肝硬化模型比较蛋白质组学研究及扶正化瘀方对血浆蛋白质组影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肝硬化模型肝组织比较蛋白质组学研究
     研究背景与目的:肝硬化是临床常见的慢性进行性肝病,是我国疾病防治的主要任务之一。肝纤维化是肝硬化发展的必经病理过程。蛋白质组学应用各种技术手段从整体角度分析蛋白质组成、表达水平与修饰状态的动态变化,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律。疾病蛋白质组学为探讨疾病的发病机制、预防、早期诊断和治疗提供重要理论基础。本实验构建CCl_4诱导大鼠肝硬化模型,建立肝组织蛋白质组研究的技术平台;掌握进行大鼠肝组织双向凝胶电泳所需要的各种条件;了解CCl_4诱导大鼠肝硬化模型肝组织蛋白质组变化,为进一步研究肝纤维化、肝硬化发病机制奠定基础。
     方法:将雄性S-D大鼠随机分成3组:正常对照组(n=6)给予橄榄油腹腔注射;肝硬化模型组(n=10)用CCl_4(CCl_4/橄榄油:v/v=1/1)按1ml/kg腹腔注射,每周2次,共8周诱导肝硬化模型。病理组织学观察肝纤维化严重程度并评分,用Masson三色染色法进行胶原染色。计数肝窦内α-SMA阳性细胞数观察肝星状细胞的活化情况。对肝组织进行双向凝胶电泳,应用PDQUST图像分析软件将肝硬化模型组与对照组肝组织2-DE胶图进行匹配,不同胶匹配点相对含量差异2倍及其以上的点为差异蛋白质点。对差异蛋白质点进行胶内消化、MALDI-TOF-TOF-MS质谱仪鉴定和数据库搜索确定差异蛋白质。用免疫印迹法验证双向凝胶电泳质谱技术鉴定的蛋白质表达改变。
     结果:肝硬化模型组肝组织病理均提示典型纤维间隔和假小叶形成,α-SMA阳性细胞表达明显增加。肝组织双向电泳凝胶重复性满意,显示的蛋白斑点在分布、背景等方面基本一致。通过PDQUST软件分析的差异蛋白质点经胶内消化、质谱鉴定、蛋白质数据库搜索有33个点得到鉴定,分别属于28种蛋白质。在这些差异蛋白质中,有5种蛋白质仅在肝硬化模型组中出现;2种蛋白质仅在正常组出现;12种蛋白质在肝硬化模型组上调,9种蛋白质下调。这些蛋白质按其功能特性可分为与细胞增殖、能量代谢相关酶类、物质代谢和转运相关蛋白、细胞骨架和运动相关蛋白、氧化应激、内质网应激和热休克相关蛋白质。免疫印迹法进一步证实了蛋白质组技术显示的alpha crystallin B chain变化趋势。
     结论:成功构建肝硬化大鼠动物模型。利用蛋白质组学技术,从整体角度将蛋白质变化综合一起,得到CCl_4诱导肝硬化大鼠肝组织蛋白质组的特征性变化。在CCl_4诱导大鼠肝硬化形成过程中,肝组织中差异表达的蛋白质可能通过影响细胞增殖、能量代谢、物质转运代谢、细胞骨架形成和运动、应激反应等参与、反映肝硬化的发生发展过程。
     第二部分肝硬化模型血浆比较蛋白质组学研究
     研究背景与目的:许多疾病可导致血浆中多种蛋白质改变,这种特征性变化对疾病诊断和疗效监测具有重要意义。迄今为止人类仅对少数血浆蛋白作为临床常规监测用于某些疾病的诊断。血浆蛋白质组的发展拓宽了对血浆蛋白质的认识。全面而系统地认识肝纤维化和肝硬化时血浆蛋白改变情况,将有助于肝纤维化、肝硬化的发病机制、诊断和药效研究。本实验将初步建立血浆蛋白质组技术平台;掌握去除大鼠血浆白蛋白和球蛋白的方法以及进行血浆双向凝胶电泳所需要的各种条件;了解CCl_4诱导大鼠肝硬化疾病模型的血浆蛋白质组变化,为进一步研究肝硬化的发病机制和诊断奠定基础。
     方法:用CCl_4制备肝硬化动物模型,单纯橄榄油腹腔注射组作为对照组。造模8周后抽取血液,同组间血浆混匀,去除血浆中白蛋白和球蛋白。进行双向凝胶电泳,应用PDQUST图像分析软件对各种条件下除血浆白蛋白和球蛋白的效果进行评价。将肝硬化模型组与对照组血浆2-DE胶图进行匹配,不同胶匹配点相对含量的差异2倍及其以上的点为差异蛋白质点。对差异蛋白质点进行胶内消化、MALDI-TOF-TOF-MS质谱仪鉴定和数据库搜索鉴定差异蛋白质。用免疫印迹法验证双向凝胶电泳质谱技术所鉴定的蛋白质表达改变。
     结果:使用Albumin/IgG Removal Kit可去除血浆中大部分白蛋白和球蛋白。去除后,双向凝胶电泳显示的蛋白质斑点由处理前的260±15个增加到598±42个。胶重复性满意,显示蛋白斑点在分布、背景等方面基本一致。通过PDQUST软件分析的差异蛋白质点经胶内消化、质谱鉴定、蛋白质数据库搜索有20个点得到鉴定,分别属于16种蛋白质:血浆谷胱甘肽过氧化物酶、谷胱甘肽过氧化物酶前体、载脂蛋白A-Ⅳ前体、载脂蛋白E、结合珠蛋白、前白蛋白、血浆视黄醇结合蛋白、α1-抗胰蛋白酶、微管相关调节激酶1、α1-巨球蛋白、补体4、α抑制剂H4重链、转铁蛋白、肝脏再生相关蛋白、波形纤维蛋白和RIKEN cDNA1700025816。免疫印迹法进一步证实了蛋白质组研究显示的结合珠蛋白变化趋势。
     结论:去除大鼠血浆中的白蛋白和球蛋白可明显增加双向凝胶电泳蛋白质点的显示,优化了血浆2-DE图谱。本研究建立的血浆蛋白质组研究平台可用于疾病机制的研究。CCl_4诱导大鼠肝硬化模型血浆中细胞防御和免疫相关蛋白质、物质转运蛋白质、细胞骨架和转化调控蛋白、急性时相反应蛋白等在表达量上不同程度地发生了变化,提示这些蛋白质表达改变可能与肝硬化的发病机制有关,反映了肝硬化时血浆蛋白质的整体改变。
     第三部分扶正化瘀方干预肝硬化大鼠血浆比较蛋白质组研究
     研究背景与目的:运用蛋白质组学方法,分析中药复方对CCl_4诱导肝纤维化、肝硬化大鼠血浆与正常血浆蛋白质组差异表达,以期筛选出与药物作用相关的差异蛋白质,为肝纤维化、肝硬化的药物治疗机制和疗效评价提供依据。目前扶正化瘀方在治疗肝炎后肝硬化及慢性乙型肝炎肝纤维化方面取得良好的临床效果,其抗肝纤维化作用机制是多方面的,具有复方中药的多成分、多环节、多层次、多靶点作用特点,蛋白质组学为从整体水平研究扶正化瘀方开辟了新途径。以CCl_4大鼠肝纤维化模型作为研究对象,探讨肝纤维化过程中血浆蛋白质组表达改变,揭示扶正化瘀方对肝纤维化多途径作用机制及其疗效评价。
     方法:将雄性S-D大鼠随机分为三组,正常对照组(n=6)给予橄榄油腹腔注射;肝硬化模型组(n=10)给予CCl_4(CCl_4/橄榄油:v/v=1/1)按1ml/kg腹腔注射,每周2次,共8周诱导肝硬化模型;扶正化瘀方组(n=10)在CCl_4腹腔注射同时给予扶正化瘀方灌胃。8周后通过Masson三色染色法用图像分析仪自动分析肝脏胶原面积。应用双向凝胶电泳技术经银染显色和PDQUST7.3软件分析凝胶图像,对三组中表达均有差异的蛋白质点用基质辅助激光解吸电离飞行时间串连质谱进行鉴定。
     结果:扶正化瘀方干预组较模型组肝纤维化程度明显减轻,胶原纤维在肝内沉积减少(8.9%±3.7%vs.12.4%±4.7%,P<0.05)。实验去除血浆中的高丰度蛋白质可获得重复性较好的血浆蛋白质图谱。共鉴定出10个明显差异表达的蛋白质。在这些蛋白质中,血浆谷胱甘肽过氧化物酶及其前体、前白蛋白、结合珠蛋白、载脂蛋白A-Ⅳ前体、补体4、α抑制剂H4重链和微管相关调节激酶1在肝硬化大鼠血浆中表达减少,扶正化瘀方干预组表达增加,肝脏再生相关蛋白和波形纤维蛋白在肝硬化大鼠血浆中表达增加,扶正化瘀方干预组表达减少。
     结论:动物实验证实扶正化瘀方具有抗纤维化、肝硬化的作用。本实验初步探索了药物干预下的血浆蛋白质组研究,从血浆蛋白质整体变化角度阐述了扶正化瘀方抗肝纤维化和肝硬化作用,研究发现扶正化瘀方可能通过促进蛋白质合成、抗氧化、调控细胞增殖和转化等多方面发挥抗纤维化的作用。蛋白质组研究可能为复方中药疗效监测和作用机制研究开辟新途径。
Part one
     Hepatic comparative proteomic study of cirrhotic rats induced by CCl_4Background and aims: Cirrhosis is a popular chronic progressive disease in China,and how to cure it is a major task of the Chinese medical specialists. Liver fibrosis isan indispensable pathological status during the development of cirrhosis. Proteomicsis a novel method to determine the constitution of proteins and to analyze the dynamicchanges of the expression and modification of proteins from an integrative level, bywhich the interaction and relationships among proteins are studied and the functionsof proteins and the principles of cellular activities are discovered. Disease proteomicsaims to lay theoretic foundation for studying the mechanisms, prevention,pre-diagnosis and therapy of diseases. In the present study a rat model ofCCl_4-induced cirrhosis was constructed, a platform for proteome of liver tissue wasbuilt up, and the conditions for two-dimensional gel electrophoresis of rat liver tissuewere determined. By analyzing the proteome of the rat model of CCl_4-inducedcirrhosis the study laid a basis for the further research of liver fibrosis, and cirrhosis.Methods: Male S-D rats were randomly divided into three groups: the control group(n=6) was injected with olive oil into abdominal cavity, cirrhotic animal model group(n=10) was treated in the same way with CCl_4(CCl_4/olive oil:v/v=1/1) 1ml/kg twicea week and for 8 weeks. The degree of liver fibrosis and inflammation grade wasobserved using histopathology study, collagen were visualized by Masson-trichrome--staining.α-SMA positive cells in hepatic sinus were counted to observe the activationof hepatic stellate cell. After two-dimensional gel electrophoresis the gels fromcirrhosis group and control group were analyzed by image analysis softwarePDQUST to match same points. Twice or more different content were considereddifferent points. Those points were digested, analyzed with MALDI-TOF-TOF-MSmass spectrograph and searched in protein database. The expression of protein wasidentified by immunoblotting test.
     Results: Typical fibrotic septa and pseudo-lobule were observed in cirrhotic animal model. The expression ofα-SMA positive cell increased. The reproducibility wassatisfying, proteins had approximately the same distribution and background. Afterprotein digestion in situ and mass spectrometric analysis, 33 points corresponding to28 proteins were identified. In those different proteins, 5 proteins only appear in livercirrhotic animal model group, 2 proteins only appear in control group. 12 proteinsexpression was promoted and 9 depressed in cirrhotic animal model group. Thoseproteins function in cell proliferation, energy metabolization, substancemetabolizetion and transport of acting enzyme, cytoskeleton and protein movement,oxidation stress, endoplasmic reticulum stress and hot shock stress respectively. Thechange trend of alpha crystalline B chain was further approved by immunoblottingtest.
     Conclusions: We successfully established a cirrhotic rat model. The change of thoseproteins was considered integratively, from which we obtained the characteristicchange in the liver tissue of cirrhotic animal induced by CCl_4. On the progress ofcirrhosis, the expression of diverse proteins may participate in the occurring anddeveloping of cirrhosis in the ways of cell proliferation, energy metabolization,substance metabolization, cytoskeleton structure and protein movement, and stressrespond.
     Part two
     Plasma comparative proteomic study of cirrhotic rats induced by CCl_4Background and aims: Many diseases may affect proteins in plasma. Thecharacteristic changes are important to diagnosing diseases and monitoring curativeeffect. So far, only few plasma proteins are used in clinic as markers of some diseases.With the development of plasma proteome, more plasma proteins are entering ourview. Studying the change of plasma proteins of hepatic fibrosis and cirrhosis helps tounderstand the pathologic process, diagnoses and curative effect. In this research, weestablished a plasma proteomic technologic platform, on which we tried to establishthe methods of eliminating rat plasma albumin and globulin, and to optimize theconditions forplasma two-dimensional gel electrophoresis. It can be served as a basisfor further researches in cirrhosis by studying the change of plasma proteome of CCl_4-induced rat cirrhostic model.
     Methods: Cirrhotic rats were induced by CCl_4 injection to abdominal cavity, whileolive oil was administrated in the control group. Eight weeks after injection, bloodwas collected and plasma from the same group was mixed. Albumin andimmunoglobulin were wiped off. After two-dimensional gel electrophoresis, gel mapswere analyzed with PDQUST. Points from model group and control group werematched, and twice or more different content were considered different points. Thosepoints were digested, analyzed with MALDI-TOF-TOF-MS mass spectrograph andsearched from protein database. The expression of protein was identified byimmunoblotting test.
     Results: Albumin/IgG Removal Kit can wipe off most of albumin andimmunoglobulin from plasma. After the wiping, the number of gel map protein pointsincreases from 260±15 to 598±42. The repeatability was satisfying, and proteins hadapproximately same distribution and background. After protein digestion in situ andmass spectrometric analysis, 20 points are identified which belongs to 16 kinds ofproteins: plasma glutathione peroxidase, glutathione peroxidase precursor,apolipoprotein A-Ⅳprecursor, apolipoprotein E, haptoglobin, prealbumin,retinol-binding protein, alpha-1-antitrypsin, serine/threonine-protein kinase MARK1,alpha-1-Macroglobulin, complement component 4, inter-alpha inhibitor H4 heavychain, transferring, liver regeneration-related protein LRRG03, vimentin, RIKENcDNA1700025B16. The change trend of haptoglobin was further approved byimmunoblotting test.
     Conclusions: Wiping off albumin and immunoglobulin from plasma can increase theprotein points display obviously, and optimize the plasma 2-DE map. The platformestablished in our study can be used in studying disease mechanism. In the liver ofcirrhotic rat model induced by CCl_4, those protein participate in cell defense andimmunity, protein transport and cytoskeleton and transformation, and acute phasereactive proteins. This hint the change of protein may be induced by the pathogenesis ofcirrhosis, those protein may take part in diverse ways during the occurring anddeveloping of cirrhosis.
     Part three
     The effect of Fuzheng Huayu Decoction on plasma proteome of cirrhotic rats Background and aims: Using proteomics we studied the role of Chinese traditionalmedicine compound on the differential expression of proteins in liver fibrosis andcirrhosis induced by CCl_4. The aim is to find the proteins involved in the certainphysiological and pathological progress, and to lay foundation for the early diagnoseand therapy for liver fibrosis and cirrhosis. Presently, Chinese traditional medicine hasshown obviously advantage in treatment of liver fibrosis. Fuzheng Huayu Decoctionhas nice clinic result in treating post-hepatitis cirrhosis and chronic hepatitis B liverfibrosis. The antifibrotic mechanism is various, and the compound works in amulti-component, multi-step, multi-arrangement, multi-target way. Proteomics opensup a new way in researching Fuzheng Huayu Decoction from an integrative level. Westudied the change of plasma proteome in the progress of cirrhosis in rat modelinduced by CCl_4, and tried to find how the multi-way function mechanism works intreating liver fibrosis.
     Methods: Male S-D rats were randomly divided into three groups: the control group(n=6) was injected with olive oil into abdominal cavity, cirrhotic animal model group(n=10) was treated in the same way with CCl_4(CCl_4/olive oil:v/v=1/1) 1ml/kg.Animals in Fuzheng Huayu group received compound intragastric administration inaddition of CCl_4 abdominal cavity injection. Eight weeks later, collagen was stainedby Masson-trichrome-staining and analyzed by image analysis software. Collagenfiber was half quantitively analyzed with image analysis software. After twodimensional gel electrophoresis, silver staining and analyzing gel image by softwarePDQUST 7.3, the diversity of protein points was analyzed with mass spectrometricanalysis.
     Results: The degree of fibrosis of Fuzheng Huayu group was much slighter than thatof model group. The collagen deposited in liver decreased (8.9%±3.7% vs. 12.4%±4.7%, P<0.05). Wiping off most albumin and immunoglobulin from plasma can getmore satisfying repeatability. In this research, we got 10 evidently diversityexpression proteins. In those proteins, plasma glutathione peroxidase and itsprecursor, prealbumin, haptoglobin, precusor of ApoA-Ⅳ, complement component4, inter-alpha-inhibitor H4 heavy chain and serine/threonine-protein kinase MARK1exhibited less expression in cirrhosis group and more expression in Fuzheng Huayugroup. The expression of proteins related to regeneration of liver and vimentinincreased in cirrhosis group and decreased in Fuzheng Huayu group.
     Conclusions: Animal trial confirmed that Fuzheng Huayu Decoction had the functionof anti-fibrosis and anti-cirrhosis. The plasma proteomic study on the pharmaceuticalintervention of Fuzheng Huayu decoction explained the mechanism of its anti-fibrosisand anti-cirrhosis function. It is discovered that Fuzheng Huayu decoction mayfunction as anti-fibrosis agent through accelerating the protein composing,anti-oxidation, adjusting the cell proliferation and transformation. Proteomicsexplores a new way in the research of inspecting the curative effect and mechanism ofChinese traditional medicine compound.
引文
[1] Friedman SL. Liver fibrosis-from bench to bedside [J]. J Hepatol, 2003, 38(Suppl 1):S38-53.
    [2] Bhaskar ME. Management of cirrhosis and ascites [J]. N Engl J Med, 2004, 351(3): 300-301.
    [3] Iredale JP. Cirrhosis: new research provides a basis for rational and targeted treatments[J]. BMJ, 2003, 327(7407):143-147.
    [4] Furukawa F, Matsuzaki K, Mori S, et al. p38 MAPK mediated fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts[J]. Hepatology, 2003, 38(4):879-889.
    [5]Pinzani M. PDGF and signal transduction in hepatic stellate cells[J]. Front Biosci, 2002, 7: d1720-1726.
    
    [6]Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words[J]. Electrophoresis, 1998,19(11):1853-1861.
    
    [7]Pandey A,Mann M, Proteomics to study genes and genomes[J]. Nature, 2000, 405(6788): 837-846.
    
    [8]Anderson NG, Matheson A, Anderson NL. Back to the future: the human protein index (HPI) and the agenda for post-proteomic biology [J]. Proteomics, 2001,1(1):3-12.
    
    [9]Fields S. Proteomics in genomeland[J]. Science,2001,291(5507):1221-1224.
    
    [10]Kahn P. From genome to proteome: looking at cell's proteins[J]. Science, 1995, 270(5235):369-370.
    
    [11]Gavin AC,Bosche M,Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes[J]. Nature, 2002, 415(6868): 141-147.
    
    [12]Hamdan M, Righetti PG. Modern strategies for protein quantification in proteome analysis: advantages and limitations[J]. Mass Spectrom Rev, 2002,21(4): 287-302.
    
    [13]Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old old fashioned but it still climbs up the mountains[J]. Proteomics, 2002, 2(1): 3-10.
    
    [14]Muller EC, Schumann M, Rickers A, et al. Study of Burkitt lymphoma cell line proteins by high resolution two-dimensional gel electrophoresis and nanoeletrospray mass spectrometry [J]. Electrophoresis, 1999,20(2), 320-330.
    
    [15]Righetti PG, Campostrini N, Pascali J, et al. Quantitative proteomics: a review of different methodologies [J]. Eur J Mass Spectrom, 2004,10(3): 335-348.
    
    [16]Chromy BA, Gonzales AD, Perkins J, et al. Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins[J]. J Proteome Res, 2004, 3(6), 1120-1127.
    
    [17]Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics, 2004,4(12): 3665-3685.
    
    [18] Shaw MM, Riederer BM. Sample preparation for two-dimensional gel electrophoresis[J]. Proteomics, 2003, 3 (8) : 1408-1417.
    
    [19] Sato AK, Sexton DJ, Morganelli LA,et al. Development of mammalian serum albumin affinity purification media by peptide phage display [J]. Biotechnol Prog,2002,18(2): 182-192.
    [20]Mann M, Jensen ON. Proteomic analysis of post-translational modifications[J]. Nat Biotechnol, 2003,21(3): 255-261.
    
    
    [21]Arrell DK, Neverova I, Fraser H. Proteomic analysis of pharmacologically preconditioned cardiomyocytes reveals novel phosphorylation of myosin light chain 1[J]. Circ Res, 2001, 89(6): 480-487.
    
    [22]Shevchenko A, Loboda A, Shevchenko A, et al, MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research[J]. Anal Chem, 2000, 72(9): 2132-2141.
    
    [23]Wolters DA, Washburn MP, Yates JR,et al. An automated multidimensional protein identification technology for shotgun proteomics [J]. Anal. Chem., 2001, 73(23): 5683-5690.
    
    [24]Lim SO, Park SJ, Kim W, et al. Proteome analysis of hepatocellular carcinoma[J]. Biochem Biophy Res Commun, 2002, 291(4): 1031-1037.
    
    [25]Xu XQ, Leow CK, Lu X, et al. Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics[J] . Proteomics, 2004,4(10):3235-3245.
    
    [26]Anderson NL, Taylor J, Hofmann JP, et al. Simultaneous measurement of hundreds of liver proteins: application in assessment of liver function[J]. Toxicol pathol, 1996, 24(1): 72-76.
    
    [27]Kristensen DB, Kawada N, Imamura K, et al. Proteome analysis of rat hepatic stellate cells[J]. Hepatology, 2000; 32(2): 268-277.
    
    [28]Kawada N, Kristensen DB, Asahina K, et al. Characterization of a stellate cell activation associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells[J]. J Biol Chem, 2001; 276(27): 25318-25323.
    
    [29]Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim DH, Nakajima Y, Seki S, Kawada N, Yoshizato K. Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis[J]. Lab Invest, 2004;84(1):91-101.
    
    [30]Low TY, Leow CK,Salto-Tellez M, et al. A proteomic analysis of thioacetamide-induced hepatotoxicity and cirrhosis in rat livers[J]. Proteomics, 2004, 4(12):3960-3974.
    
    [31]Zhu XD, Zhang WH, Li CL, et al. New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology [J]. World J Gastroenterol, 2004; 10(16): 2327-2329.
    
    [32]He QY, Lau GK, Zhou Y, et al. Serum biomarkers of hepatitis B virus infected liver inflammation: a proteomic study[J]. Proteomics, 2003; 3(5):666-674.
    [33] 刘莺,刘平,刘成海,等.细胞增殖与凋亡相关蛋白质在大鼠肝纤维化形成与消减中的动态变化[J].中华肝脏病杂志,2005,13(8):563-566.
    [34] 张其胜,John M Luk.血浆蛋白质组模式预测鼠不同时期肝纤维化[J].中华肝脏病杂志,2006,14(9):695-697.
    [35] Echan LA, Tang HY, Ali-khan N, et al. Depletion of multiple high-abundance proteins improves protein profiling capacitities of human serum and plasma[J]. Proteomics, 2005, 5(13):3292-3303.
    [36] Liu P, Hu YY, Liu C, et al. Multicenter clinical study on Fuzhenghuayu capsule against liver fibrosis due to chronic hepatitis B[J]. World J Gastro--enterol, 2005, 11 (19):2892-2899.
    [37] Liu P, Liu CH, Liu C, Xu LM. Serum pharmacological effcts of fuzheng huayu decoction on ito cell proliferation and collagen synthesis in rats[J]. C JIM, 1998, 4(2): 118-122.
    [38] 顾宏图,胡义扬,徐列明,等.扶正化瘀方预防实验性肝纤维化作用的组织学观察[J].中西医结合肝病杂志,1997,7(4):224-226.
    [39] 刘平,刘成,陈高朝,等.扶正化瘀319方治疗慢性乙型肝炎及其对纤维化血清学指标的影响[J].中国中西医结合杂志,1996,16(10):588-592.
    [40] 刘成,姜春萌,刘平.扶正化瘀方对大鼠肝星状细胞旁分泌活化途径的抑制作用[J].中华消化杂志,2001,21(6):367-368.
    [41] 蒋健,谭善忠,谭春雨,等.扶正化瘀方对肝纤维化大鼠弹力蛋白酶表达的影响[J].中华肝脏病杂志,2005,13(4):307-308.
    [42] 刘莺,刘平,王磊.扶正化瘀方对肝纤维化大鼠不同病理阶段肝组织蛋白质组变化的影响[J].中华肝脏病杂志,2006,14(6):422-425.
    [1] Friedman SL. Liver fibrosis - from bench to bedside [J]. J Hepatol, 2003, 38(Suppl 1):S38-53.
    [2] Bhaskar ME. Management of cirrhosis and ascites [J]. N Engl J Med, 2004, 351(3): 300-301.
    [3] Iredale JP. Cirrhosis: new research provides a basis for rational and targeted treatments[J]. BMJ, 2003, 327(7407): 143-147.
    [4] Furukawa F, Matsuzaki K, Mori S, et al. p38 MAPK mediated fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts[J]. Hepatology, 2003, 38(4):879-889.
    [5] Pinzani M. PDGF and signal transduction in hepatic stellate cells[J]. Front Biosci, 2002, 7: d1720-1726.
    [6] Hamdan M, Righetti PG, Modem strategies for protein quantification in proteome analysis: advantages and limitations[J]. Mass Spectrom Rev, 2002, 21(4): 287-302.
    [7] Lim SO, Park S J, Kim W, et al. Proteome analysis of hepatocellular carcinoma[J]. Biochem Biophy Res Commun, 2002, 291(4): 1031-1037.
    [8] Xu XQ, Leow CK, Lu X, et al. Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics [J]. Proteomics, 2004, 4(10):3235-3245.
    [9] Anderson NL, Taylor J, Hofmann JP, et al. Simultaneous measurement of hundreds of liver proteins: application in assessment of liver function[J]. Toxicol pathol, 1996, 24(1): 72-76.
    [10] Kristensen DB, Kawada N, Imamura K, et al. Proteome analysis of rat hepatic stellate cells[J]. Hepatology, 2000; 32(2): 268-277.
    [11] Low TY, Leow CK, Salto-Tellez M, et al. A proteomic analysis of thioacetamide-induced hepatotoxicity and cirrhosis in rat livers[J]. Proteomics, 2004, 4(12): 3960-3974.
    [12] 刘莺,刘平,刘成海,等.细胞增殖与凋亡相关蛋白质在大鼠肝纤维化形成与消减中的动态变化[J].中华肝脏病杂志,2005,13(8):563-566.
    [13] 王伯法,李玉松,黄高升.病理学技术[M].北京:人民卫生出版社,2000.
    [14] Scheuer PJ. Classification of chronic viral hepatitis: a need for reassessment[J]. J Hepatol, 1991, 13(3):372-374.
    [15] Jonsson JR, Clouston AD, Ando Y, et al. Angiotension-converting enzyme inhibition attenuates the progression of rat hepatic fibrosis[J]. Gastroenterology 2001;121(1):148-155.
    [16] Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels[J]. Anal.Chem, 1996, 68(5):850-858.
    [17] Gharahdaghi F, Weinberg CR, Meagher DA, et al. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity [J]. Electrophoresis, 1999, 20(3): 601-605.
    [18] Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in rodents[J]. Methods Mol Med, 2005, 117:237-250.
    [19] Ariosto F, Riggio O, Cantafora A, et al. Carbon tetrachloride-induced experimental cirrhosis in the rat: a reappraisal of the model[J]. Eur Surg Res, 1989, 21(5):280-286.
    
    
    [20]Proctor E, Chatamra K. Standardized micromodular cirrhosis in the rat[J]. Eur Surg Res 1984;16(3):182-186.
    
    [21]Schoslak M, Schwall G, Poznanovic S, et al. Annexin A3 quantification from supernatants of urine after dre provides a novel and clinically easy available biomarker for the non-invasive diagnosis of prostate cancer [J]. European Urology Supplements, 2007, 6(2): 51.
    
    [22]Niimi S, Harashima M, Gamou M, et al. Expression of annexin A3 in primary cultured parenchymal rat hepatocytes and inhibition of DNA synthesis by suppression of annexin A3 expression using RNA interference [J]. Biol Pharm Bull, 2005,28(3): 424-428.
    
    [23] Harshima M, Niimi S, Koyangi H, et al. Change in Annexin A3 expression by regulatory factors of hepatocyte growth in primary cultured rat hepatocytes [J]. Biol Pharm Bull, 2006,29(7): 1339-1343.
    
    [24] Park JE, Lee DH, Lee JA, et al. Annexin A3 is a potential angiogenic mediator[J]. Biochem Biophys Res Commun, 2005, 337(4): 1283-1277.
    
    [25]Knights EM Jr, Whitehouse JL, Hue AC, et al. Serum guanase determination: a liver-function test[J]. J Lab Clin Med, 1965, 65:355-360.
    
    [26]Shiota G, Fukada J, Ito T, et al. Clinical significance of serum guanase activity in various liver disease[J]. Jpn J Med, 1989,28(1): 22-24.
    
    [27]Matsunaga H, Honda H, Kubo K, et al. Clinical value of the determination of serum guanase activity in patients with chronic hepatitis type C [J]. J Med Invest, 2003,50(1-2):64-71.
    
    [28]Cipollini G, Berti A, Fiore L, et al. Down-regulation of the nm23.hl gene inhibits cell proliferation[J]. Int J Cancer, 1997,73 (2): 297- 302.
    
    [29]Caligo MA, Cipollini G, Petrini M, et al. Down regulation of NM23.H1, NM23.H2 and c-myc genes during differentiation induced by 1,25 dihydroxyvitamin D3[J]. Leuk Res, 1996,20(2):161-167.
    
    [30]Arnaud-Dabernat S, Masse K, Smani M, et al. Nm23-M2/NDP kinase B induces endogenous c-myc and nm23-Ml/NDP kinase A overexpression in BAF3 cells. Both NDP kinases protect the cells from oxidative stress-induced death[J]. Exp Cell Res, 2004, 301 (2): 293-304.
    
    [31] Kohler C, Gahm A, Noma T, et al. Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis[J]. FEBS Lett,1999, 447(1): 10-12.
    
    [32] Martinez L, Jacquet S, Terce F, et al. ATP synthase and apolipoprotein synthase: new players in atherosclerosis[J]. Med Sci, 2003,19(8-9):795-796.
    
    
    [33] Lee KA, Shim JH, Kho CW, et al. Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics[J]. Proteomics, 2004,4(3):839-848.
    
    [34]Arakaki TL, Pezza JA,Cronin MA, et al. Structure of human brain fructose 1,6-(bis)phosphate aldolase: linking isozyme structure with function. Protein Sci, 2004,13(12):3077-3084.
    
    [35] Taguchi K, Takagi Y. Aldolase[J]. Rinsho Byori, 2001, Suppl 116:117-124.
    
    [36] An JH, Seong J, Oh H,et al. Protein expression profiles in a rat cirrhotic model induced by thioacetamide[J]. Korean J Hepatol, 2006,12(1):93-102.
    
    [37] Beynon RJ, Hurst JL. Multiple roles of major urinary proteins in the house mouse, Mus domesticus[J]. Biochem Soc Trans, 2003, 31(1):142-146.
    
    [38] Zabel C, Chamrad DC, Priller J, et al. Alterations in the mouse and human proteome caused by Huntington's disease[J]. Mol Cell Proteomics, 2002, l(5):366-375.
    
    [39] Liang G, Miao X, Zhou Y, et al. A functional polymorphism in the SULT1A1 gene (G638A) is associated with risk of lung cancer in relation to tobacco smoking [J]. Carcinogenesis, 2004,25(5):773-778.
    
    [40]Mehrotra MP, Pursnani ML, Singh MM, et al. Serum ornithine carbamyl transferase (OCT) activity in viral hepatitis[J]. J Assoc Physicians India, 1981, 29(6):457-462.
    
    [41]Watanabe Y, Mori S, Fujiyama S, et al. Clinical evaluation of serum ornithine carbamoyltransferase by enzyme-linked immunosorbent assay in patients with liver diseases[J]. Enzyme Protein,1994-1995,48(1):18-26.
    
    [42] Yang WL, Nair DG, Makizumi R, et al. Heat shock protein 70 is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation[J]. Ann Surg Oncol, 2004,11(4): 399-406.
    
    [43] Mashimo Y, Mochida S, Inao M, et al. Decreased expression of smooth muscle a actin in activated rat hepatic stellate cells at the S-phase of the cell cycle in vitro[J]. Hepatology Research, 1999,15(1): 22-31.
    
    
    
    [44]Rocket DC, Chunq JJ. Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility [J]. J Clin Invest, 1995, 95(3): 1199-1206.
    [45] Hu L, Lau SH, Tzang CH, et al. Association of Vimentin overexpression and hepatoc ellular carcinoma metastasis[J]. Olwogene, 2004, 23(1): 298-302.
    [46] 叶丽虹,秦宵然,张晓东,等.原肌球蛋白、波形纤维蛋白和热休克蛋白70在肝癌转移亚细胞中表达上调[J].中国生物化学与分子生物学报,2004,21,(2):244-249.
    [47] Niki T, Pekny M, Hellemans K, et al. Class Ⅵ intermediate filament protein nestin is induced during activation of rat hepatic stellate cells[J]. Hepatology, 1999, 29(2):520-527.
    [48] Sargsyan E, Baryshev M, Szekely L, et al. Identification of ERp29, an endoplasmic reticulum lumenal protein, as a new member of the thyroglobulin folding complex [J]. J Biol Chem, 2002, 277(19): 17009-17015.
    [49] Mkrtchian S, Fang C, Hellman U, et al. A stress-inducible rat liver endoplasmic reticulum protein, ERp29[J]. Eur J Biochem, 1998, 251 (1-2):304-313.
    [50] Ren H, Du N, Liu G. Analysis of variabilities of serum proteomic spectra in patients with gastric cancer before and after operation[J].World J Gastroenterol, 2006, 12(17):2789-2792.
    [51] Weiss Sachdev S, Sunde RA. Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and -4 in rat liver[J]. Biochem J, 2001, 357(3): 851-858.
    [52] Corrocher R, Casaril M, Bellisola G, et al. Severe impairment of antioxygenation system in human hepatoma[J]. Cancer, 1986, 58 (8): 1658-1662.
    [53] Loguercio C, Del Vecchio Blanco C, Coltorti M, et al. Alteration of erythrocyte glutathione, cysteine and glutathione synthetase in alcoholic and non-alcoholic cirrhosis[J]. 1992, 52(3): 207-213.
    [54] Yanagawa T, Omura K, Harada H, et al. Peroxiredoxin Ⅰ expression in tongue squamous cell carcinomas as involved in tumor recurrence[J]. Int J Oral Maxillofac Surg, 2005, 34(8): 915-920.
    [55] Immenschun S, Fahimi HD, Baumqart-Voqt E. Complementary regulation of heme oxygenase-1 and peroxiredoxin Ⅰ gene expression by oxidative stress in the liver[J]. Cell Mol Biol, 2005, 51(5):471-477.
    [56] Bhat SP, Nagineni CN. alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues[J]. Biochem Biophys Res Commun, 1989, 158(1):319-325.
    [57]Chepelinsky AB, Piatigorsky J, Pisano MM, et al. Lens protein gene expression: alpha-crystallins and MIP[J]. Lens Eye Toxic Res, 1991, 8(2-3):319-344.
    
    [58]Iwaki T, Kume-Iwaki A, Goldman JE. Cellular distribution of alpha B-crystallin in non-lenticular tissues [J]. J Histochem Cytochem, 1990, 38(1):31-39.
    
    [59]Iwaki T, Iwaki A, Tateishi J, et al. Alpha B-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers[J]. Am J Pathol, 1993,143(2):487-495.
    
    [60]Iwaki T, Kume-Iwaki A, Liem RK, et al. Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain[J]. Cell, 1989, 57(1):71-78.
    
    [61]Klemenz R, Andres AC, Frohli E, et al. Expression of the murine small heat shock proteins hsp 25 and alpha B crystallin in the absence of stress[J]. J Cell Biol, 1993,120(3):639-645.
    
    [62]van Sechel AC, Bajramovic JJ, van Stipdonk MJ, et al. EBV-induced expression and HLA-DR-restricted presentation by human B cells of alpha B-crystallin, a candidate autoantigen in multiple sclerosis[J]. J Immunol, 1999,162(1):129—135.
    
    [63] Horwitz J. Alpha-crystallin[J]. Exp. Eye Res, 2003, 76 (2): 145-153.
    
    [64] MacRae TH. Structure and function of small heat shock/alphacrystallin proteins: established concepts and emerging ideas[J]. Cell Mol Life Sci, 2000, 57 (6): 899-913.
    
    [65]Takayama S, Reed JC, Homma S. Heat-shock proteins as regulators of apoptosis[J]. Oncogene, 2003,22(56): 9041-9047.
    
    [66] Arrigo AP. sHsp as novel regulators of programmed cell death and tumorigenicity[J]. Pathol Biol, 2000, 48 (3): 280-288.
    
    [67] Liu B, Bhat M, Nagaraj RH. Alpha B-crystallin inhibits glucose-induced apoptosis in vascular endothelial cells[J]. Biochem Biophys Res Commun, 2004, 321 (1): 254-258.
    
    [68] Cassiman D, Libbrecht L, Desmet V, et al. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers[J]. J Hepatol, 2002, 36 (2): 200-209.
    
    [69]Cassiman D, Roskams T, van Pelt J, et al. Alpha B-crystallin expression in human and rat hepatic stellate cells[J]. J Hepatol, 2001, 35(2):200-207.
    
    [70]Lang A, Schrum LW, Schoonhoven R, et al. Expression of small heat shock protein alpha B-crystallin is induced after hepatic stellate cell activation[J]. Am J Physiol Gastrointest Liver Physiol, 2000,279(6):G1333-1342.
    [71] Taimr P, Higuchi H, Kocova E, et al. Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis [J]. Hepatology, 2003, 37(1):87-95.
    [1] Xu XQ, Chon K, Lu X, et al. Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics[J]. Proteomics, 2004, 4(10): 3235-3245.
    [2] Zhu XD, Zhang WH, Li CL, et al. New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology[J]. World J Gastroenterol, 2004, 10(16): 2327-2329.
    [3] 张其胜,John M Luk.血浆蛋白质组模式预测鼠不同时期肝纤维化.中华肝脏病杂志,2006,14(9):695-697.
    [4] Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old old fashioned but it still climbs up the mountains[J]. Proteomics, 2002, 2(1), 3-10
    [5] Muller E, Schumann M, Rickers A, et al. Study of Burkitt lymphoma cell line proteins by high resolution two-dimensional gel electrophoresis and nanoeletrospray mass spectrometry[J]. Electrophoresis, 1999, 20(2), 320-333
    [6] He QY, Lau GK, Zhou Y, et al. Serum biomarkers of hepatitis B virus infected liver inflammation: a proteomic study[J]. Proteomics, 2003, 3(5):666-674.
    [7] Echan LA, Tang HY, Ali-Khan N, et al. Depletion of multiple high abundance proteins improves protein profiling capacities of human serum and plasma[J]. Proteomics, 2005, 5 (13), 3292-3303.
    [8] Bjorhall K, Miliotis T, Davidsson P, et al. Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples[J]. Proteomics, 2005, 5(1): 307-317.
    [9] Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric Sequencing of Proteins silver-stained polyacrylamide gels[J]. Anal.Chem, 1996, 68(5):850-858.
    [10] Gharahdaghi F, Weinberg CR, Meagher DA, et al. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity [J]. Electrophoresis, 1999, 20(3): 601-605.
    [11] Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects[J]. Mol Cell Proteomics, 2002, 1 (3):845-867.
    [12] Schwegler EE, Cazares L, Steel LF, et al. SELDI-TOF-MS profiling of serum for detection of the progression of chronic hepatitis C to hepatocellular carcinoma [J]. Hepatology, 2005, 41 (3): 634-642.
    [13] Zheng GX, Wang CX, Qu X. Establishment of serum protein pattern for screening colorectal cancer using SELDI-TOF-MS[J]. Exp Oncol, 2006, 28(4):282-287.
    [14] Tirumalai RS, Chan KC, Prieto DA, et al. Characterization of the low molecular weight human serum proteome[J]. Mol. Cell. Proteomics, 2003,2(10):1096-1103.
    
    [15]Putnam RW. The Plasma Proteins[M]. Academic Press, New York 1975.
    
    [16]Britton RS, Bacon BR. Role of free radicals in liver diseases and hepatic fibrosis[J]. Hepato Gastroenterology, 1994,41(4):343-348.
    
    [17]Corrocher R, Casaril M, Bellisola G, et al. Severe impairment of antioxygenation system in human hepatoma[J]. Cancer, 1986, 58 (8):1658-1662.
    
    [18]Roongpisuthipong C, Sobhonslidsuk A, Nantiruj K, et al. Nutritional assessment in various stages of liver cirrhosis[J]. Nutrition, 2001,17(9):761-765.
    
    [19]El-Ghmati SM, Arredouani M, Van Hoeyveld EM, et al. Haptoglobin interacts with the human mast cell line HMC-1 and inhibits its spontaneous proliferation[J]. Scand J Immunol, 2002, 55 (4):352-358.
    
    [20]Bacq Y, Schillio Y, Brechot J-F et al. Decrease of haptoglobin serum level in patients with chronic viral hepatitis C[J]. Gastroenterol Clin Biol, 1993, 17(5):364-369.
    
    [21]Louagie HK, Brouwer JT, Delanghe JR et al. Haptoglobin polymorphism and chronic hepatitis C[J]. J Hepatol, 1996, 25(1):10-14.
    
    [22]Francoise Imbert-Bismut, Vlad Ratziu, Laurence Pieroni. Biochemical markers of liver fibrosis in patients with hepatitis C virus infection: a prospective study [J]. The Lancet, 2001, 357(9262):1069-1075.
    
    [23]Pineiro M, Andres M, Iturralde M, et al. ITIH4 (Inter-Alpha-Trypsin Inhibitor Heavy Chain 4) Is a New Acute-Phase Protein Isolated from Cattle during Experimental Infection[J]. Infect Immun, 2004, 72(7):3777-3782.
    
    [24]Choi-Miura NH, Takahashi K, Yoda M, et al. The novel acute phase protein, IHRP, inhibits actin polymerization and phagocytosis of polymorphonuclear cells[J]. Inflamm Res, 2000,49 (6): 305-310.
    
    [25]Bhanumathy CD, Tang Y, Monga SP, et al. Itih-4, a serine protease inhibitor regulated in interleukin-6-dependent liver formation: role in liver development and regeneration[J]. Dev Dyn, 2002,223(1): 59-69.
    
    [26]Adoncecchi L, Marrocco W, Suraci C. Effect of renal and liver failure on blood levels of vitamin A, its precursor (beta-carotene) and its carrier proteins (prealbumin and retinol binding protein) [J]. Boll Soc Ital Biol Sper, 1984, 60(4):881-886.
    
    [27]Calamita A, Dichi I, Papini-Berto SJ. Plasma levels of transthyretin and retinol-binding protein in Child-A cirrhotic patients in relation to protein-calorie status and plasma amino acids, zinc, vitamin A and plasma thyroid hormones [J]. Arq Gastroenterol, 1997, 34(3): 139-147.
    
    
    
    
    [28]Wu AL, Windmueller HG. Relative contributions by liver and intestine to individual plasma apolipoproteins in the rat[J]. J Biol Chem, 1979, 254(15):7316-7322.
    
    [29]Qin X, Swertfeger DK, Zheng S, et al. Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation[J]. Am J Physiol, 1998, 274 (5 Pt 2):1836-1840.
    
    
    [30]Di Bisceglie AM, Axiotis CA, Hoofnagle JH, et al. Measurements of iron status in patients with chronic hepatitis[J]. Gastroenterology, 1992,102 (6): 2108-2113.
    
    [31]Riggio O, Montagnese F, Fiore P, et al. Iron overload in patients with chronic viral hepatitis: how common is it[J]. Am J Gastroenterol, 1997, 92(8):1298-1301.
    
    [32]Pietrangelo A. Iron, oxidative stress and liver fibro genesis[J]. J Hepatol, 1998,28 (Suppl 1):8-13.
    
    [33]Drewes G, Ebneth A, Preuss U, et al. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption[J] . Cell, 1997, 89 (2): 297-308.
    
    [34]Kato T, Satoh S, Okabe H, et al. Isolation of a novel human gene, MARKL1, homologous to MARK3 and its involvement in hepatocellular carcinogenesis[J]. Neoplasia, 2001, 3(1):4-9.
    
    [35]Hu L, Lau SH, Tzang CH, et al. Association of Vimentin overexpression and hepatoc ellular carcinoma metastasis [J]. Olwogene, 2004, 23(1): 298-302.
    
    [36]Niki T, Pekny M, Hellemans K, et al. Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology, 1999, 29(2):520-527.
    [1] Liu P, Hu YY, Liu C, et al. Multicenter clinical study on Fuzhenghuayu capsule against liver fibrosis due to chronic hepatitis B [J]. World J Gastroenterol, 2005, 11(19):2892-2899.
    [2] Liu P, Liu CH, Liu C, Xu LM. Serum pharmacological effcts of fuzheng huayu decoction on ito cell proliferation and collagen synthesis in rats[J]. C JIM, 1998, 4(2): 118-122.
    [3] 顾宏图,胡义扬,徐列明,等.扶正化瘀方预防实验性肝纤维化作用的组织学观察[J].中西医结合肝病杂志,1997,7(4):224-226.
    [4] 刘平,刘成,陈高朝,等.扶正化瘀319方治疗慢性乙型肝炎及其对纤维化血清学指标的影响[J].中国中西医结合杂志,1996,16(10):588-592.
    [5] 刘成,姜春萌,刘平.扶正化瘀方对大鼠肝星状细胞旁分泌活化途径的抑制作用[J].中华消化杂志,2001,21(6):367-369.
    [6] 蒋健,谭善忠,谭春雨,等.扶正化瘀方对肝纤维化大鼠弹力蛋白酶表达的影响[J].中华肝脏病杂志,2005,13(4):307-308.
    [7] 刘莺,刘平,王磊.扶正化瘀方对肝纤维化大鼠不同病理阶段肝组织蛋白质组变化的影响[J].中华肝脏病杂志,2006,14(6):422-425.
    [8] Xu XQ, Leow CK, Lu X, et al. Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics[J]. Proteomics, 2004, 4:3235-3245.
    [9] Zhu XD, Zhang WH, Li CL, et al. New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology[J]. World J Gastroenterol, 2004, 10(16): 2327-2329.
    [10] 张其胜,John M Luk.血浆蛋白质组模式预测鼠不同时期肝纤维化[J].中华肝脏病杂志,2006,14(9):695-697.
    [11] Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old old fashioned but it still climbs up the mountains[J]. Proteomics, 2002, 2(1):3-10.
    [12] Muller EC, Schumann M, Rickers A, et al. Study of Burkitt lymphoma cell line proteins by high resolution two-dimensional gel electrophoresis and nanoelectrospray mass spectrometry[J]. Electrophoresis, 1999, 20(2), 320-333.
    [13] Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevent activation of hepatic stellate cells and liver fibrosis in rats[J]. Gastroenterology, 2003, 125 (1): 178-191.
    [14] Qi Z, Atsuchi N, Ooshima, et al. Blockade of type β transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat[J]. Proc Natl Acad Sci USA, 1999, 96(5):2345-2349.
    [15] Horie T, Sakaida I, Yokoya F, et al. L-cysteine administration prevents liver fibrosis by suppressing hepatic stellate cell proliferation and activation[J]. Biochem Biophys Res Commun, 2003, 23:305(1):94-100.
    [16] Oben JA, Roskams T, Yang S, et al. Hepatic fibrogenesis requires sympathetic neutransmitters[J]. Gut, 2004, 53(3):438-445.
    [17] Wu J, Zem MA. Hepatic stellate cells: a target for the treatment of liver fibrosis. [J]. J Gastroenterol, 2000, 35(9): 665-672.
    [18] Friedman SL. Liver fibrosis-from bench to bedside[J]. J Hepatol, 2003, 38(Suppl 1):S38-53.
    [19] 王晓玲,刘平,刘成海,等.拆方扶正化瘀方对肝细胞及肝星状细胞功能的影响[J].世界华人消化杂志,1999,7(8):663-665.
    [20] Gutierrez-Ruiz MC, Robles-Diaz G, Kershenobich D. Emerging concepts in inflammation and fibrosis[J]. Arch Med Res, 2002, 33 (6):595-599.
    [21] Efsen E, Bonacchi A, Pastacaldi S, et al. Agonist-specific regulation of monocyte chemoattractant protein-1 expression by cyclooxygenase metabolites in hepatic stellate cells [J]. Hepatology, 2001, 33 (3):713-721.
    [22] Britton RS, Bacon BR. Role of free radicals in liver diseases and hepatic fibrosis [J]. Hepato Gastroenterology, 1994, 41 (4):343-348.
    [23] Corrocher R, Casaril M, Bellisola G, et al. Severe impairment of antioxidant system in human hepatoma [J]. Cancer, 1986, 58 (8): 1658-1662.
    [24] 刘成,胡义扬,王臻楠,等.二甲基亚硝胺致大鼠脂质过氧化变化与药物干预作用[J].中华肝脏病杂志,2001,9(Suppl 7):18-20.
    [25] Wu AL, Windmueller HG. Relative contributions by liver and intestine to individual plasma apolipoproteins in the rat[J]. J Biol Chem, 1979, 254(15): 7316-7322.
    [26] Qin X, Swertfeger DK, Zheng S, et al. Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation[J]. Am J Physiol Heart Circ Physiol, 1998, 274(5 Pt 2): H1836-1840.
    [27] Arredouani M, Matthijs P, Van Hoeyveld E, et al. Haptoglobin directly affects T cells and suppresses T helper cell type 2 cytokine release[J]. Immunology, 2003, 108(2):144-151.
    [28] Pineiro M, Andres M, Iturralde M, et al. ITIH4 (Inter-Alpha-Trypsin Inhibitor Heavy Chain 4) Is a New Acute-Phase Protein Isolated from Cattle during Experimental Infection[J]. Infection and Immunity, 2004, 72(7): 3777-3782.
    [29] Choi-Miura NH, Takahashi K, Yoda M, et al. The novel acute phase protein, IHRP, inhibits actin polymerization and phagocytosis of polymorphonuclear cells[J]. Inflamm Res, 2000,49(6): 305-310.
    
    [30]Bhanumathy CD, Tang Y, Monga SPS, et al. Itih-4, a serine protease inhibitor regulated in interleukin-6-dependent liver formation: role in liver development and regeneration[J]. Dev Dyn, 2002, 223(1): 59-69.
    
    [31] Gerard D, Andreas E, Ute P, et al. MARK, a Novel Family of Protein Kinases That Phosphorylate Microtubule-Associated Proteins and Trigger Microtubule Disruption[J] . Cell, 1997, 89(18): 297-308.
    
    [32]Kato T, Satoh S, Okabe H, et al. Isolation of a novel human gene, MARKL1, homologous to MARK3 and its involvement in hepatocellular carcinogenesis [J]. Neoplasia, 2001, 3(1): 4-9.
    [1] Anderson N. Proteome and proteomics: new technologies, new concepts, and new words [J]. Electrophoresis, 1998, 19(11):1853-1861.
    [2] Rossignol M. Analysis of the plant proteome. Curr Opin Biotechnol [J]. 2001, 12(2): 131-134:
    [3] Gygi SP. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J]. Nature Biotechnol, 1999, 17(10): 994-999.
    [4] Zeindl EE, Haraida S, Liebmann S, et al. Detection and identification of tumor-associated protein variants in human hepatocellular carcinomas [J]. Hepatology, 2004, 39(2): 540-549.
    [5] Yu LR, Shao XX, Jiang WL, et al. Proteome alterations in human Hepatoma cells transfected with antisense epidermal growth factor receptor sequence [J]. Electrophoresis, 2001, 22(14): 3001-3008.
    [6] Tan GS, Lo SL, Lim JW, et al, Proteome analysis of human hepatocellular carcinoma tissues by two-dimensional difference gel electrophoresis and mass spectrometry [J]. Proteomics, 2005, 5(8): 2258-2271.
    [7] Ding SJ, Li Y, Shao XX, Zhou H, Zeng R, et al. Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials [J]. Proteomics, 2004, 4(4): 982-994.
    [8] Poon TC, Johnson PJ. Proteome analysis and its impact on the discovery of serological tumor markers [J]. Clinica Chemical Acta, 2001, 313 (12): 231-239.
    [9] Schwegler EE, Cazares L, Steel LF, et al. SELDI-TOF-MS profiling of serum for detection of the progression of chronic hepatitis C to hepatocellular carcinoma [J]. Hepatology. 2005, 41(3): 634-642.
    [10] Kristensen DB, Kawada N, Imamura K, et al. Proteome analysis of rat hepatic stellate cells [J]. Hepatology, 2000, 32(2): 268-277.
    [11] Kawada N, Kristensen DB, Asahina K, et al. Characterization of a stellate cell activation-associated protein(stap) with peroxidase activity found in rat hepatic stellate cells [J]. J Biol Chem, 2001, 276(27): 25318-25323.
    [12] 刘莺,刘平,刘成海,等.细胞增殖与凋亡相关蛋白质在大鼠肝纤维化形成与消减中的动态变化[J].中华肝脏病杂志,2005,13(8):563-566.
    [13] Xu XQ, Chon K, Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics [J]. Proteomics, 2004, 4(10): 3235-3245.
    [14] Zhu XD, Zhang WH, Li CL, New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology [J]. World J Gastroenterol, 2004, 10(16): 2327-2329
    [15] He QY, Lau GK, Zhou Y, et al. SertLrn biomarkers of hepatitis B virus infected liver inflammation: a proteomic study [J]. Proteomics, 2003, 3(5): 666-674.
    [16] Anderson NL, Taylor J. Simultaneous measurement of hundreds of liver proteins: application in assessment of liver function [J]. Toxicol pathol, 1996, 24(1): 72-76.
    [17] Page MJ, Amess B, Rohlff C, et al. Proteomics: a major new technology for the drug discovery process [J]. Drug Discov Today, 1999, 4(2):55-62.
    [18]Chevalier S, Macdonald N, Tonge R, et al. Proteomic analysis of differential protein expression in primary hepatocytes induced by EGF, tumour necrosis factor alpha or the peroxisome proliferators nafenopin [J]. Eur J Biochem, 2000, 267(15): 4624-4634.
    
    [19]Tian Q, Stepaniants SB, Mao M, et al. Integrated genomic and proteomic analyses of gene expression in Mammalian cells [J]. Mol Cell Proteomics, 2004, 3 (10): 960-969.
    
    [20]Tonge R, Shaw J, Middleton B, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology [J]. Proteomics, 2001,1(3): 377-396.
    [1] Anderson N L, Anderson N G. The human plasma proteome: history, character, and diagnostic prospects. Mol Cel Proteomics, 2002, 1 (11): 845-867.
    [2] Granger J, Siddiqui J, Copeland S, et al. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics, 2005, 5(18): 4713-4718.
    [3] Bjorhall K, Miliotis T, Davidsson P, et al. Comparison of different depletion strategies for impro- -ved resolution in proteomic analysis of human serum samples. Proteomics, 2005, 5(1): 307-317.
    [4] Rodland KD. Proteomics and cancer diagnosis: the potential of mass spectrometry. Clin Biochem, 2004, 37(7): 579-583.
    [5] Poon TC, Johnson PJ. Proteome analysis and its impact on the discovery of serological tumor markers. Clinica Chemical Acta, 2001, 313(12): 231-239.
    [6] Feng JT, Liu YK, Song HY, et al. Heat-shock protein 27: A potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics, 2005, 5(17): 4581-4588.
    [7] Ward DG. Cheng YN, Kontchou GN, et al. Changes in the serum proteome associated with the development of hepatocellular carcinoma in hepatitis C-related cirrhosis. British Journal of Cancer, 2006, 94(2): 287-292.
    [8] 黄成,樊嘉,周俭,等.肝细胞癌门静脉癌栓形成相关的血清蛋白质分子标记物研究.中华医学杂志,2005,85(11):781-785.(Huang C, Fan J, Zhou J, et al. Study of serum proteome biomarkers with relation to the formation of portal vein tumor thrombi in hepatocellular carcinoma patients. National Medical Journal of China, 85(11): 781-785.)
    [9] Kawakami T, Hoshida Y, Kanai F, et al. Proteomic analysis of sera from hepatocellular carcinoma patients after radiofrequency ablation treatment. Proteomics, 5 (16): 4287-4295.
    [10] Xu XQ, Chon K. Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics. Proteomics, 2004,4(10): 3235-3245.
    
    [11]Zhu XD, Zhang WH, Li CL, et al. New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology. World J Gastroenterol, 2004,10(16): 2327-2329
    
    [12]Poon TC, Hui AY, Chan HL, et al. Prediction of Liver Fibrosis and Cirrhosis in chronic hepatitis B infection by serum proteomic fingerprinting: a pilot study. Clin Chem 2005, 51(2): 328-335.
    
    [13]He QY, Lau GK, Zhou Y, et al. Serum biomarkers of hepatitis B virus infected liver inflammation: a proteomic study. Proteomics, 2003, 3(5): 666-674.
    
    [14]Tien CC, Chena JB, Wang CC, et al. Preliminary proteome analysis of rabbit serum with hepatic failure. Enzyme and Microbial Technology, 2003, 33(4): 488-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700