磷酸化上调,通过激活下游作用底物cPLA2加重了脑缺血性损伤。
Objective We studied the apoptosis of nerve cells and the expression of activation of cytoplasm phospholipase A2 (cPLA2) in the hippocampus in the global cerebral ischemia-reperfusion rat models, and explored the molecular mechanism of hyperglycosemia- aggravated ischemic brain injury.
     Methods Spraggue Dawle rats were randomized into four groups:①Sham operation groups(Sham);②Normoglycemic cerebral ichemia groups (NCI);③Diabetes cerebral ichemia groups (DCI);④PD98059 prevented diabetes cerebral ichemia groups (PD)。The making method of global cerebal ischemia model: ligated bilateral carotid artery and withdraw blood. Each ischemic group divided into four sub-groups, ischemia 15min, reperfusion 1h, 3h, 6h. Histopathology, TUNEL, Immunohistochemistry, Weatern blotting techniques methods were used to observe the information of neural cell apoptosis and the phosphorylation of MEK1/2 and cPLA2 in hippocampus CA1, CA2, CA3 and CA4 region.
     Result (1) Neuronal apoptosis of brain: In the NCI groups the majority of nerve cells happen apoptosis, and with the reperfusion time extended most models gradually increase in the number of apoptotic cells in the hippocampus CA1, CA2, CA3 and CA4 region. Compare with the NCI groups, the number of apoptotic nerve cells in the DCI groups markedly increased in the hippocampus CA1, CA2, CA3 and CA4 region, and with the reperfusion time gradually extended the number of apoptotic nerve cells gradually increase. In the Sham groups, we can see a little of apoptotic nerve cells at different time points of reperfusion in the hippocampus. (2) Phosphorylation of MEK1/2 by immunohistochemistry and Western blot results:In the diabetic cerebral ischemia global cerebral ischemia medols at 15 minutes after ischemia and 1,3,6-hour after reperfusion in hippocampal CA1, CA2, CA3, CA4 region the result of expression phospho-MEK1/2 of nerve cells: In the NCI groups we found phospho-MEK1/2 had expressed at different time points, but there was no difference compared with the Sham groups. In the diabetic cerebral ischemia global cerebral ischemia medols at 15 minutes after ischemia and 1,3,6-hour after reperfusion in hippocampal CA2 region, nerve cell mostly happen apoptosis. The use of MEK1/2 specific inhibitor PD98059, in the hippocampal CA1, CA2, CA3 and CA4 phospho-MEK1/2 expression of nerve cell was inhibited. In the diabetic cerebral ischemia global cerebral ischemia medols at 15 minutes after ischemia and 1,3,6-hour after reperfusion in hippocampal CA1, CA2, CA3, CA4 region, PD98059 can reduce the number of apoptotic nerve cells. (3) Immunohistochemical results of cPLA2: In the diabetic cerebral ischemia global cerebral ischemia medols at 15 minutes after ischemia and 1,3,6-hour after reperfusion in hippocampal CA1, CA2, CA3, CA4 region the result of expression cPLA2 of nerve cells: Compared with Sham groups and NCI groups the expresson of cPLA2 significantly increase. At 3h after reperfusion in hippocampal CA1, CA2, CA3, CA4 region the expresson of cPLA2 significantly increased compared with Sham groups. We also found that after the use of PD98059, the expression of cPLA2 was inhibited at 15 minutes after ischemia and 1,3,6-hour after reperfusion in hippocampal CA1, CA2, CA3, CA4 region.
     Conclusions (1) Diabetes-induced hyperglycaemia can aggravate the injury of CA1, CA2, CA3, CA4 region of hippocamp and leaded to apoptotic nerve cells significantly increase, as cerebral ischemia-reperfusion. (2) As diabetes-induced hyperglycaemia cerebral ischemia, the activation of MEK and cPLA2 incrase. This may be related to the incrase of nerve cells apoptosis in hippocamp. Diabetes-induced hyperglycaemia can induced the expression of MAPK kinase (MEK) that is ERK1/2 upstream kinase significantly increase and leaded to the up-regulation of phosphorylation-ERK1/2-signaling-pathway. The activation of cPLA2 that is ERK1/2’s downstream substrate aggravate ischemic brain injury.
引文
[1] Bokeme yer D, Sorokin A. Multiple intracellular MAP kinase signaling c-ascades Editorial[J]. Kidney Int. 1996 , 49:1187-1198.
    [2] Zheng CF , Guan K. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2[J]. J Biol Chem, 1993, 268: 11435-11439.
    [3] Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2 , a growth factor regulated CREB kinase [J]. Science, 1996, 273 : 959– 963.
    [4] Chen RH, Juo PC, Curran T , et al. Phosphorylation of c-Fos at the C-terminus enhances its t ransforming activity[J]. Onco gene ,1996 , 12 : 1493-1502.
    [5] Kyriakis JM, App H, Banerjee P, et al. Raf-1 activates MAP kinase-kinase [J]. Nature , 1992 , 358 : 417 - 421.
    [6] Force T, Bonventre JV, Heidecker G, et al. Enzymatic characteristics of the c-Raf-1 protein kinase [J]. Proc Natl Acad Sci USA ,1994, 91: 1270 - 1274.
    [7] Zhao Y, B joobak C , Moller DE. Regulation and interaction of pp90rsk isoforms with mitogen-activated protein kinases [J] . J Biol Chem , 1996 , 271 : 29773 - 29779.
    [8] Matsuda S , Gotoh Y, Nishida E. Phos phorylation of Xenopus mitogen-activated protein (MAP) kinase kinase by MAP kinase kinase kinase and MAP kinase J . J Biol Chem , 1993 , 268 : 3277 -3281.
    [9] Lee RM, Cohb MH, Blackshear PJ. Evidence that extracellular signal-regulated kinases are the insulin-activated Raf-1 kinase kinases [J]. J Bio Chem, 1992, 267: 1088-1092.
    [10] Hazan-Haleny I, Seger R, Levy R. The requirement of both extracellular regulated kinase and p38 mitogen-activated protein kinase for stimulation of cytosolic phospholipase A (2) activity by either FcRIIA or FcRIIIB in human neutrophils. A possible role for pyk2 but not for the grb2-sos-shc complex [J]. J Biol Chem, 2000, 275: 12416-12423.
    [11] Davis RJ. The mito gen-activated protein kinase signal transduction pathway [J]. J Biol Chem, 1993, 268: 14553-14556.
    [12] Pearson G, Robinson F, Gibson TB, et al. Mitogen-activated protein ( MAP ) kinase pathway : regulation and physicalogical functions [J] . Endocrine Reviews, 2001, 22: 153-183.
    [13] Kuan CY, Whitmarsh AI Yang DD, et al. A critical role of neural-specific JNK3 for ischemic apoptosis[J]. Proc Natl Acad Sci USA,2003,100( 25): 15184-15189.
    [14] Wang X, Xu L, Wang H, et al. Mitogen-activated protein Kinase-activated protein (MAPKAP) kinase 2 deficiency protects brain ischemic injury in mice[J].J Biol Chem,2002,227(46):43968-43972.
    [15] Casta?eda D, Zhao H, Mochly-Rosen D, Steinberg GK. Activating deltaPKC antagonizes the protective effect of ERK1/2 inhibition against stroke in rats..Brain Res. 2009 Jan 28;1251:256-61.
    [16]王知秋,陈衔城等. MEK抑制剂阻断小鼠脑缺血后ERK通路的激活和IL-1βmRNA合成[J].复旦学报(医学版),2004,31(2):119-123.
    [17] Farrokhnia N, Ericsson A, Terént A, Lennmyr F.MEK-inhibitor U0126 in hyperglycaemic focal ischaemic brain injury in the rat[J].Eur J Clin Invest. 2008,38(9):679-85.
    [18]杨晓,李彩蓉,等.表没食子儿茶素没食子酸酯对糖尿病大鼠肾脏细胞外调节蛋白激酶活性的影响[J].中华肾脏病杂志, 2007,23(3): 184-188.
    [19] Reece EA, Wu YK, et al. Dietary vitamin and lipid therapy rescues aberrant signaling and apoptosis and prevents hyperglycemia-induced diabetic embryopathy in rats[J]. Am J Obstet Gynecol. 2006 Feb;194(2):580-5.
    [20] Chen BL, Ma XD, et al. MAP kinase signal pathway in hyperglycemia-induced congenital neural tube defects[J]. Yi Chuan. 2004 Sep;26(5):615-9.
    [21] Luo J, Kintner DB, et al. ERK1/2-p90RSK-mediated phosphorylation of Na+/H+ exchanger isoform 1. A role in ischemic neuronal death[J]. J Biol Chem. 2007 Sep 21;282(38):28274-84.
    [22] Takemoto C, Toyoth N, Turkaya D,et al. Induction of c-fos and c-jun gene proedcts and heat shock protein after brain and prolonged cerebral ischemia in gerbils [J]. Stroke, 1995,26,1639-1643.
    [23]程清洲,戴冀斌,谭政.大鼠脑缺血再灌注后海马区cPLA2、Caspase-3的分布[J].卒中与神经疾病, 2002, 9(5):281-284.
    [24] Dessen A.Structure and mechanism of human cytosolic phospholipase A2[J]. BiochimicaetBiophysica Acta, 2000,1488:40.
    [25]张家平,黄跃生,杨宗城.严重烫伤大鼠胞浆型磷脂酶A2表达变化及与心肌损害的关系[J].中国危重病急救医学,2002,14(10):588-590.
    [26] Smith ML, Bendek G, Dahlgren N, et al. Models for studying long-term recovery following forebrain inchemia in the rat A 2-vessel occlusion model [J]. Aota Neurol Scand. 1984,69:385-401.
    [27] Lin B, Ginsberg MD, Busto R.Hyperglycemic exacerbation of neuronal damage following forebrain ischemia: mieroglial, astrocytic and endothelial alterations.Aeta Neuropathol(Ber1), l998, 96 (6):610-620.
    [28] Liu Ping. Calcium and cerebral ischemic injury [J]. Foreigh Medical Sciences Section On Neurology &Neurosurgery, 2002,29(3): 274-276(in Chinese).
    [29] Rajesh Gara, Ajay Chaudhurl, Frederick Munachauer, et al. Hyperglycemia, insulin, and acute ischemic stroke: a mechanistic justification for a trial of insulin infusion therapy[J]. Stroke, 2006,37(1): 267-273.
    [30] Wu XialLi, Cui XiuYu. Excitatory Amino Acid And Ischemic Preconditioning /Hypoxic Precond itioning [J]. Nervous Diseasesand Mental Hygjene,2005,5(4): 247-250(in Chinese).
    [31] Kontos Ha. Oxygen radicals in cerebral ischemia: the 2001Willis lecture[J]. Stroke, 2001,32:2712-2716.
    [32] Bates B, Hirt L,Thomas AA, et al. Neurotrophin -3 promotes cell death induced in cerebral ischemia, oxygen-glucose deprivation, and oxidatve strss:possible involvement of oxygen free radicals[J]. Neurobiol Dis, 2002,9(1):24-37.
    [33] Wu Wei, Shi JiXin . The Progress In Mechanism And Therapy Research Of Neuronal Injuries After Ischemia-Reperfusion[J]. Journal of Chinese Microcirculation, 2003, 7(6):391-394(in chinese).
    [34] Liu ZongChao, Guan En, Rao MingLi. NF-κB and Cerebral Ischemia[J]. Journal of Apoplexy and Nervous Diseases, 2005,22(1):88-90(in Chinese)
    [35] Zhang DongMei, Liu JuXiang, Chen HongBing, et al. Expression of NF-κB, IL-6 in cerebral tissue of rats with ischemic reperfusion injury [J]. Chinese Journal of Gerontology,2005,25,(11):1363-1366(in Chinese).
    [36] Chen Yang, Shuai Jie. Hyperglycemia and Cerbral Ischemial[J]. Cerebrovascular Diseases Foreign Medical Sciences, 2002, 10(3): 217-219(in Chinese).
    [37]朱艳军,李强,陈波,等. P38MAPK激活在高血糖致大鼠微血管通透性增高过程中的作用[J].基础医学与临床, 2006, 26(9):947-951.
    [38]王洪新,梅元武.超负荷血糖对脑缺血再灌注损伤大鼠脑细胞凋亡的研究[J]. ChinJ Clin Neurosci 2005 ,13(2):161~165.
    [39]王建平,尹帅领,孙乐羽.高血糖对缺血再灌注大鼠脑组织中MMP-9及对血脑屏障的影响[J],中国实用神经疾病杂志, 2007, 10(4):17-19.
    [40] Fr?din M, Gammeltoft S, Role and regulation of 90kDa ribosomal S6 kinase(RSK) in signal transdution [J]. Mol cell endocrinol, 1999,151:65-77.
    [41] Sugden PH, Bogoyevitch MA. Intracellular signaling through protein kinases in the heart[J]. Cardiovasc Res 1995,30:478-492.
    [42] Adachi T, kar s,wang m,et al. Transient and sustained ERK phosphorylation and nuclear translocation in growth control[J]. J Cell Physiol, 2002,192(2):151-159.
    [43] Sgambato V, Vanhoutte P, Pages C, et a1. In vivo expression and regulation of Elk-1, a target of the extracellular-regulated kinase signaling pathway, in the adult rat brain[J]. Neurosci, 1998, 18(1): 214.
    [44]聂莹雪,崔丽颖,郭玫,等.大鼠局灶性脑缺血再灌注损伤后细胞外信号调节激酶的表达[J] .中国老年学杂志, 2007,27:1033-1035.
    [45]陈万欣,张志民,张凤侠,等.脑损伤大鼠皮质神经细胞凋亡过程中细胞外调节激酶通路的作用[J].中国组织工程研究与临床康复, 2007, 11(29): 5765-5768.
    [46]邵建林,万晓红,王俊科,等.一氧化氮通过环磷酸鸟苷激活细胞外信号调节激酶信号通路在/P90RSK大鼠脑缺血再灌注损伤中的作用[J].中国临床康复, 2006, 10(30):89-91.
    [47] Franceschini D, Giusti P, et al. MEK inhibition exacerbates ischemic calcium imbalance and neuronal cell death in rat cortical cultures [J]. Eur J Pharmacol. 2006, 553(1-3):18-27.
    [48]李金星,朱贤立,李玉,等.大鼠弥漫性脑损伤阻滞ERK通路下调脑组织MMP-9 mRNA的表达[J].中国临床神经外科杂志, 2006, 11(5):288-291.
    [49]王耀岐,李军,曹红,等. ERK和JNK通路在沙土鼠脑缺血预处理中的表达及作用[J].中国药理学通报, 2006, 22(3):337-340.
    [50]吕建瑞,马宏钟,薛荣亮.全脑缺血再灌注损伤后ERK在大鼠海马的表达及热休克预处理对其表达的影响[J]. 2006,27,(16):1449-1452.
    [51]段惠军,李英,张涛,等.高糖对大鼠肾小球系膜细胞ERK转导通路的影响[J].中国病理生理杂志,2007,23(2):416.
    [52] Du J, Zeng J, Ou X, et al. Methylglyoxal downregulates Raf-1 protein through a ubiquitination-mediated mechanism[J]. Int J Biochem Cell Biol. 2006;38(7):1084-91.
    [53] Kowluru RA, Kowluru A, et al. Potential contributory role of H-Ras, a small G-protein, in the development of retinopathy in diabetic rats[J]. Diabetes. 2004 Mar;53(3):775-83.
    [54] Puebla C, Farías M, González M, et al. High D-glucose reduces SLC29A1 promoter activity and adenosine transport involving specific protein 1 in human umbilical vein endothelium[J]. J Cell Physiol. 2007 Dec 6;215(3):645-656.
    [55]黄海长,刘森炎,梁燕,等.转化生长因子-β1通过活化ERK途径和上调Ets-1蛋白刺激基质金属蛋白酶-9产生[J].中华医学杂志, 2005, 85(5):328-331.
    [56]张建忠,景丽,等.氯氨酮减轻高血糖大鼠脑缺血所致的神经元凋亡[J].第四军医大学学报2006;27(18):1645-1648.
    [57] Elizabeth AC, Lisa AM. M ammalian phospholipases A2:mediators of inflammation,proliferation and apoptosis[J]. Prog Lip Res, 2001, 40:167.
    [58] Das S, Rafter JD, Kim KP, et al. Mechanism of group IVA cytosolic phospholipase A2 activation by phosphorylation[J]. J Biol Chem, 2003, 278:41431-41442.
    [59]王晓辉,颜光涛.cPLA2:炎性反应中信号转导的“重量级”因子[J].中国危重病急救医学,2004,16:378-380.
    [60]张家平,黄跃生,杨宗城.烧伤早期心肌组织几种炎症相关基因表达变化的实验研究[J].中国危重病急救医学, 2003,15:589-592.
    [61] Evans J H, Spencer D H, Zweifach A, et al. Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes[J]. J BioChem, 2001, 276:30150-30160.
    [62] Wang Xiaohui,Yan Guangtao,Wang Luhan,et a1. The mediating role of cPLA2 in IL-18 and IL-6 release in LPS-induced HeLa cells [J]. Cell Biochem Funct, 2004, 22(1):41-44.
    [63] Dana R, Leto T L, Malech H L,et al. Essential requirement of cytosolic phosphalipase A2 for activation of the phagocyte NADPH oxidase [J]. J Biol Chem, 1998, 273: 441-445.
    [64] Li Jun, Sun Mei, Han Mei. NO, SOD and NOS in injuried liver of fetus rat with intrauterine asphyxia[J]. Word Chin J Digestol, 2002, 10: 177-181.
    [65] Ferrer I,Planas AM.Signaling of cell death and cell survival following focal cerebral ischemia;life and death struggle in the penumbra[J]. J Neuropathol Exp Neurol, 2003, 62: 329-339.
    [66] Takemoto C,Toyoth N,Turkaya D,et al.Induction of c-fos and c-jun gene proedcts and heat shock protein after brain and prolonged cerebral ischemia in gerbils[J].Stroke, 1995, 26, 1639-1643.
    [67] Dorte W ,Helle M ,Mikala E,et a1.Involvement Of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis
    [68] Roux P P, Richards SA, BlenisJ. Phosphorylation ofp90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity[J]. Mol Cell Biol,2003, 23(14):4796 - 804.
    [69]王东吉,武凡.三七皂甙单体Rb1对大鼠脑缺血再灌注时脑细胞凋亡及cPLA2蛋白表达的影响[J].中国康复医学杂志,2007,22(5):414-417.
    [70] Tsou JH, Chang KY, Wang WC, et al. Nucleolin rgulates c-Jun/Spl-dependent transcriptional activation of cPLA2 alpha in phorbolester-treated non-small cell lung cancer A549 cells[ J]. Nucleic Acids Res,2008, 36(1):217-227.
    [71] Xu L, Han C, Lim K, etal Cross-talk between peroxisome proliferator-activated receptorδand cytosolic phospholipase A(2)α/cyclooxygenase-2/prostaglandin E(2) signaling pathways in human hepatocellular carcinoma cells[J]. Cancer Res, 2006, 66(24): 11859- 11868.
    [72] Boonstra J,van Rossum GS.The role of cytosolic phospholipase A2 in cell cycle progression [J].ProgCell Cycle Red 2003,5:181-190.
    [73] Prasad MR, Popescu LM, MoraruII,etal. Role of phospholipase A2 and C in myocardial ischemic reperfusion injury. Am J Physiol,1991,260(Pt2):H877-H883.
    [1] Lin B, Ginsberg MD, Busto R.Hyperglycemic exacerbation of neuronal damage following forebrain ischemia: mieroglial, astrocytic and endothelial alterations.Aeta Neuropathol(Ber1), l998, 96 (6):610-620.
    [2] LIU PING. Calcium and cerebral ischemic injury [J]. Foreigh Medical Sciences Section On Neurology &Neurosurgery, 2002,29(3): 274-276(in Chinese).
    [3] GUO LIANJUN. GABAA Receptor and Cerebral Ischemia [J].Journal of Xianning College (Medical Sciences), 2004,18(2): 77-80(in Chinese).
    [4] RAJESH GARG, AJAY CHAUDHURL, FREDERICK MUNACHAUER, et al. Hyperglycemia, insulin, and acute ischemic stroke: a mechanistic justification for a trial of insulin infusion therapy[J]. Stroke, 2006,37(1): 267-273.
    [5] WU XIAOLI, CUI XIUYU. Excitatory Amino Acid And Ischemic Preconditioning/Hypoxic Precond itioning [J]. Nervous Diseasesand Mental Hygjene,2005,5(4): 247-250(in Chinese).
    [6] KONTOS HA. Oxygen radicals in cerebral ischemia: the 2001Willis lecture[J]. Stroke, 2001,32:2712-2716.
    [7] BATES B, HIRT L,THOMAS AA, et al. Neurotrophin -3 promotes cell death induced in cerebral ischemia, oxygen-glucose deprivation, and oxidatve strss:possible involvement of oxygen free radicals[J]. Neurobiol Dis, 2002,9(1):24-37
    [8] WU WEI, SHI JIXIN. The Progress In Mechanism And Therapy Research Of Neuronal Injuries After Ischemia-Reperfusion[J]. Journal of Chinese Microcirculation, 2003, 7(6):391-394(in chinese).
    [9] LIU ZONGCHAO, GUAN EN, RAO MINGLI. NF-κB and Cerebral Ischemia[J]. Journal of Apoplexy and Nervous Diseases, 2005,22(1):88-90(in Chinese)
    [10] CUI RUI. NF-κB And Hypoxic-Ischemia Reperfusion Injuries [J]. Foreign Medicine:Anesthesiology and Resusciation, 2002,23: 264-266(in Chinese)
    [11] YANG J, BERNIER SM, ICHIM TE, et al. LF15-0195 generates tolerogenic dendritic cells by suppression of NF-κB signaling through inhibiton of IKK activity [J]. Leukocyte Biology, 2003,74(3):438-447.
    [12] ZHANG DONGMEI, LIU JUXIANG, CHEN HONGBING, et al.Expression of NF-κB, IL-6 in cerebral tissue of rats with ischemic reperfusion injury [J]. Chinese Journal of Gerontology, 2005,25,(11):1363-1366(in Chinese).
    [13] CHEN YANG, SHUAI JIE. Hyperglycemia and Cerbral Ischemial[J]. Cerebrovascular Diseases Foreign Medical Sciences, 2002, 10(3): 217-219(in Chinese).
    [14]苗明三,孙丽敏,苗艳艳.葛根总黄酮对糖尿病合并脑缺血再灌注小鼠模型的影响[J].医药论坛杂志, 2005,26(22): 22-24.
    [15]郭子江,张仲慧,尹琳等.高血糖对大鼠脑缺血再灌注损伤脑梗死体积和ICAM-1表达及白细胞浸润的影响[J].中国民康医学杂志2005, 17(5):207-21.
    [16]朱艳军,李强,陈波等. P38MAPK激活在高血糖致大鼠微血管通透性增高过程中的作用[J].基础医学与临床, 2006, 26(9):947-951.
    [17]王洪新,梅元武.超负荷血糖对脑缺血再灌注损伤大鼠脑细胞凋亡的研究[J]. ChinJ Clin Neurosci 2005 ,13(2):161~165.
    [18]王建平,尹帅领,孙乐羽.高血糖对缺血再灌注大鼠脑组织中MMP-9及对血脑屏障的影响[J],中国实用神经疾病杂志, 2007, 10(4):17-19.
    [19] Sgambato V, Vanhoutte P, Pages C, et a1. In vivo expression and regulation of Elk-1, a target of the extracellular-regulated kinase signaling pathway, in the adult rat brain[J]. Neurosci, 1998, 18(1): 214.
    [20]聂莹雪,崔丽颖,郭玫等.大鼠局灶性脑缺血再灌注损伤后细胞外信号调节激酶2的表达[J].中国老年学杂志, 2007,27:1033-1035.
    [21]陈万欣,张志民,张凤侠等.脑损伤大鼠皮质神经细胞凋亡过程中细胞外调节激酶通路的作用[J].中国组织工程研究与临床康复, 2007, 11(29): 5765-5768.
    [22]邵建林,万晓红,王俊科等.一氧化氮通过环磷酸鸟苷激活细胞外信号调节激酶信号通路在/P90RSK大鼠脑缺血再灌注损伤中的作用[J].中国临床康复, 2006, 10(30):89-91.
    [23] Franceschini D, Giusti P, et al. MEK inhibition exacerbates ischemic calcium imbalance and neuronal cell death in rat cortical cultures [J]. Eur J Pharmacol. 2006, 553(1-3):18-27.
    [24]李金星,朱贤立,李玉等.大鼠弥漫性脑损伤阻滞ERK通路下调脑组织MMP-9 mRNA的表达[J].中国临床神经外科杂志, 2006, 11(5):288-291.
    [25]王耀岐,李军,曹红等. ERK和JNK通路在沙土鼠脑缺血预处理中的表达及作用[J].中国药理学通报, 2006, 22(3):337-340.
    [26]吕建瑞,马宏钟,薛荣亮.全脑缺血再灌注损伤后ERK在大鼠海马的表达及热休克预处理对其表达的影响[J]. 2006,27,(16):1449-1452.
    [27]刘颖,陆锦标,陈琦等. MAPK/ERK激酶-ERK信号通路参与外源性bFGF对缺氧-复氧损伤后星形胶质细胞内Egr-1结合活性的调节[J]. Neuroscience Bulletin, 2007, 23(4): 221-228.
    [28]姜美子,崔京男,金永民等.东菱迪芙对大鼠局灶性脑缺血再灌注后JNK和ERK活性的影响[J].中风与神经疾病杂志, 2006, 23(2):190-192.
    [29]吴彬,胡胜娣,潘慧等.可卡因-苯丙胺调节转录肽激活ERK促进海马神经元合成BDNF [J].中国病理生理杂志, 2007,23(7):1289-1292.
    [30]张晓燕,杨金升,谷有全等.脑心通对脑缺血再灌注损伤细胞外信号调节激酶活化的影响[J].世界中医药, 2007,2(3): 168-171.
    [31] OtterbeinlL E,ChoilA M K. Heme oxygenase: colors of defense against cellular stress[J ]. Am J Physiol Lung Cell Mol Physiol,2000,279(6):1029 - 37.
    [32] MorseD,ChoiAugustine M K. Heme oxygenase-1: the“emerging molecule”has arrived[J ]. Am J Respir Cell Mol Biol, 2002, 27(1): 8 - 16.
    [33] Roux P P, Richards S A, Blenis J. Phosphorylation of p90 ribosomal S6 kinase (RSK)regulates extracellular signal-regulated kinase docking and RSK activity[J]. Mol Cell Biol,2003, 23(14):4796 - 804.
    [34] Zhang X C, Bedard E L, Potte R, et al. Mitogen-activated protein kinases regulate HO-1 gene transcription after ischemia-reperfusion lung injury[J ]. Am J Physiol Lung Cell Mol Physiol, 2002, 283(4): 815 - 29.
    [35] Hoetzel A, Geiger S, Loop T, et al. Differential effects of volatile anesthetics on hepatic heme oxygenase-1 expression in the rat[J]. Anesthesiology,2002,97(6):1318 - 21.
    [36] Krolikowski J G, Weihrauch D, BienengraeberM, et al. Role of Erk1/2, p70s6K, and eNOS in isoflurane-induced cardioprotection during early reperfusion in vivo[J ]. Can J Anaesth, 2006, 53(2):174 - 82.
    [37]邵建林,王玲玲,王俊科等.脱氟烷通过ERK/ P90RSK信号通路诱导HO-1-mRNA表达抑制缺血/再灌注损伤神经元的凋亡[J].中国药理学通报2007; 23(3):390~394.
    [38]王来栓,邵肖梅,杨毅等.亚低温对新生大鼠缺氧缺血性脑损伤p-ERK/p38 MAPK的影响[J],中华围产医学杂志, 2006, 9(5):337-340.
    [39] Sung SM, Jung DS, Kwon CH, et al. Hypoxia/reoxygenation stimulates proliferation through PKC-dependent activation of ERK and Akt in mouse neural progenitor cells [J]. Neurochem Res. 2007, 32(11):1932-9.
    [40] Wu HW, Li HF, Wu XY,et al. Reactive oxygen species mediate ERK activation through different Raf-1-dependent signaling pathways following cerebral ischemia[J]. Neurosci Lett. 2008 Feb 20;432(2):83-7
    [41] Sawe N, Steinberg G, Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke[J]. J Neurosci Res. 2008 Jan 11
    [42] Ansar S, Edvinsson L. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage[J]. Stroke. 2008 Jan;39(1):185-90.
    [43] D?uzniewska J, Beresewicz M, Wojewódzka U, et al. Transient cerebral ischemia induces delayed proapoptotic Bad translocation to mitochondria in CA1 sector of hippocampus[J]. Brain Res Mol Brain Res. 2005 Feb 18;133(2):274-80.
    [44] Chen XQ, Chen JG, Zhang Y, et al. 14-3-3gamma is upregulated by in vitro ischemia and binds to protein kinase Raf in primary cultures of astrocytes[J]. Glia. 2003 Jun;42(4):315-24.
    [45] Zablocka B, Dluzniewska J, Zajac H, et al. Opposite reaction of ERK and JNK in ischemia vulnerable and resistant regions of hippocampus: involvement of mitochondria[J]. Brain Res Mol Brain Res. 2003 Feb 20;110(2):245-52.
    [46] Namiecińska M, Marciniak K, Nowak JZ. VEGF as an angiogenic, neurotrophic, and neuroprotective factor[J]. Postepy Hig Med Dosw (Online). 2005;59:573-83.
    [47] Yeung K, Janosch P, et al. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein [J]. Mol Cell Biol. 2000 May;20(9):3079-85.
    [48] Trakul N, Menard RE, et al. Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation[J]. J Biol Chem. 2005 Jul 1;280(26):24931-40.
    [49] Koh PO. Estradiol prevents the injury-induced decrease of 90 ribosomal S6 kinase (p90RSK) and Bad phosphorylation[J]. Neurosci Lett. 2007 Jan 22;412(1):68-72.
    [50] Wu H, Li H, Guo J. Spry2-mediated inhibition of the Ras/ERK pathway through interaction with Src kinase following cerebral ischemia[J]. Brain Inj. 2008 Mar;22(3):275-81.
    [51] Stumm R, Kolodziej A, Prinz V, et al. Pituitary adenylate cyclase-activating polypeptide is up-regulated in cortical pyramidal cells after focal ischemia and protects neurons from mild hypoxic/ischemic damage[J]. J Neurochem. 2007 Nov;103(4):1666-81.
    [52] Wang ZQ, Chen XC, Yang GY, Zhou LF. U0126 prevents ERK pathway phosphorylation and interleukin-1beta mRNA production after cerebral ischemia[J]. Chin Med Sci J. 2004Dec;19(4):270-5.
    [53]段惠军,李英,张涛等.高糖对大鼠肾小球系膜细胞ERK转导通路的影响[J].中国病理生理杂志,2007,23(2):416.
    [54] Du J, Zeng J, Ou X, et al. Methylglyoxal downregulates Raf-1 protein through a ubiquitination-mediated mechanism[J]. Int J Biochem Cell Biol. 2006;38(7):1084-91.
    [55] Kowluru RA, Kowluru A, et al. Potential contributory role of H-Ras, a small G-protein, in the development of retinopathy in diabetic rats[J]. Diabetes. 2004 Mar;53(3):775-83.
    [56] Luo J, Kintner DB, et al. ERK1/2-p90RSK-mediated phosphorylation of Na+/H+ exchanger isoform 1. A role in ischemic neuronal death[J]. J Biol Chem. 2007 Sep 21;282(38):28274-84.
    [57] Puebla C, Farías M, González M, et al. High D-glucose reduces SLC29A1 promoter activity and adenosine transport involving specific protein 1 in human umbilical vein endothelium[J]. J Cell Physiol. 2007 Dec 6;215(3):645-656
    [58]黄海长,刘森炎,梁燕等.转化生长因子-β1通过活化ERK途径和上调Ets-1蛋白刺激基质金属蛋白酶-9产生[J].中华医学杂志, 2005, 85(5):328-331.
    [59]张建忠,景丽等.氯氨酮减轻高血糖大鼠脑缺血所致的神经元凋亡[J].第四军医大学学报2006;27(18):1645-1648.
    [60]杨晓,李彩蓉等.表没食子儿茶素没食子酸酯对糖尿病大鼠肾脏细胞外调节蛋白激酶活性的影响[J].中华肾脏病杂志, 2007,23(3): 184-188.
    [61] Reece EA, Wu YK, et al. Dietary vitamin and lipid therapy rescues aberrant signaling and apoptosis and prevents hyperglycemia-induced diabetic embryopathy in rats[J]. Am J Obstet Gynecol. 2006 Feb;194(2):580-5.
    [62] Chen BL, Ma XD, et al. MAP kinase signal pathway in hyperglycemia-induced congenital neural tube defects[J]. Yi Chuan. 2004 Sep;26(5):615-9.
    [63]孙艳玲,林洪丽,吴泰华等. ERK1/2 MAPK通路在TIMP-1的抑制高糖诱导的大鼠肾小球系膜细胞凋亡中的作用[J].中华肾脏病杂志, 2006, 22(9): 554-558.
    [64] Hong OK, Lee SH, Rhee M, et al. Hyperglycemia and hyperinsulinemia have additive effects on activation and proliferation of pancreatic stellate cells: possible explanation of islet-specific fibrosis in type 2 diabetes mellitus[J]. J Cell Biochem. 2007 Jun 1;101(3):665-75.
    [65] S Jiang, R Yu, et al. An experimental study on traumatic brain injury for inducing neuronal apoptosis in rats[J]. Hua Xi Yi Ke Da Xue Xue Bao, 2000; 31(3): 358-61.
    [66] CY Huang, M Fujimura, et al. SOD1 down-regulates NF-kappaB and c-Myc expression in mice after transient focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 2001; 21(2): 163-73.
    [67] Laybutt DR, Glandt M, et al. Critical reduction in beta-cell mass results in two distinct outcomes over time. Adaptation with impaired glucose tolerance or decompensated diabetes[J]. J Biol Chem. 2003 Jan 31;278(5):2997-3005.
    [68] Cai F, Li CR, Wu JL, et al. Theaflavin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-inflammatory effect and modulation of STAT-1[J]. Mediators Inflamm. 2006;2006(5):30490.
    [69] Planas AM, Gorina R, Chamorro A. Signalling pathways mediating inflammatory responses in brain ischaemia[J]. Biochem Soc Trans. 2006 Dec;34(Pt 6):1267-70.
    [70] Marrero MB, Fulton D, et al. Angiotensin II-Induced Signaling Pathways in Diabetes[J]. Curr Diabetes Rev. 2005 May;1(2):197-202.
    [71] Elizabeth AC, Lisa AM. M ammalian phospholipases A2:mediators of inflammation,proliferation and apoptosis[J]. Prog Lip Res, 2001, 40:167
    [72] Wang Xiaohui,Yan Guangtao,Wang Luhan,et a1. The mediating role of cPLA2 in IL-18 and IL-6 release in LPS-induced HeLa cells [J]. Cell Biochem Funct, 2004, 22(1):41-44.
    [73] Li Jun, Sun Mei, Han Mei. NO, SOD and NOS in injuried liver of fetus rat with intrauterine asphyxia[J]. Word Chin J Digestol, 2002, 10: 177-181.
    [74] Evans J H, Spencer D H, Zweifach A, et al. Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes[J]. J BioChem, 2001, 276:30150-30160.
    [75]程清洲,戴冀斌,谭政.大鼠脑缺血再灌注后海马区cPLA2、Caspase-3的分布[J].卒中与神经疾病, 2002, 9(5):281-284.
    [76]王东吉,武凡.三七皂甙单体Rb1对大鼠脑缺血再灌注时脑细胞凋亡及cPLA2蛋白表达的影响[J].中国康复医学杂志,2007,22(5):414-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700