软组织肿瘤中染色体13q片段及该区域基因状态的分子细胞遗传学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软组织肿瘤形态复杂,诊断困难,生物学行为也难以预测。随着分子细胞遗传学技术的发展和应用,许多细胞遗传学异常和特异的染色体易位被发现,不仅可以帮助确定诊断,而且还可能提示预后信息。研究发现多种软组织肿瘤存在染色体13q的异常,比较常见的是13q12-14,13q21-22和13q34区域的缺失。位于13q14位点的肿瘤抑制基因Rb,以及RFP2、KCNRG和位于13q21位点的KLF5基因可能是肿瘤抑制基因,在多种肿瘤的发生、发展中起一定的作用,但具体机制尚不清楚。
     胃肠道间质肿瘤(GIST,Gastrointestinal stromal tumor)是近年来才被认识的一类软组织肿瘤,但研究进展较快。目前对于GIST的诊断、治疗等已经建立起一套比较规范化的方案,但是在如何判断生物学行为和预后以及如何确定诊断等方面还存在不少问题。人们希望能从对GIST的生物学、遗传学研究中找到解决办法。有研究发现位于染色体4q12的KIT和PDGFRA发生突变导致持续活化是GIST的关键性的致瘤事件,是肿瘤发生的早期事件。另外,14q11.1-12和14q23-24,22q13.33和22q11.22的缺失比较常见,也被认为是较早期事件。有研究报道1p和13q的缺失可能在GIST进展中起一定作用,并可能作为提示预后的指标,但相关的研究并不多,具体的基因改变尚不清楚,是否存在肿瘤抑制基因还未被确定。
     本实验通过自制探针,采用双色荧光原位杂交(FISH)的方法检测了分别位于13q14和13q21上的RP11-685115,RP11-352N7,RP11-505F3等3个位点在40例软组织肿瘤患者(41个肿瘤)和95例胃肠道间质肿瘤患者(100个肿瘤)中的改变情况,并且复习总结各肿瘤的临床病理资料,分析13q异常和肿瘤临床病理资料的关系。
     本实验结果显示染色体不稳定性在软组织肿瘤中有一定发生率,可能与软组织肿瘤的发生有关。染色体13q的异常在不同来源的软组织肿瘤中发生率不同,
Soft tissue rumors have various histological subtypes, with different morphological architectures and prognoses. They are challenging to pathologists due to their unusual character and the difficulties in predicting outcomes. Cytogenetic abnormalities and specific translocations are found in soft tissue tumors more commonly than in any other group of solid tumors. These abnormalities not only are useful in differentiating diagnoses but also providing insights into prognosis and pathobiology. Abnormality of chromosome 13q is found in many kinds of soft tissue tumors. The most common alterations are loss of 13q12-14, 13q21-22 or 13q34. Tumor suppressor gene Rb plays an important role in development and aggression of many kinds of tumors. Gene RFP2, KCNRG in 13q14 and gene KLF5 in 13q21 are also candidates for such a course. But few researches have been done with the status of chromosome 13q or the condition of the corresponding genes in various subtypes of soft tissue tumor.
    A particular subtype of soft tissue tumor, gastrointestinal stromal tumor (GIST), emerged as a distinct entity in recent years while rapid progress about its tumorigenesis and morphological variants has been achieved. Standard protocols have established for diagnose and treatment of GIST, but difficulties are still common in differentiating diagnoses and predicting biological behavior. Recently many studies have been carried out to reveal the biological and genetic underpinnings of GISTs. Constitutive activation of the KIT or PDGFRA receptor tyrosine kinase is considered as a central and early pathogenetic event in most GISTs and generally results from oncogenic mutations. Loss of 14q11.1-12, 14q23-24, 22q13.33 and 22q11.22 are also common and early event in oncogenesis of GISTs. Some researchers have found loss of 1p and 13q in GISTs and presumed they were most likely the chromosomal loci
引文
1. Hogendoorn PC, Collin F, Daugaard S, et al. Changing concepts in the pathological basis of soft tissue and bone sarcoma treatment. Eur J Cancer. 2004 40: 1644-1654.
    2. Dahlen A, Debiec-Rychter M, Pedeutour F, et al. Clustering of deletions on chromosome 13 in benign and low-malignant lipomatous tumors. Int J Cancer. 2003 20; 103: 616-623.
    3. Skapek SX, Chui CH. Cytogenetics and the biologic basis of sarcomas. Curr Opin Onco. 2000; 12: 315-322.
    4. Bennicelli JL, Barr FG. Genetics and the biologic basis of sarcomas. Curr Opin Onco. 1999; 11: 267-274.
    5. Kuroki T, Tajima Y, Matsuo K, et al. Genetic alterations in gallbladder carcinoma. Surg Today. 2005; 35: 101-105.
    6. Fromont G, Joulin V, Chantrel-Groussard K,et al. Allelic losses in localized prostate cancer: association with prognostic factors. J Urol. 2003; 170: 1394-1397.
    7. Aoun P, Blair HE, Smith LM, et al. Fluorescence in situ hybridization detection of cytogenetic abnormalities in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk Lymphoma. 2004; 45: 1595-1603.
    8. Larramendy ML, Tarkkanen M, Blomqvist C, et al. Comparative genomic hybridization of malignant fibrous histiocytoma reveals a novel prognostic marker. Am J Pathol. 1997; 15: 1153-1161.
    9. Lee J, Li S, Torbenson M, et al. Leiomyosarcoma of the breast: a pathologic and comparative genomic hybridization study of two cases. Cancer Genet Cytogenet. 2004; 149: 53-57.
    10. Whang-Peng J, Knutsen T, Theil K, et al. Cytogenetic studies in subgroups of rhabdomyosarcoma. Genes Chromosomes Cancer. 1992; 5: 299-310.11. Mott RT, Goodman BK, Burchette JL, et al. Loss of chromosome 13 in a case of soft tissue perineurioma. Clin Neuropathol. 2005; 24: 69-76.
    12. Weng WH, Lemer M, Grander D, et al. Loss of chromosome 13q is a frequently acquired event in genetic progression of soft tissue sarcomas in the abdominal cavity. Int J Oncol. 2005; 26: 5-16.
    13. Ragland BD, Bell WC, Lopez RR, et al. Cytogenetics and molecular biology of osteosarcoma. Lab Inves. 2002; 82: 365-373.
    14. Li FP, Abramson DH, Tarone RE, et al. Hereditary retinoblastoma, lipoma and second primary cancers. J Natl Cancer Inst. 1997; 89: 83-84.
    15. Wurl P, Meye A, Berger D,et al. Significance of retinoblastoma and mdm2 gene expression as prognostic markers for soft-tissue sarcoma. Langenbecks Arch Surg. 1998; 383: 99-103.
    16. Choong PF, Rydholm A, Mertens F, et al. Musculoskeletal oncology—advances in cytogenetics and molecular genetics and their clinical implications. Acta Oncol. 1997; 36: 245-254.
    17. Liu Y, Corcoran M, Rasool O, et al. Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia. Oncogene. 1997; 15:2463-2473.
    18. Kapanadze B, Kashuba V, Baranova A, et al. A cosmid and cDNA fine physical map of a human chromosome 13ql4 region frequently lost in B-cell chronic lymphocytic leukemia and identification of a new putative tumor suppressor gene, Leu5. FEBS Lett. 1998; 426: 266-270.
    19. Elnenaei MO, Hamoudi RA, Swansbury J, et al. Delineation of the minimal region of loss at 13ql4 in multiple myeloma. Genes Chromosomes Cancer. 2003; 36: 99-106.
    20. van Everdink WJ, Baranova A, Lummen C, et al. RFP2, c13ORF1, and FAM10A4 are the most likely tumor suppressor gene candidates for B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2003; 146: 48-57.
    21. Baranova A, Hammarsund M, Ivanov D., et al. Distinct organization of the candidate tumor suppressor gene RFP2 in human and mouse: multiple mRNA??isoforms in both species- and human-specific antisense transcript RFP2OS. Gene. 2003; 321: 103-112.
    22. Nandan MO, Yoon HS, Zhao W, et al. Kruppel-like factor 5 mediates the ransforming activity of oncogenic H-Ras. Oncogene. 2004; 23: 3404-3413.
    23. Chen C, Bhalala HV, Vessella RL, et al. KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer. Prostate. 2003; 55: 81-88.
    24. Chen C, Bhalala HV, Qiao H, et al. A possible tumor suppressor role of the KLF5 transcription factor in human breast cancer. Oncogene. 2002; 21: 6567-6572.
    25. Dong JT. Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev. 2001; 20: 173-193.
    26. Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol. 2002; 33: 459-465.
    27. Tryggvason G, Gislason HG, Magnusson MK, et al. Gastrointestinal stromal tumors in Iceland, 1990-2003: the Icelandic GIST study, a population-based incidence and pathologic risk stratification study. Int J Cancer. 2005; 117: 289-293.
    28. DeMatteo RP, Lewis JJ, Leung D, et al. Two hundred gastrointestinal stromal tumors: Recurrence patterns and prognostic factors for survival. Ann Surg. 2000; 231:51-58.
    29. Singer S, Rubin BP, Lux ML, et al. Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol. 2002; 20: 3898-3905.
    30. Inoue T, Suzuki T, Nakagawa K, et al. Immunohistopathological and molecular genetic features of a case in which gastrointestinal stromal tumor recurred five times. Pathol Int. 2004; 54: 196-200.
    31. Miettinen M, Kopczynski J, Makhlouf HR, et al. Gastrointestinal stromal tumors, intramural leiomyomas, and leiomyosarcomas in the duodenum: a clinicopathologic, immunohistochemical. and molecular genetic study of 167 cases. Am J Surg Pathol. 2003; 27: 625-641.32. Heinrich MC, Rubin BP, Longley BJ, et al. Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Hum Pathol. 2002; 33: 484-495.
    33. Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003; 299: 708-710.
    34. Chen Y, Tzeng CC, Liou CP, et al. Biological significance of chromosomal imbalance aberrations in gastrointestinal stromal tumors. J Biomed Sci. 2004; 11: 65-71.
    35. El-Rifai, W., Sarlomo-Rikala, M., Miettinen, M., et al. High-resolution deletion mapping of chromosome 14 in stromal tumors of the gastrointestinal tract suggests two distinct tumor suppressor loci. Genes Chromosomes Cancer, 2000; 27:387-391.
    36. Lasota J , Wozniak A, Kopczynski J , et al. Loss of heterozygosity on chromosome 22q in gastrointestinal stromal tumors (GISTs): a study on 50 cases. Lab Invest. 2005 , 85 : 237-247.
    37. el Rifai W, Sarlomo-Rikala M, Andersson LC, et al. DNA sequence copy number changes in gastrointestinal stromal tumors: Tumor progression and prognostic signifcance. Cancer Res. 2000; 60: 3899-3903.
    38. Miettinen M, El-Rifai W, H L Sobin L, et al. Evaluation of malignancy and prognosis of gastrointestinal stromal tumors: a review. Hum Pathol. 2002; 33: 478-483.
    39. Gunawan B, Bergmann F, Hoer J, et al. Biological and clinical significance of cytogenetic abnormalities in low-risk and high-risk gastrointestinal stromal tumors. Hum Pathol. 2002; 33: 316-321.
    40. Nakamura N, Yamamoto H, Yao T,et al. Prognostic significance of expressions of cell-cycle regulatory proteins in gastrointestinal stromal tumor and the relevance of the risk grade. Hum Pathol. 2005; 36: 828-837.
    41. Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the stomach. A clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol. 2005; 29: 52-68.42. Windham TC, Pisters PWT. Retroperitoneal sarcomas. Cancer Control. 2005; 12: 36-43.
    43. Gurney JG, Young JL, Roffers SD, et al. Soft tissue sarcomas. In: Reis LAG, Smith MA, Gurney JG, et al, eds. Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program, 1975-1995. Bethesda, MD: National Cancer Institute SEER Program. NIH Pub. No. 99-4649, 1999:111-123.
    44. Hartmann JT, Patel S. New drug developments for patients with metastatic soft tissue sarcoma. Curr Oncol Rep. 2005; 7: 300-306.
    45. Pytel P, Taxy JB, Krausz T. Divergent differentiation in malignant soft tissue neoplasms: the paradigm of liposarcoma and malignant peripheral nerve sheath tumor. Int J Surg Pathol. 2005; 13: 19-28.
    46. Pilotti S, Delia Torre G, Mezzelani A, et al. The expression of MDM2/CDK4 gene product in the differential diagnosis of well-differentiated liposarcoma and large deep-seated lipoma. Br J Cancer, 2000, 82: 1271-1275.
    47. Kuhnen C, Mentzel T, Fisseler-Eckhoff A, et al. Atypical lipomatous tumor in a 14-year-old patient: distinction from lipoblastoma using FISH analysis. Virchows Arch, 2002, 441: 299-302.
    48. Coindre JM, Mariani O, Chibon F, et al. Most malignant fibrous histiocytomas developed in the retroperitoneum are dedifferentiated liposarcomas: a review of 25 cases initially diagnosed as malignant fibrous histiocytoma. Mod Pathol, 2003, 16:256-262.
    49. Erlandson RA, Antonescu CR. The rise and fall of malignant fibrous histiocytoma. Ultrastruct Pathol. 2004; 28: 283-289.
    50. Fletcher CDM, Unni KK, Mertens F. World Health Organization Classification of Tumors: Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon, France, IARC Press, 2002, pp40-43.
    51. Adelmant G, Gilbert JD, Freytag SO. Human translocation liposarcoma-CC AAT/ enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein??prevents adipocyte differentiation by directly interfering with C/EBP beta function. J Biol Chem. 1998; 273: 15574-15581.
    52. Yoshida K, Oikawa K, Takanashi M, et al. Detection of fusion genes in sarcomas using paraffin-embedded tissues. Neuropathology. 2005; 25: 263-268.
    53. Hosono T, Hironaka M, Kobayashi A,et al. Primary pulmonary synovial sarcoma confirmed by molecular detection of SYT-SSX1 fusion gene transcripts: a case report and review of the literature. Jpn J Clin Oncol. 2005; 35: 274-279.
    54. Ladanyi M, Antonescu CR, Leung DH, et al. Impact of SXT-SSX fusion type on clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002; 62: 135-140.
    55. de Alava E, Kawai A, Healey JH, et al. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma. J Clin Oncol. 1998; 16: 1248-1255.
    56. Sorensen PH, Lynch JC, Qualman SJ, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. J Clin Oncol. 2002; 20 (11):2672-2679.
    57. Eisenberg BL. Soft tissue sarcomas: opportunities for defining the molecular phenotype of a solid tumor malignancy. Curr Opin Oncol. 2005; 17: 355-356.
    58. Weiss MM, Kuipers EJ, Meuwissen SGM, et al. Comparative genomic hybridization as a supportive tool in diagnostic pathology. J Clin Pathol. 2003; 56: 522-527.
    59. Schmidt H, Wurl P, Taubert H, et al. Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer. 1999; 25: 205-211
    60. Tarkkanen M, Elomaa I, Blomqvist C, et al. DNA sequence copy number increase at 8q: a potential new prognostic marker in high-grade osteosarcoma. Int J Cancer. 1999; 84: 114-121.
    61. Larramendy ML, Mandahl N, Mertens F, et al. Clinical significance of genetic imbalances revealed by comparative genomic hybridization in chondrosarcomas. Hum Pathol. 1999; 30: 1247-1253.62. Gorick R, Huvos AG, Heller G, et al. Expression of HER2/erB-2 correlates with survival in osteosarcoma. J Clin Oncol. 1999; 17: 2781-2788.
    63. Huuhtanen RL, Blomqvist CP, Bohling TO, et al. Expression of cyclin A in soft tissue sarcomas correlates with tumor aggressiveness. Cancer Res. 1999; 59: 2885-2890.
    64. Wurl P, Meye A, Lautenschlager C, et al. Clinical relevance of pRb and p53 co-overexpression in soft tissue sarcomas. Cancer Lett. 1999; 139: 159-165.
    65. Schneider-Stock R, Ziegeler A, Haeckel C, et al. Prognostic relevance of p53 alterations and Mib-1 proliferation index in subgroups of primary liposarcoma. Clin Cancer Res. 1999; 5:2830-2835.
    66. Beckman RA, Loeb LA. Genetic instability in cancer: theory and experiment. Semin Cancer Biol. 2005; 15:423-435.
    67. Wong N, Lai P, Lee SW, et al. Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis. Am J Pathol. 1999; 154: 37-43.
    68. Guan XY, Fang Y, Sham JS, et al. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer. 2000; 29: 110-116.
    69. Nagai H, Pineau P, Tiollais P, et al. Comprehensive allelotyping of human hepatocellular carcinoma. Oncogene. 1997; 14: 2927-2933.
    70. Lau SH, Guan XY. Cytogenetic and molecular genetic alterations in hepatocellular carcinoma. Acta Pharmacol Sin. 2005; 26: 659-665.
    71. Jou YS, Lee CS, Chang YH, et al. Clustering of minimal deleted regions reveals distinct genetic pathways of human hepatocellular carcinoma. Cancer Res. 2004; 64: 3030-3036.
    72. Szukala K, Brieger J, Bruch K, et al. Loss of heterozygosity on chromosome arm 13q in larynx cancer patients: analysis of tumor, margin and clinically unchanged mucosa. Med Sci Monit. 2004; 10: CR233-40.
    73. Wistuba II, Miquel JF, Gazdar AF, et al. Gallbladder adenomas have molecular abnormalities different from those present in gallbladder carcinomas. Hum Pathol.??1999; 30; 21-5.
    74. Weston A, Willey JC, Modari R, et al. Differential DNA sequence deletions from chromosome 2,11,13 and 17 in squamous-cell carcinoma, large-cell carcinoma and adenocarcinoma of the human lung. Proc Natl Acad Sci USA. 1989; 86: 5099-5103.
    75. Novak U, Tobler A, Fey MF. Allelotyping in B-cell chronic lymphocytic leukemia (B-CLL). Leuk Lymphoma. 2004; 45: 887-896.
    76. Sindelarova L, Michalova K, Zemanova 2', et al. Incidence of chromosomal anomalies detected with FISH and their clinical correlations in B-chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2005; 160: 27-34.
    77. Muhlmann M. Molecular cytogenetics in metaphase and interphase cells for cancer and genetic research, diagnosis and prognosis. Application in tissue sections and cell suspensions. Genet Mol Res. 2002; 30: 117-127.
    78. Kovacs BZ, Niggli FK, Betts DR. Aberrations involving 13q12 approximately ql4 are frequent secondary events in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet. 2004; 151: 157-161.
    79. Kroger N, Schilling G, Einsele H, et al. Deletion of chromosome band 13q14 as detected by fluorescence in situ hybridization is a prognostic factor in patients with multiple myeloma who are receiving allogeneic dose-reduced stem cell transplantation. Blood. 2004; 103:4056-4061.
    80. Kohlhammer H, Schwaenen C, Wessendorf S, et al. Genomic DNA-chip hybridization in t(11;14)-positive mantle cell lymphomas shows a high frequency of aberrations and allows a refined characterization of consensus regions. Blood. 2004; 104:795-801.
    81. Mihic-Probst D, Zhao J, Saremaslani P, et al. CGH analysis shows genetic similarities and differences in atypical fibroxanthoma and undifferentiated high grade pleomorphic sarcoma. Anticancer Res. 2004; 24: 19-26.
    82. Wang R, Titley JC, Lu YJ, et al. Loss of 13q14-q21 and gain of 5pl4-pter in the progression of leiomyosarcoma. Mod Pathol. 2003; 16: 778-785.
    83. Weinberg RA. The retinoblastoma gene and gene product. In Levine AJ, ed.??Tumour suppressor genes the cell cycle and cancer. New York, Cold Spring Harbor Laboratory Press, 1992. pp. 43-57.
    84. Zhu L. Tumour suppressor retinoblastoma protein Rb: a transcriptional regulator. Eur J Cancer. 2005; 41: 2415-2427.
    85. Chase A, Pickard J, Szydlo R, et al. Non-random involvement of chromosome 13 in patients with persistent or relapsed disease after bone-marrow transplantation for chronic myeloid leukemia. Genes Chromosomes Cancer. 2000; 27: 278-284.
    86. Bi'eche I, Lidereau R. Loss of heterozygosity at 13q14 correlates with RB1 gene underexpression in human breast cancer. Mol Carcinogenesis. 2000; 29: 151— 158.
    87. Hoos A, Lewis JJ, Antonescu CR, et al. Characterization of molecular abnormalities in human fibroblastic neoplasms: a model for genotype-phenotype association in soft tissue tumors. Cancer Res. 2001; 61: 3171-3175.
    88. Wadayama B, Toguchida J, Shimizu T, et al. Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res. 1994; 54: 3042-3048.
    89. Schneider-Stock R, Boltze C, Jaeger v, et al. Significance of loss of heterozygosity of the RB1 gene during tumour progression in well-differentiated liposarcomas. J Pathol, 2002,197: 654-660.
    90. Corcoran, MM, Rasool O, Liu Y, et al. Detailed molecular delineation of 13q14.3 loss in B-cell chronic lymphocytic leukemia. 1998. Blood 91,1382-1390.
    91. Kapanadze B, Makeeva N, Corcoran M, et al. Comparative sequence analysis of a region on human chromosome 13q14, frequently deleted in B-cell chronic lymphocytic leukemia, and its homologous region on mouse chromosome 14. Genomics. 2000; 70: 327-334.
    92. Mertens D, Wolf S, Schroeter P,et al. Down-regulation of candidate tumor suppressor genes within chromosome band 13q14.3 is independent of the DNA methylation pattern in B-cell chronic lymphocytic leukemia. Blood. 2002; 99: 4116-4121.93. Corcoran MM, Hammarsund M, Zhu C, et al. DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse. Genes Chromosomes Cancer. 2004; 40: 285-297.
    94. Ivanov DV, Tyazhelova TV, Lemonnier L, et al. A new human gene KCNRG encoding potassium channel regulating protein is a cancer suppressor gene candidate located in 13ql4.3. FEBS lett. 2003; 539: 156-160.
    95. Smith G.A., Tsui H.W., Newell E.W., et al. Functional up-regulation of HERG K+ channels in neoplastic hematopoietic cells. J. Biol. Chem. 2002; 277: 18528-18534.
    96. Rybalchenko V., Prevarskaya N., Van Coppenolle F., et al. Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing K+ channel gating. Mol Pharmacol. 2001; 59: 1376-1387.
    97. Pancrazio J.J., Tabbara I.A., Kim Y.I. Voltage-activated K+ conductance and cell proliferation in small-cell lung cancer. Articancer Res. 1993; 13: 1231-1234.
    98. Lepple-Wienhues, A., Berweck, S., Bohmig, M., et al. K+ channels and the intracellular calcium signal in human melanoma cell proliferation. J. Membr. Biol. 1996; 151: 149-157.
    99. Yao X., Kwan H.Y. Activity of voltage-gated K+ channels is associated with cell proliferation and Ca2+ influx in carcinoma cells of colon cancer. Life Sci. 1999; 65: 55-62.
    lOO.Ghaleb AM, Nandan MO, Chanchevalap S, et al. Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res. 2005; 15: 92-96.
    lOl.Chiambaretta F, De Graeve F, Turet G, et al. Cell and tissue specific expression of human Kruppel-like transcription factors in human ocular surface. Mol Vis. 2004; 10: 901-909.
    102. Shi H, Zhang Z, Wang X, et al. Isolation and characterization of a gene encoding human Kruppel-like factor 5 (IKLF): binding to the CAAT/GT box of the mouse lactoferrin gene promoter. Nucleic Acids Res. 1999; 27: 4807-4815.103. Rozenblum E, Vahteristo P, Sandberg T, et al. A genomic map of a 6-Mb region at 13q21-q22 implicated in cancer development: identification and characterization of candidate genes. Hum Genet. 2002; 110: 111-121.
    104.Bateman NW, Tan D, Pestell RG, et al. Intestinal tumor progression is associated with altered function of KLF5. J Biol Chem. 2004; 279: 12093-12101.
    105.Sun R, Chen X, Yang VW. Intestinal-enriched Kruppel-like factor (Kruppel-like factor 5) is a positive regulator of cellular proliferation. J Biol Chem. 2001; 276: 6897-6900.
    106.Michor F, Iwasa Y, Vogelstein B, et al. Can chromosomal instability initiate tumorigenesis? Semin Cancer Biol. 2005; 15:43-49.
    107.Coleman WB, Tsongalis GJ. Molecular mechanisms of human carcinogenesis. EXS. 2006; (96): 321-49.
    108.Michor F. Chromosomal instability and human cancer. Phil Trans R Soc B. 2005; 360:631-635.
    109.Gollin SM. Mechanisms leading to chromosomal instability. Semin Cancer Biol. 2005; 15: 33-42.
    
    110.Feinberg AP. The epigenetics of cancer etiology. Semin Cancer Biol. 2004; 14: 427-432.
    
    111. Raptis S, Bapat B. Genetic instability in human tumors. EXS. 2006; (96): 303-320.
    112.Gagos S, Irminger-Finger I. Chromosome instability in neoplasia: chaotic roots to continuous growth. Int J Biochem Cell Biol. 2005; 37: 1014-1033.
    113.Schmidt H, Bartel F, Kappler M, et al. Gains of 13q are correlated with a poor prognosis in liposarcoma. Mod Pathol. 2005; 18: 638-644.
    114.Popov P, Virolainen M, Tukiainen E, et al. Primary soft tissue sarcoma and its local recurrence: genetic changes studied by comparative genomic hybridization. Mod Pathol. 2001; 14: 978-984.
    115.Mazur MT, Clark HB. Gastric stromal tumors. Reappraisal of histogenesis. Am J Surg Pathol 1983; 7: 507-519.116.Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol. 2004; 22: 3813-3825.
    117.van der Zwan SM, DeMatteo RP. Gastrointestinal stromal tumor: 5 years later. Cancer. 2005 Nov l;104(9):1781-1788.
    118.Nilsson B, Bumming P, Meis-Kindblom JM, et al. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era-a population-based study in western Sweden. Cancer. 2005; 103: 821-829.
    119.Kindblom LG, Meis-Kindblom J, Bumming P, et al. Incidence, prevalence, phenotype and biologic spectrum of gastrointestinal stromal tumors (GIST)—A population-based study of 600 cases. Ann Oncol. 2003(suppl 5); 13: 157.
    120.Miettinen M, Sarlomo-Rikala M, Sobin LH, et al. Gastrointestinal stromal tumors and leiomyosarcomas in the colon: A clinicopathologic, immunohistochemical, and molecular genetic study of 44 cases. Am J Surg Pathol. 2000; 24: 1339-1352.
    121.Tworek JA, Appelman HD, Singleton TP, et al. Stromal tumors of the jejunum and ileum. Mod Pathol. 1997; 10: 200-209.
    122.Haque S, Dean PJ. Stromal neoplasms of the rectum and anal canal. Hum Pathol. 1992; 23: 762-767.
    123.Corless CL, McGreevey L, Haley A, et al. KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am J Pathol. 2002; 160: 1567-1572.
    124.Blay JY, Bonvalot S, Casali P, et al. GIST consensus meeting panelists. Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20-21 March 2004, under the auspices of ESMO. Ann Oncol. 2005; 16: 566-578.
    125.K Pauls, S Merkelbach-Bruse, D Thai, et al. PDGFRa- and c-kit-mutated gastrointestinal stromal tumours (GISTs) are characterized by distinctive histological and immunohistochemical features. Histopathology. 2005; 46: 166-175.126.Miettinen M, Furlong M, Sarlomo-Rikala M,et al. Gastrointestinal stromal rumors, intramural leiomyomas, and leiomyosarcomas in the rectum and anus: a clinicopathologic, immunohistochemical, and molecular genetic study of 144 cases. Am J Surg Pathol. 2001; 25:1121-1133.
    127.Mauro MJ, O'Dwyer ME, Druker BJ. ST1571, a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia: Validating the promise of molecularly targeted therapy. Cancer Chemother Pharmacol. 2001; 48: S77-S78.
    128.Mauro MJ, Druker BJ. Chronic myelogenous leukemia. Curr Opin Oncol 2001; 13: 3-7.
    129.Mauro MJ, O'Dwyer ME, Heinrich MC, et al. STI571: A paradigm of new agents for cancer therapeutics. J Clin Oncol 2002; 20: 325-334.
    130.Blanke CD, Corless CL. State-of-the art therapy for gastrointestinal stromal tumors. Cancer Invest. 2005; 23: 274-280.
    131. Yi ES, Strong CR, Piao Z, et al. Epithelioid gastrointestinal stromal tumor with PDGFRA activating mutation and immunoreactivity. Appl Immunohistochem Mol Morphol. 2005; 13: 157-161.
    132. Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001; 1052:1052-1056.
    133. Sanborn RE, Blanke CD. Gastrointestinal stromal tumors and the evolution of targeted therapy. Clin Adv Hematol Oncol. 2005; 3: 647-657.
    134.Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21: 4342-4349.
    135.Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: Randomised trial. Lancet 2004; 364: 1127-1134.
    136.Heinrich MC, Corless CL. Gastric GI stromal tumors (GISTs): the role of surgery in the era of targeted therapy. J Surg Oncol. 2005; 90: 195-207.137.Crosby JA, Catton CN, Davis A, et al. Malignant gastrointestinal stromal tumors of the small intestine: a review of 50 cases from a prospective database. Ann Surg Oncol. 2001; 8: 50-59.
    138.Wong NA, Young R, Malcomson RD,et al. Prognostic indicators for gastrointestinal stromal tumours: a clinicopathological and immunohistochemical study of 108 resected cases of the stomach. Histopathology. 2003; 43: 118-126.
    139.Bucher P, Taylor S, Villiger P, et al. Are there any prognostic factors for small intestinal stromal tumors? Am J Surg. 2004; 187: 761-766.
    140. Yokoi K, Tanaka N, Shoji K, et al. A study of histopathological assessment criteria for assessing malignancy of gastrointestinal stromal tumor, from a clinical standpoint. J Gastroenterol. 2005; 40: 467-473.
    141.Wang X, Mori I, Tang W, et al. Gastrointestinal stromal tumors: clinicopathological study of Chinese cases. Pathol Int. 2001; 51: 701-706.
    142.Mochizuki Y, Kodera Y, Ito S, et al. Treatment and risk factors for recurrence after curative resection of gastrointestinal stromal tumors of the stomach. World J Surg. 2004; 28: 870-875.
    143.Tarn C, Merkel E, Canutescu AA, et al. Analysis of KIT mutations in sporadic and familial gastrointestinal stromal tumors: therapeutic implications through protein modeling. Clin Cancer Res. 200:5; 11: 3668-3677.
    144.Chen LL, Sabripour M, Wu EF, et al. A mutation-created novel intra-exonic pre-mRNA splice site causes constitutive activation of KIT in human gastrointestinal stromal tumors. Oncogene. 2005; 24: 4271-4280.
    145.Kim TW, Lee H, Kang YK, et al. Prognostic significance of c-kit mutation in localized gastrointestinal stromal tumors. Clin Cancer Res. 2004; 10: 3076-3081.
    146. Antonescu CR, Sommer G, Sarran L, et al. Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res. 2003; 9: 3329-3337.
    147.Lasota J, Kopczynski J, Sarlomo-Rikala M, et al. KIT 1530ins6 mutation defines a subset of predominantly malignant gastrointestinal stromal tumors of intestinal??origin. Hum Pathol. 2003; 34: 1306-1312.
    148.Hirota S, Nishida T, Isozaki K, et al. Gain-of-function mutation at the extracellular domain of KIT in gastrointestinal stromal tumours. J Pathol. 2001; 193: 505-510.
    149. Sakurai S, Oguni S, Hironaka M, et al. Mutations in c-kit gene exons 9 and 13 in gastrointestinal stromal tumors among Japanese. Jpn J Cancer Res. 2001; 92: 494-498.
    150.Candelaria M, de la Garza J, Duenas-Gonzalez A. A clinical and biological overview of gastrointestinal stromal tumors. Med Oncol. 2005; 22: 1-10.
    151.Fukasawa T, Chong JM, Sakurai S, et al Allelic loss of 14q and 22q, NF2 mutation, and genetic instability occur independently of c-kit mutation in gastrointestinal stromal tumor. Jpn J Cancer Res. 2000; 91: 1241-1249.
    152.Breiner JA, Meis-Kindblom J, Kindblom LG, et al. Loss of 14q and 22q in gastrointestinal stromal tumors (pacemaker cell tumors). Cancer Genet Cytogenet. 2000; 120:111-116.
    153.Pylkkanen L, Sarlomo-Rikala M, Wessman M, et al. Chromosome 22q alterations and expression of the NF2 gene product, merlin, in gastrointestinal stromal tumors. Hum Pathol. 2003; 34: 872-879.
    154.Knuutila S, Armengol G, Bjorkqvist AM, et al. Comparative genomic hybridization study on pooled DNAs from tumors of one clinical-pathological entity. Cancer Genet Cytogenet 1998; 100: 25-30.
    155.Zhou W, Goodman SN, Galizia G, et al. Counting alleles to predict recurrence of early-stage colorectal cancers. Lancet. 2002; 359: 219-225.
    156.Watanabe T, Wu TT, Catalano PJ, et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2001; 344; 1196-1206.
    157.Rajagopalan H, Lengauer C. Aneuploidy and cancer. Nature. 2004; 432: 338-341.
    158.Takahira T, Oda Y, Tamiya S, et al. Alterations of the RB1 gene in differentiated liposarcoma. Mod Pathol. 2005; 18: 1461-1470.
    159.Gallucci M, Guadagni F, Marzano R, et al. Status of the p53, p16, RB1, and HER-2 genes and chromosomes 3, 7, 9, and 17 in advanced bladder cancer:??correlation with adjacent mucosa and pathological parameters. J Clin Pathol. 2005; 58: 367-371.
    160. Van Glabbeke M, Verweij J, Casali PG, et al. Initial and late resistance to imatinib in advanced gastrointestinal stromal tumors are predicted by different prognostic factors: a European Organisation for Research and Treatment of Cancer-Italian Sarcoma Group-Australasian Gastrointestinal Trials Group study. J Clin Oncol. 2005; 23: 5795-5804.
    161.Antonescu CR, Viale A, Sarran L, et al. Gene expression in gastrointestinal stromal tumors is distinguished by KIT genotype and anatomic site. Clin Cancer Res. 2004; 10: 3282-3290.
    162.Koay MH, Goh YW, Iacopetta B, et al. Gastrointestinal stromal tumours (GISTs): a clinicopathological and molecular study of 66 cases. Pathology. 2005; 37: 22-31.
    163.Nishitani A, Hirota S, Nishida T, et al. Differential expression of connexin 43 in gastrointestinal stromal tumours of gastric and small intestinal origin. J Pathol. 2005; 206: 377-382.
    164.Martin J, Poveda A, Llombart-Bosch A, el al. Spanish Group for Sarcoma Research. Deletions affecting codons 557-558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GEIS). J Clin Oncol. 2005; 23:6190-6198.
    165.Bauman J. G., Wiegant J., Borst P., et al. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp Cell Res. 1980; 128: 485-490.
    166.Nath J, Johnson KL. A review of fluorescence in situ hybridization (FISH): current status and future prospects. Biotech Histochem. 2000; 75: 54-78.
    167.Lee C, Lemyre E, Miron PM, et al. Multicolor fluorescence in situ hybridization in clinical cytogenetic diagnostics. Curr Opin Pedia. 2001; 13: 550-555.168.Werner M, Wilkens L, Aubele M, et al. Interphase cytogenetics in pathology: principles, methods, and applications of fluorescence in situ hybridization (FISH). Histochem Cell Biol. 1997; 108: 381-390.
    169.Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003; 116: 2833-2938.
    170.Liehr T, Claussen U. Current developments in human molecular cytogenetic techniques. Curr Mol Med. 2002; 2: 283-297.
    171.Weiss MM, Hermsen MAJA, Meijer GA, et al. Comparative genomic hybridization. J Clin Pathol: Mol Pathol. 1999; 52: 243-251.
    172.Paternoster SF, Brockman SR, McClure RF, et al. A new method to extract nuclei from paraffin-embedded tissue to study lymphomas using interphase fluorescence in situ hybridization. Am J Pathol. 2002; 160: 1967-1972.
    173.Schurter MJ, LeBrun DP, Harrison KJ. Improved technique for fluorescence in situ hybridisation analysis of isolated nuclei from archival, B5 or formalin fixed, paraffin wax embedded tissue. J Clin Pathol: Mol Pathol. 2002; 55: 121-124.1. Mazur MT, Clark HB. Gastric stromal tamors. Reappraisal of histogenesis. Am J Surg Pathol 1983; 7: 507-519.
    2. Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol. 2004; 22: 3813-3825.
    3. Heinrich MC, Corless CL. Gastric GI stromal tumors (GISTs): the role of surgery in the era of targeted therapy. J Surg Oncol. 2005; 90: 195-207.
    4. Heinrich MC, Rubin BP, Longley BJ, et al. Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Hum Pathol. 2002; 33: 484-495.
    5. Huizinga JD, Thuneberg L, Kluppel M, et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 1995; 373: 347-349.
    6. Kluppel M, Huizinga JD, Malysz J, et al. Developmental origin and KIT-dependent development of the interstitial cells of Cajal in the mammalian small intestine. Dev Dyn. 1998; 211: 60-71.
    7. Torihashi S, Nishi K, Tokutomi Y, et al. Blockade of KIT signaling induces transdifferentiation of interstitial cells of Cajal to a smooth muscle phenotype. Gastroenterology. 1999; 117: 140-148.
    8. Tarn C, Merkel E, Canutescu AA, et al. Analysis of KIT mutations in sporadic and familial gastrointestinal stromal tumors: therapeutic implications through protein modeling. Clin Cancer Res. 2005; 11: 3668-3677.
    9. Hou YY, Tan YS, Sun MH, et al. C-kit gene mutation in human gastrointestinal stromal tumors. World J Gastroenterol. 2004; 10: 1310-1314.
    10. Lasota J, Dansonka-Mieszkowska A, Stachura T, et al. Gastrointestinal stromal rumors with internal tandem duplications in 3' end of KIT juxtamembrane domain occur predominantly in stomach and generally seem to have a favorable course. Mod Pathol. 2003; 16: 1257-1264.11. Chen LL, Sabripour M, Wu EF, et al. A mutation-created novel intra-exonic pre-mRNA splice site causes constitutive activation of KIT in human gastrointestinal stromal tumors. Oncogene. 2005; 24: 4271-4280.
    12. Tabone S, Theou N, Wozniak A, et al. KIT overexpression and amplification in gastrointestinal stromal tumors (GISTs). Biochim Biophys Acta. 2005; 1741: 165-172.
    13. Lux ML, Rubin BP, Biase TL, et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol 2000; 156: 791-795.
    14. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21: 4342-4349.
    15. Kim TW, Lee H, Kang YK, et al. Prognostic significance of c-kit mutation in localized gastrointestinal stromal tumors. Clin Cancer Res. 2004; 10: 3076-3081.
    16. Antonescu CR, Sommer G, Sarran L, et al. Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res. 2003; 9: 3329-3337.
    17. Lasota J, Wozniak A, Sarlomo-Rikala M, et al. Mutations in exons 9 and 13 of KIT gene are rare events in gastrointestinal stromal tumors: A study of 200 cases. Am J Pathol 2000; 157:1091-1095.
    18. Sakurai S, Oguni S, Hironaka M, et al. Mutations in c-kit gene exons 9 and 13 in gastrointestinal stromal tumors among Japanese. Jpn J Cancer Res 2001; 92: 494-498.
    19. Lasota J, Kopczynski J, Sarlomo-Rikala M, et al. KIT 1530ins6 mutation defines a subset of predominantly malignant gastrointestinal stromal tumors of intestinal origin. Hum Pathol. 2003; 34: 1306-1312.
    20. Hirota S, Nishida T, Isozaki K, et al. Gain of function mutation at the extracellular domain of KIT in gastrointestinal stromal tumours. J Pathol. 2001; 193:505-510.
    21. Kinoshita K, Isozaki K, Hirota S, et al. C-kit gene mutation at exon 17 or 13 is??very rare in sporadic gastrointestinal stromal tumors. J Gastroenterol Hepatol 2003; 18: 147-151.
    22.侯英勇,孙孟红,谭云山,等。胃肠道间质瘤c-kit基因突变的研究。中华肿瘤学杂志.2004:26:89-92.
    23. Martin J, Poveda A, Llombart-Bosch A, et al; Spanish Group for Sarcoma Research. Deletions affecting codons 557-558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma. Research (GELS). J Clin Oncol. 2005; 23: 6190-6198.
    24. Ernst SI, Hubbs AE, Przygodzki RM, et al. KIT mutation portends poor prognosis in gastrointestinal stromal/smooth muscle tumors. Lab Invest 1998; 78: 1633-1636.
    25. Lasota J, Jasinski M, Sarlomo-Rikala M, et al. Mutations in exon 11 of c-Kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas or leiomyosarcomas. Am J Pathol 1999; 154: 53-60.
    26. Li SQ, O'Leary TJ, Sobin LH, et al. Analysis of KIT mutation and protein expression in fine needle aspirates of gastrointestinal stromal/smooth muscle tumors. Acta Cytol 2000; 44: 981-986.
    27. Corless CL, McGreevey L, Haley A, et al. KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am J Pathol. 2002; 160: 1567-1572.
    28. Wardelmann E, Losen I, Hans V, et al. Deletion of Trp-557 and Lys-558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int J Cancer 2003; 106: 887-895.
    29. Singer S, Rubin BP, Lux ML, et al. Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol. 2002; 20: 3898-3905.
    30. Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003; 299: 708-710.31. Candelaria M, de la Garza J, Duenas-Gonzalez A. A clinical and biological overview of gastrointestinal stromal tumors. Med Oncol. 2005; 22: 1-10.
    32. K Pauls, S Merkelbach-Bruse, D Thai, et al. PDGFRα- and c-kit-mutated gastrointestinal stromal tumours (GISTs) are characterized by distinctive histological and immunohistochemical features. Histopathology. 2005; 46: 166-175.
    33. Wardelmann E, Hrychyk A, Merkelbach Bruse S, et al. Association of platelet-derived growth factor receptor a mutations with gastric primary site and epithelioid or mixed cell morphology in gastrointestinal stromal tumors. J Mol Diagn. 2004; 6: 197-204.
    34. Medeiros F, Corless CL, Duensing A, et al. KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am J Surg Pathol. 2004; 28: 889-894.
    35. Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the stomach: A clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 2005; 29: 52-68.
    36. Kerr JZ, Hicks MJ, Nuchtern JG, et al. Gastrointestinal autonomic nerve tumors in the pediatric population: A report of four cases and a review of the literature. Cancer 1999; 85: 220-230.
    37. Miettinen M, Lasota J, Sobin LH. Gastrointestinal stromal tumors of the stomach in children and young adults: a clinicopathologic, immunohistochemical, and molecular genetic study of 44 cases with long-term follow-up and review of the literature. Am J Surg Pathol. 2005; 29: 1373-1381.
    38. Nishida T, Hirota S, Taniguchi M, et al. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet. 1998; 19: 323-324.
    39. Beghini A, Tibiletti MG, Roversi G, et al. Germline mutation in the juxtamembrane domain of the kit gene in a family with gastrointestinal stromal tumors and urticaria pigmentosa. Cancer. 2001; 92: 657-662.
    40. Maeyama H, Hidaka E, Ota H, et al. Familial gastrointestinal stromal tumor with hyperpigmentation: Association with a germline mutation of the c-kit gene.??Gastroenterology. 2001; 120: 210-215.
    41. el Omar M, Davies J, Gupta S, et al. Leiomyosarcoma in leiomyomatosis of the small intestine. Postgrad Med J. 1994; 70: 661-664.
    42. Li FP, Fletcher JA, Heinrich MC, et al. Familial gastrointestinal stromal tumor syndrome: phenotypic and molecular features in a kindred. J Clin Oncol. 2005; 23: 2735-2743.
    43. Isozaki K, Terris B, Belghiti J, et al. Germline-activating mutation in the kinase domain of KIT gene in familial gastrointestinal stromal tumors. Am J Pathol. 2000; 157: 1581-1585.
    44. Hirota S, Nishida T, Isozaki K, et al. Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of KIT gene. Gastroenterology 2002; 122: 1493-1499.
    45. O'Riain C, Corless CL, Heinrich MC, et al. Gastrointestinal stromal tumors: insights from a new familial GIST kindred with unusual genetic and pathologic features. Am J Surg Pathol. 2005; 29: 1680-1683.
    46. Andersson J, Sihto H, Meis-Kindblom JM, et al. NF1-associated gastrointestinal stromal tumors have unique clinical, phenotypic, and genotypic characteristics. Am J Surg Pathol. 2005; 29: 1170-1176.
    47. Zoller ME, Rembeck B, Oden A, et al. Malignant and benign tumors in patients with neurofibromatosis type 1 in a defined Swedish population. Cancer 1997; 79: 2125-2131.
    48. Miettinen M, Kopczynski J, Makhlouf HR, et al. Gastrointestinal stromal tumors, intramural leiomyomas, and leiomyosarcomas in the duodenum: A clinicopathologic, immunohistochemical, and molecular genetic study of 167 cases. Am J Surg Pathol 2003; 27: 625-641.
    49. Carney JA, Sheps SG, Go VL, et al. The triad of gastric leiomyosarcoma, functioning extra-adrenal paraganglioma, and pulmonary chondroma. N Engl J Med 1977; 296: 1517-1518.
    50. Mauro MJ, O'Dwyer ME, Druker BJ. ST1571, a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia: Validating the promise of??molecularly targeted therapy. Cancer Chemother Pharmacol. 2001; 48: S77-S78.
    51. Mauro MJ, Druker BJ. Chronic myelogenous leukemia. Curr Opin Oncol 2001; 13: 3-7.
    52. Mauro MJ, O'Dwyer ME, Heinrich MC, et al. STI571: A paradigm of new agents for cancer therapeutics. J Clin Oncol 2002; 20: 325-334.
    53. Blanke CD, Corless CL. State-of-the art therapy for gastrointestinal stromal tumors. Cancer Invest. 2005; 23: 274-280.
    54. Yi ES, Strong CR, Piao Z, et al. Epithelioid gastrointestinal stromal tumor with PDGFRA activating mutation and immunoreactivity. Appl Immunohistochem Mol Morphol. 2005; 13: 157-161.
    55. Heinrich MC, Griffith DJ, Druker BJ, et al. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000; 96: 925-932.
    56. Tuveson DA,Willis NA, Jacks T, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: Biological and clinical implications. Oncogene. 2001; 20: 5054-5058.
    57. Nakatani H, Kobayashi M, Jin T, et al. STI571 (Glivec) inhibits the interaction between c-KIT and heat shock protein 90 of the gastrointestinal stromal tumor cell line, GIST-T1. Cancer Sci. 2005; 96: 116-119.
    58. Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a meta static gastrointestinal stromal tumor. N Engl J Med 2001; 1052:1052-1056.
    59. Sanborn RE, Blanke CD. Gastrointestinal stromal tumors and the evolution of targeted therapy. Clin Adv Hematol Oncol. 2005; 3: 647-657.
    60. Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: Randomised trial. Lancet 2004; 364: 1127-1134.
    61. Benjamin RS, Rankin C, Fletcher C, et al. Phase III doserandomized study of imatinib mesylate (STI571) for GIST: Intergroup S0033 early results. Proc Am Soc Clin Oncol 2003; 22: 814.62. Debiec-Rychter M, Dumez H, et al. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Ear J Cancer 2004; 40: 689-695.
    63. Debiec-Rychter M, Cools J, Dumez H, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology. 2005; 128: 270-279.
    64. Antonescu CR, Besmer P, Guo T, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res. 2005; 11: 4182-4190.
    65. Chen LL, Trent JC, Wu EF, et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. 2004; 64:5913-5919.
    66. Kim HJ, Lim SJ, Park K, et al. Multiple gastrointestinal stromal tumors with a germline c-kit mutation. Pathol Int. 2005; 55: 655-659.
    67. Fukasawa T, Chong JM, Sakurai S, et al. Allelic loss of 14q and 22q, NF2 mutation, and genetic instability occur independently of c-kit mutation in gastrointestinal stromal tumor. Jpn J Cancer Res. 2000; 91: 1241-1249.
    68. El-Rifai, W., Sarlomo-Rikala, M., Miettinen, M., et al. High-resolution deletion mapping of chromosome 14 in stromal tumors of the gastrointestinal tract suggests two distinct tumor suppressor loci. Genes Chromosomes Cancer, 2000; 27:387-391.
    69. Chen Y, Tzeng CC, Liou CP, et al. Biological significance of chromosomal imbalance aberrations in gastrointestinal stromal tumors. J Biomed Sci. 2004; 11: 65-71.
    70. Miettinen M, El-Rifai W, H L Sobin L, et al. Evaluation of malignancy and prognosis of gastrointestinal stromal tumors: a review. Hum Pathol. 2002; 33: 478-483.71. Gunawan B, Bergmann F, Hoer J, et al. Biological and clinical significance of cytogenetic abnormalities in low-risk and high-risk gastrointestinal stromal tumors. Hum Pathol. 2002; 33: 316-321.
    72. Pylkkanen L, Sarlomo-Rikala M, Wessman M, et al. Chromosome 22q alterations and expression of the NF2 gene product, merlin, in gastrointestinal stromal tumors. Hum Pathol. 2003; 34: 872-879.
    73. Lasota J , Wozniak A, Kopczynski J, et al. Loss of heterozygosity on chromosome 22q in gastrointestinal stromal tumors ( GISTs): a study on 50 cases. Lab Invest. 2005; 85: 237-247.
    74. Breiner JA, Meis-Kindblom J, Kindblom LG, et al. Loss of 14q and 22q in gastrointestinal stromal tumors (pacemaker cell tumors). Cancer Genet Cytogenet. 2000; 120: 111-116.
    75. el Rifai W, Sarlomo-Rikala M, Andersson LC, et al. DNA sequence copy number changes in gastrointestinal stromal tumors: Tumor progression and prognostic signifcance. Cancer Res. 2000; 60: 3899-3903.
    76. Knuutila S, Armengol G, Bjorkqvist AM, et al. Comparative genomic hybridization study on pooled DNAs from tumors of one clinical-pathological entity. Cancer Genet Cytogenet 1998; 100: 25-30.
    77. Koon N, Schneider-Stock R, Sarlomo-Rikala M, et al. Molecular targets for tumour progression in gastrointestinal stromal tumours. Gut. 2004; 53: 235-240.
    78. Tornillo L, Duchini G, Carafa V, et al. Patterns of gene amplification in gastrointestinal stromal tumors (GIST). Lab Invest. 2005; 85: 921-931.
    79. Ricci R, Arena V, Castri F, et al. Role of p16/INK4a in gastrointestinal stromal tumor progression. Am J Clin Pathol. 2004; 122: 35-43.
    80. Schneider-Stock R, Boltze C, Lasota J, et al. Loss of p16 protein defines high-risk patients with gastrointestinal stromal tumors: a tissue microarray study. Clin Cancer Res. 2005; 11: 638-645.
    81. Schneider-Stock R, Boltze C, Lasota J, et al. High prognostic value of pl6INK4 alterations in gastrointestinal stromal tumors. JC lin Oncol 2003; 21: 1688-1697.
    82. Sabah M, Cummins R, Leader M, et al. Loss of heterozygosity of chromosome 9p??and loss of p16INK4A expression are associated with malignant gastrointestinal stromal tumors. Mod Pathol 2004; 17: 1364-1371.
    83. Haller F, Gunawan B, von Heydebreck A, et al. Prognostic role of E2F1 and members of the CDKN2A network in gastrointestinal stromal tumors. Clin Cancer Res. 2005; 11: 6589-6597.
    84. Takahashi R, Tanaka S, Kitadai Y, et al. Expression of vascular endothelial growth factor and angiogenesis in gastrointestinal stromal tumor of the stomach. Oncology. 2003; 64: 266-274.
    85. Chen WT, Huang CJ, Wu MT, et al. Hypoxia-inducible factor-1 alpha is associated with risk of aggressive behavior and tumor angiogenesis in gastrointestinal stromal tumor. Jpn J Clin Oncol. 2005; 35: 207-213.
    86. Takahashi R, Tanaka S, Hiyama T, et al. Hypoxia-inducible factor-1 alpha expression and angiogenesis in gastrointestinal stromal tumor of the stomach. Oncol Rep. 2003; 10: 797-802.
    87. Nakamura N, Yamamoto H, Yao T,et al. Prognostic significance of expressions of cell-cycle regulatory proteins in gastrointestinal stromal tumor and the relevance of the risk grade. Hum Pathol. 2005; 36: 828-837.
    88. Yokoi K, Tanaka N, Shoji K, et al. A study of histopathological assessment criteria for assessing malignancy of gastrointestinal stromal tumor, from a clinical standpoint. J Gastroenterol. 2005; 40: 467-473.
    89. Mochizuki Y, Kodera Y, Ito S, et al. Treatment and risk factors for recurrence after curative resection of gastrointestinal stromal tumors of the stomach. World J Surg. 2004; 28: 870-875.
    90. Wong NA, Young R, Malcomson RD,et al. Prognostic indicators for gastrointestinal stromal tumours: a clinicopathological and immunohistochemical study of 108 resected cases of the stomach. Histopathology. 2003; 43: 118-126.
    91. Morimoto K, Nishimori I, Takeuchi T, et al. Overexpression of carbonic anhydrase-related protein XI promotes proliferation and invasion of gastrointestinal stromal tumors. Virchows Arch. 2005; 447: 66-73.
    92. Nielsen TO, West RB, Linn SC, et al. Molecular characterization of soft tissue??tumours: a gene expression study. Lancet. 2002; 359: 1301-1307.
    93. Allander SV, Nupponen NN, Ringner M, et al. Gastrointestinal stromal tumors with KIT mutations exhibit a remarkably homogeneous gene expression profile. Cancer Res. 2001; 61: 8624-8628.
    94. Debiec-Rychter M, Wasag B, Stul M, et al. Gastrointestinal stromal tumours (GISTs) negative for KIT (CD117 antigen) immunoreactivity. J Pathol. 2004; 202: 430-438.
    95. Blay P, Astudillo A, Buesa JM, et al. Protein kinase C theta is highly expressed in gastrointestinal stromal tumors but not in other mesenchymal neoplasias. Clin Cancer Res. 2004; 10: 4089-4095.
    96. Motegi A, Sakurai S, Nakayama H, et al. PKC theta, a novel immunohistochemical marker for gastrointestinal stromal tumors (GIST), especially useful for identifying KIT-negative tumors. Pathol Int. 2005; 55: 106-112.
    97. West RB, Corless CL, Chen X, et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal rumors irrespective of KIT or PDGFRA mutation status. Am J Pathol. 2004; 165: 107-113.
    98. Nishitani A, Hirota S, Nishida T, et al. Differential expression of connexin 43 in gastrointestinal stromal tumours of gastric and small intestinal origin. J Pathol. 2005; 206: 377-382.
    99. Van Glabbeke M, Verweij J, Casali PG, et al. Initial and late resistance to imatinib in advanced gastrointestinal stromal tumors are predicted by different prognostic factors: a European Organisation for Research and Treatment of Cancer-Italian Sarcoma Group-Australasian Gastrointestinal Trials Group study. J Clin Oncol. 2005; 23: 5795-5804.
    100. Antonescu CR, Viale A, Sarran L, et al. Gene expression in gastrointestinal stromal tumors is distinguished by KIT genotype and anatomic site. Clin Cancer Res. 2004; 10: 3282-3290.101. Crosby JA, Carton CN, Davis A, et al. Malignant gastrointestinal stromal tumors of the small intestine: a review of 50 cases from a prospective database. Ann Surg Oncol. 2001; 8: 50-59.
    102.Koay MH, Goh YW, Iacopetta B, et al. Gastrointestinal stromal tumours (GISTs): a clinicopathological and molecular study of 66 cases. Pathology. 2005; 37: 22-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700