散发性结直肠癌等位基因杂合缺失的精细定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:结直肠癌是临床上常见的消化道肿瘤,随着人们生活水平的提高,近二十年来我国的结直肠癌发病率呈持续上升趋势。大多数结直肠癌因为没有明显的遗传背景而被称为散发性结直肠癌,占整个结直肠肿瘤的80%—90%。散发性结直肠癌变这一个多基因参与、多步骤发生的过程被奉为上皮性肿瘤发生的模板。已有的研究显示,结直肠癌的发生、发展已经形成了较为复杂的分子通路。尽管如此,目前全面的分子发生、调控机制仍不十分清楚,只有当我们真正认识了结直肠癌的发生机制,才能实现该病的早期诊断、提高诊治效果。目前认为结直肠癌发生包括以下几种机制:原癌基因的激活、肿瘤抑制基因的失活、错配修复基因的突变等。一般认为4-5个基因的失活才能导致恶性表型的出现。Knudson通过对家族性和散发性视网膜母细胞瘤的研究,提出了著名的“二次打击”假说,典型的第二次打击往往是整条染色体或其中较大片断的缺失,而且均可表现为杂合缺失,缺失区域内往往含有肿瘤抑制基因,因而可以通过检测肿瘤组织基因组中的杂合缺失位点来作为寻找肿瘤抑制基因的线索。肿瘤抑制基因的杂合缺失(LOH)被认为是结直肠癌形成的关键通路之一。大肠癌课题组先前应用400个微卫星标记物进行了83例散发性结直肠癌的全基因组杂合缺失的扫描,发现了一些高频LOH位点和与肿瘤分期、分化相关的微卫星位点。本研究拟通过对全基因组杂合缺失扫描后发现的6个高频LOH微卫星位点以及3个与结直肠癌分期、分化相关微卫星位点的杂合缺失精细定位分析,以期缩小候选散发性结直肠癌相关基因的筛查范围,为后期发现及验证相关基因奠定基础。
     方法:研究对象为上海第一人民医院院普外科2年间经手术治疗的83例散发性结直肠癌患者,其中男性40例,女性43例,中位年龄66岁。依据
Background & Objective: Colorectal cancer is one of the leading causes of cancer-associated death in western countries. In England and Wales, it is the second most common cancer in women and the third most common in men; the same trend occours in China in recent years. In the carcinogenesis of colorectal cancer, the concept of adenoma-carcinoma sequence is widely accepted. In this pathway, polypoid adenoma develops into early polypoid cancer and then progresses to advanced cancer.
    Colorectal cancer is characterized by genomic instability, the accumulation of multiple genetic alterations, and allelic imbalance throughout the genome. Loss of heterozygosity (LOH) is a common form of allelic imbalance, and the detection of LOH has been used to identify genomic regions that harbor tumor suppressor genes and to characterize different tumor types, pathological stages and progression. Global patterns of LOH can be discerned by allelotyping of tumors with polymorphic genetic markers. Identification of molecular markers associated with colorectal adenoma may uncover critical events involved in the initiation and progression of colorectal cancer. Inactivation of tumor suppressor genes is one of the major events involved in carcinogenesis and the most common representation is loss of heterozygosity (LOH). So, We made refined deletion mapping on 6 high LOH luci and 3 LOH luci involved in tumor stage and differentiation to make further study conveniently.
引文
1. Jemal A, Tiwari RC, Murray T et al. Cancer statistics, 2004.CA Cancer J Clin. 2004 Jan-Feb;54(1):8-29.
    2.蔡国响 蔡三军 大肠癌发病的分子机理探讨临床肿瘤学杂志 2003,8(6)467-471
    3. Fearon ER, Volgelstein B. A genetic model for colorectal tumerigenesis. Cell, 1990,61:759-767.
    4. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer.Cell. 1996 Oct 18;87(2):159-70.
    5. Ilyas M, Straub J, Tomlinson IP, et al. Genetic pathways in colorectal and other cancers.Eur J Cancer. 1999 Dec;35(14): 1986-2002.
    6.王振军 黄筵庭 应进一步加强我国结肠癌的基础研究 中华医学杂志 2004,84(9)705-707
    7.房静远 陆嵘 大肠癌发生的分子机理与形态学 国外医学与消化病分册 2003,23(2)67-69
    8. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999 Feb;21 (2): 163-167.
    9. Dib C, Faure S, Fizames C, et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996;380:152-154.
    10. Thiessen B, Maguire JA, McNeil K, et al. Loss of heterozygosity for loci on chromosome arms 1p and 10q in oligodendroglial tumors: relationship to outcome and chemosensitivity. J Neurooncol. 2003 Sep;64(3):271-8.
    11. White PS, Thompson PM, Seifried BA, et al. Detailed molecular analysis of 1 p36 in neuroblastoma. Med Pediatr Oncol. 2001 Jan;36(1):37-41.
    12. Hiyarna E, Hiyama K, Ohtsu K, et al. Biological characteristics of neuroblastoma with partial deletion in the short ann ofchrornosorne 1. Meal Pediatr Oncol. 2001 Jan; 36(1): 67-74.
    13. Hogarty MD, Winter CL, Liu X, et al. No evidence for the presence of an imprinted neuroblastoma suppressor gene within chromosome sub-band 1p36.3. Cancer Res. 2002 Nov 15;62(22):6481-4.
    
    14. Hofmann WK, Takeuchi S, Xie D, et al.Frequent loss of heterozygosity in the region of D1S450 at 1p36.2 in myelodysplastic syndromes. Leuk Res. 2001 Oct;25(10):855-8.
    
    15. Mori N, Morosetti R, Mizoguchi H, et al. Progression of myelodysplastic syndrome: allelic loss on chromosomal arm 1p. Br J Haematol. 2003 Jul;122(2):226-30.
    
    16. Carling T, Du Y, Fang W, et al. Intragenic allelic loss and promoter hypermethylation of the RIZl tumor suppressor gene in parathyroid tumors and pheochromocytomas. Surgery. 2003 Dec;134(6):932-9; discussion 939-40.
    
    17. Ragnarsson G, Eiriksdottir G, Johannsdottir JT, et al. Loss of heterozygosity at chromosome lp in different solid human tumours: association with survival. Br J Cancer. 1999 Mar;79(9-10): 1468-74.
    
    18. Igarashi J, Nimura Y, Fujimori M, et al. Allelic loss of the region of chromosome 1p35-pter is associated with progression of human gastric carcinoma. Jpn J Cancer Res. 2000 Aug;91(8):797-801.
    
    19. O'Leary T, Ernst S, Przygodzki R, et al. Loss of heterozygosity at 1p36 predicts poor prognosis in gastrointestinal stromal/smooth muscle tumors. Lab Invest. 1999 Dec;79(12): 1461-7.
    
    20. Aoki T, Miyamoto A, Marubashi S, et al. Clinical value of alterations in p73 gene, related to p53 at 1p36, in human hepatocellular carcinoma. Int J Oncol. 2004 Feb;24(2):441-6.
    
    21. Araki D, Uzawa K, Watanabe t, et al. Frequent allelic losses on the short arm of chromosome 1 and decreased expression of the p73 gene at 1p36.3 in squamous cell carcinoma of the oral cavity. Int J Oncol. 2002 Feb; 20(2): 355-60.
    
    22. Kambara T, Sharp GB, Nagasaka T, et al. Allelic loss of a common microsatellite marker MYCL1: a useful prognostic factor of poor outcomes in colorectal cancer. Clin Cancer Res. 2004 Mar l;10(5):1758-63.
    
    23. Felsberg J, Erkwoh A, Sabel MC, et al. Oligodendroglial tumors: refinement of candidate regions on chromosome arm lp and correlation of lp/19q status with survival. Brain Pathol. 2004 Apr;14(2): 121-30.
    
    24. Matsuzaki M, Nagase S, Abe T, et al. Detailed deletion mapping on chromosome 1p32-p36 in human colorectal cancenidentification of three distinct regions of common allelic loss. Int J Oncol. 1998 Dec; 13(6): 1229-33.
    
    25. Leuraud P, Dezamis E, Aguirre-Cruz L, et al. Prognostic value of allelic losses and telomerase activity in meningiomas. J Neurosurg. 2004 Feb; 100(2): 303-9.
    
    26. Kleer CG, Bryant BR, Giordano TJ, et al. Genetic Changes in Chromosomes 1p and 17p in Thyroid Cancer Progression. Genetic Changes in Chromosomes 1p and 17p in Thyroid Cancer Progression. Endocr Pathol. 2000 Summer; 11(2): 137-143.
    
    27. Sunahara M, Ichimiya S, Nimura Y, et al. Mutational analysis of the p73 gene localized at chromosome Ip36.3 in colorectalcarcinomas. Int J Oncol. 1998 Aug;13(2):319-23. Int J Oncol. 1998 Aug;13(2):319-23.
    
    28. Haven CJ, van Puijenbroek M, Karperien M, et al. Differential expression of the calcium sensing receptor and combined loss of chromosomes lq and 11q in parathyroid carcinoma. J Pathol. 2004 Jan;202(1):86-94.
    
    29. Dwight T, Twigg S, Delbridge L, et al. Loss of heterozygosity in sporadic parathyroid tumours: involvement of chromosome 1 and the MEN1 gene locus in 11q13. Clin Endocrinol (Oxf). 2000 Jul;53(1):85-92.
    
    30. Villablanca A, Farnebo F, Teh BT, et al. Genetic and clinical characterization of sporadic cystic parathyroid tumours. Clin Endocrinol (Oxf). 2002 Feb; 56(2): 261-9.
    
    31. Kitamura Y, Shimizu K, Tanaka S, et al. Allelotyping of anaplastic thyroid carcinoma: frequent allelic losses on 1q, 9p, 11, 17, 19p, and 22q. Genes Chromosomes Cancer. 2000 Mar;27(3):244-51.
    
    32. Chen YJ, Vortmeyer A, Zhuang Z, et al. Loss of heterozygosity of chromosome lq in gastrinomas: occurrence and prognostic significance. Cancer Res. 2003 Feb 15;63(4):817-23.
    
    33. Bieche I, Champeme MH, Lidereau R. Loss and gain of distinct regions of chromosome lq in primary breast cancer. Clin Cancer Res. 1995 Jan;1(1):123-7.
    
    34. Piao Z, Park C, Park JH, et al. Allelotype analysis of hepatocellular carcinoma. Int J Cancer. 1998 Jan 5;75(1):29-33.
    
    35. Pietsch T, Koch A, Wiestler OD. Molecular genetic studies in medulloblastomas: evidence for tumor suppressor genes at the chromosomal regions 1q31-32 and 17p13. Klin Padiatr. 1997 Jul-Aug;209(4): 150-5.
    
    36. Steiner G, Cairns P, Polascik TJ, et al. High-density mapping of chromosomal arm lq in renal collecting duct carcinoma: region of minimal deletion at 1q32.1-32.2. Cancer Res. 1996 Nov l;56(21):5044-6.
    
    37. Kimura M, Okano Y. Identification and assignment of the human NIMA-related protein kinase 7 gene (NEK7) to human chromosome 1q31.3. Cytogenet Cell Genet. 2001;94(1-2):33-8.
    
    38. Minoguchi S, Minoguchi M, Yoshimura A. Differential control of the NIMA-related kinases, Nek6 and Nek7, by serum stimulation. Biochem Biophys Res Commun. 2003 Feb 21;301(4):899-906.
    
    39. Fayard E, Auwerx J, Schoonjans K. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol. 2004 May; 14(5):250-60.
    
    40. Falender AE, Lanz R, Malenfant D, et al. Differential expression of steroidogenic factor-1 and FTF/LRH-1 in the rodent ovary. Endocrinology. 2003 Aug;144(8):3598-610.
    
    41. Tackenberg B, Nitschke M, Willcox N, et al. CD45 isoform expression in autoimmune myasthenia gravis. Autoimmunity. 2003 Mar;36(2):117-21.
    
    42. Hammoud ZT, Kaleem Z, Cooper JD, et al. Allelotype analysis of esophageal adenocarcinomas: evidence for the involvement of sequences on the long arm of chromosome 4. Cancer Res. 1996 , 56:4499-4502.
    
    43. Bluteau O, Beaudoin JC, Pasturaud P, et al. Specific association between alcohol intake, high grade of differentiation and 4q34-q35 deletions in hepatocellular carcinomas identified by high resolution allelotyping. Oncogene .2002 ,21:1225-1232.
    
    44. Rashid A, Wang JS, Qian GS, et al. Genetic alterations in hepatocellular carcinomas: association between loss of chromosome 4q and p53 gene mutations. Br J Cancer. 1999,80:59-66.
    
    45. Hurst CD, Fiegler H, Carr P, et al. High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene. 2004,23: 2250-2263.
    
    46. Sherwood JB, Shivapurkar N, Lin WM, et al. Chromosome 4 deletions are frequent in invasive cervical cancer and differ between histologic variants. Gynecol Oncol. 2000 , 79:90-96.
    
    47. Shivapurkar N, Virmani AK, Ignacio I, et al. Deletions of chromosome 4 at multiple sites are frenquent in malignant mesothelioma and small cell lung carcinoma. Clin Cancer Res. 1999,5:17-23
    
    48. Nishizuka S, Tamura G, Terashima M, et al. Loss of heterozygosity during the development and progression of differentiated adenocarcinoma of the stomach. JPathol. 1998,185:38-43.
    
    49. Perri P, Longo L, Cusano R, et al. Weak linkage at 4p16 to predisposition for human neuroblastoma. Oncogene. 2002 ,21:8356-8360.
    
    50. Takeuchi S, Seriu T, van Dongen JJ, et al. Allelotype analysis in relapsed childhood acute lymphoblastic leukemia. Oncogene. 2003,22:6970-6976.
    
    51. Arribas R, Risques RA, Gonzalez-Garcia I, et al. Tracking recurrent quantitative genomic alterations in colorectal cancer: allelic losses in chromosome 4 correlate with tumor aggressiveness. Lab Invest. 1999 , 79:111-122.
    
    52. Arribas R, Ribas M, Risques RA, et al. Prospective assessment of allelic losses at 4p14-16 in colorectal cancer: two mutational patterns and a locus associated with poorer survival. Clin Cancer Res. 1999 ,5:3454-3459.
    
    53. Choi SW, Lee KJ, Bae YA, et al. Genetic classification of colorectal cancer based on chromosomal loss and microsatellite instability predicts survival. Clin Cancer Res. 2002,8:2311-2322.
    
    54. Komazawa N, Matsuda M, Kondoh G, et al. Enhanced insulin sensitivity, energy expenditure and thermogenesis in adipose-specific Pten suppression in mice. Nat Med. 2004 Nov;10(11):1208-15.
    
    55. Sasaki H, Zlatescu MC, Betensky RA, et al. PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am J Pathol. 2001,159(1):359-367.
    
    56. Fujiwara Y, Hoon DS, Yamada T, et al. PTEN / MMAC1 mutation and zrequent loss of heterozygosity identified in chromosome 10q in a subset of hepatocellular carcinomas. Jpn J Cancer Res. 2000,91(3):287-292.
    
    57. Simpkins SB, Peiffer-Schneider S, Mutch DG, et al. PTEN mutations in endometrial cancers with 10q LOH: additional evidence for the involvement of multiple tumor suppressors.Gynecol Oncol. 1998,71(3):391-395.
    
    58. Reifenberger J, Wolter M, Bostrom J, et al .Allelic losses on chromosome arm 10q and mutation of the PTEN (MMAC1) tumour suppressor gene in primary and metastatic malignant melanomas. Virchows Arch. 2000,436(5):487-493.
    
    59. Yamano M, Fujii H, Takagaki T, et al .Genetic progression and divergence in pancreatic carcinoma. Am J Pathol. 2000,156(6):2123-2133.
    
    60. Fawole AS, Simpson DJ, Rajagopal R, et al. Loss of heterozygosity on chromosome lOq is associated with earlier onset sporadic colorectal adenocarcinoma. Int J Cancer. 2002,99(6): 829-833.
    
    61. Guckelberger O, Sun XF, Sevigny J, et al. Beneficial effects of CD39/ecto-nucleoside triphosphate diphosphohydrolase-1 in murine intestinal ischemia-reperfusion injury. Thromb Haemost. 2004 Mar;91(3):576-86.
    
    62. Marcus AJ, Broekman MJ, Drosopoulos JH, et al. Heterologous cell-cell interactions: thromboregulation, cerebroprotection and cardioprotection by CD39 (NTPDase-1). J Thromb Haemost. 2003 Dec;l(12):2497-509.
    
    63. Dwyer KM, Robson SC, Nandurkar HH, et al. Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. J Clin Invest. 2004 May;113(10):1440-6.
    
    64. Kittel A, Garrido M, Varga G. Localization of NTPDasel/CD39 in normal and transformed human pancreas. J Histochem Cytochem. 2002 Apr;50(4):549-56.
    
    65. Schwarz UI. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Invest. 2003 Nov;33 Suppl 2:23-30.
    
    66. Zhu-Ge J, Yu YN, Qian YL, et al. Establishment of a transgenic cell line stably expressing human cytochrome P450 2C18 and identification of a CYP2C18 clone with exon 5 missing. World J Gastroenterol. 2002 Oct;8(5):888-92.
    
    67. Schwab M, Schaeffeler E, Klotz U, et al. CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter pylori. Clin Pharmacol Ther. 2004 Sep;76(3):201-9.
    
    68. Kotaka M, Lau YM, Cheung KK, et al. Elfin is expressed during early heart development. J Cell Biochem. 2001 Aug 21-Sep 5;83(3):463-72.
    
    69. Hallaq H, Pinter E, Enciso J, et al. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels. Development. 2004 Oct; 131(20):5197-209.
    
    70. Takakura S, Kohno T, Manda R, et al. Genetic alterations and expression of the protein phosphatase 1 genes in human cancers. Int J Oncol. 2001 Apr; 18(4):817-24.
    71. Nazarian R, Falcon-Perez JM, Dell'Angelica EC. Biogenesis of lysosome-related organelles complex 3 (BLOC-3): a complexcontaining the Hermansky-Pudlak syndrome (HPS) proteins HPS1 and HPS4. Proc Natl Acad Sci USA. 2003 Jul 22;100(15):8770-5. Epub 2003 Jul 07.
    
    72. Antonicka H, Mattman A, Carlson CG, et al. Mutations in COX15 produce a defect in the mitochondrial heme biosyntheticpathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet. 2003 Jan;72(1): 101-14. Epub 2002 Dec 09.
    
    73. Tan D, Wiseman S, Zhou Y, et al. Definition of a region of loss of heterozygosity at chromosome 11q23.3-25 inhead and neck squamous cell carcinoma using laser capture microdissection technique. Diagn Mol Pathol. 2004 Mar; 13(1):33-40.
    
    74. Mastrangelo D, Sappia F, Bruni S, et al. Loss of heterozygosity on the long arm of chromosome 11 in orbital embryonal rhabdomyosarcoma (OERMS): a microsatellite study of seven cases Orbit. 1998 Jun; 17(2): 89-95.
    
    75. Kytola S, Nord B, Elder EE, et al. Alterations of the SDHD gene locus in midgut carcinoids, Merkel cell carcinomas, pheochromocytomas, and abdominal paragangliomas. Genes Chromosomes Cancer. 2003 Apr;36(4):424.
    
    76. Maris JM, Guo C, White PS, et al. Allelic deletion at chromosome bands 11q14-23 is common in neuroblastoma. Med Pediatr Oncol. 2001 Jan;36(1):24-7.
    
    77. Guo C, White PS, Weiss MJ, et al. Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene. 1999 Sep 2; 18(35):4948-57.
    
    78. Petzmann S, Ullmann R, Klemen H, et al. Loss of heterozygosity on chromosome arm 11q in lung carcinoids. Hum Pathol. 2001 Mar; 32(3):333-8.
    
    79. Auer RL, Jones C, Mullenbach RA, et al. Role for CCG-trinucleotide repeats in the pathogenesis of chronic lymphocytic leukemia. Blood. 2001 Jan 15;97(2):509-15.
    
    80. Takeuchi S, Cho SK, Seriu T, et al. Identification of three distinct regions of deletion on the long arm of chromosome 11 in childhood acute lymphoblastic leukemia. Oncogene. 1999 Dec 2;18(51):7387-8.
    
    81. Mugica-Van Herckenrode C, Rodriguez JA, Iriarte-Campo V, et al. Definition of a region of loss of heterozygosity at chromosome 1 lq in cervical carcinoma. Diagn Mol Pathol. 1999 Jun;8(2):92-6.
    
    82. Pulido HA, Fakruddin MJ, Chatterjee A, et al. Identification of a 6-cM minimal deletion at llq23.1-23.2 and exclusion of PPP2R1B gene as a deletion target in cervical cancer. Cancer Res. 2000 Dec 1 ;60(23):6677-82.
    
    83. Launonen V, Stenback F, Puistola U, et al. Chromosome 11q22.3-q25 LOH in ovarian cancer: association with a more aggressive disease course and involved subregions. Gynecol Oncol. 1998 Nov;71(2):299-304.
    
    84. Lo KW, Teo PM, Hui AB, et al. High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res. 2000 Jul 1 ;60(13):3348-53.
    
    85. Moinfar F, Man YG, Arnould L, et al. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res. 2000 May 1 ;60(9):2562-6.
    
    86. Robertson GP, Goldberg EK, Lugo TG, et al. Functional localization of a melanoma tumor suppressor gene to a small (< or = 2 Mb) region on 11q23. Oncogene. 1999 May 20; 18(20):3173-80.
    
    87. Herbst RA, Gutzmer R, Matiaske F, et al. Identification of two distinct deletion targets at 11q23 in cutaneous malignant melanoma. Int J Cancer. 1999 Jan 18;80(2):205-9.
    
    88. Koreth J, Bakkenist CJ, McGee JO. Allelic deletions at chromosome 11q22-q23.1 and 11q25-qterm are frequent in sporadic breast but not colorectal cancers. Oncogene. 1997 Jan 30; 14(4):431 -7.
    
    89. Tomlinson IP, Bodmer WF. Chromosome 11q in sporadic colorectal carcinoma: patterns of allele loss and their significance for tumorigenesis. J Clin Pathol. 1996 May;49(5):386-90.
    
    90. Huettner PC, Gerhard DS, Li L, et al. Loss of heterozygosity in clinical stage IB cervical carcinoma: relationshipwith clinical and histopathologic features. Hum Pathol. 1998 Apr;29(4):364-70.
    
    91. Kersemaekers AM, Hermans J, Fleuren GJ, et al. Loss of heterozygosity for defined regions on chromosomes 3, 11 and 17 in carcinomas of the uterine cervix. Br J Cancer. 1998;77(2): 192-200.
    
    92. Kitamura Y, Shimizu K, Ito K, et al.Allelotyping of follicular thyroid carcinoma: frequent allelic losses in chromosome arms 7q, 11p, and 22q. J Clin Endocrinol Metab. 2001 Sep;86(9):4268-72.
    
    93. Castells A, Gusella JF, Ramesh V, et al. A region of deletion on chromosome 22q13 is common to human breast and colorectal cancers. Cancer Res. 2000 Jun1;60(11):2836-9.
    
    94. Ingvarsson S, Sigbjornsdottir BI, Huiping C, et al. Mutation analysis of the CHK2 gene in breast carcinoma and other cancers. Breast Cancer Res. 2002;4(3):R4. Epub 2002 Mar 20.
    
    95. Sud R, Wells D, Talbot IC, et al.Genetic alterations in gastric cancers from British patients. Cancer Genet Cytogenet. 2001 Apr 15;126(2):111-9.
    
    96. Pylkkanen L, Sarlomo-Rikala M, Wessman M, et al.Chromosome 22q alterations and expression of the NF2 gene product, merlin, in gastrointestinal stromal tumors. Hum Pathol. 2003 Sep;34(9):872-9.
    
    97. Fukasawa T, Chong JM, Sakurai S, et al. Allelic loss of 14q and 22q, NF2 mutation, and genetic instability occur independently of c-kit mutation in gastrointestinal stromal tumor. Jpn J Cancer Res. 2000 Dec; 91 (12): 1241 -9.
    
    98. Gunawan B, Schulten HJ, von Heydebreck A, et al.Site-independent prognostic value of chromosome 9q loss in primary gastrointestinal stromal tumours. J Pathol. 2004 Apr;202(4):421-9.
    
    99. Wild A, Langer P, Celik I, et al.Chromosome 22q in pancreatic endocrine tumors: identification of a homozygous deletion and potential prognostic associations of allelic deletions. Eur J Endocrinol. 2002 Oct;147(4):507-13.
    100.Wild A, Langer P, Ramaswamy A, et al.A novel insulinoma tumor suppressor gene locus on chromosome 22q with potential prognostic implications. J Clin Endocrinol Metab. 2001 Dec; 86(12):5782-7.
    101.Lasota J, Wasag B, Dansonka-Mieszkowska A,et al.Evaluation of NF2 and NF1 tumor suppressor genes in distinctive gastrointestinal nerve sheath tumors traditionally diagnosed as benign schwannomas: s study of 20cases. Lab Invest. 2003 Sep;83(9): 1361-71.
    102.Castells A, Ino Y, Louis DN, et al.Mapping of a target region of allelic loss to a 0.5-cM interval on chromosome 22q13 in human colorectal cancer. Gastroenterology .1999 Oct;117(4):831-7.
    103.Gad S, Teboul D, Lievre A, et al.Is the gene encoding Chibby implicated as a tumour suppressor in colorectal cancer ? BMC Cancer. 2004 Jul 9;4(1):31.
    104.Paredes-Zaglul A, Kang JJ, Essig YP, et al.Analysis of colorectal cancer by comparative genomic hybridization: evidence for induction of the metastatic phenotype by loss of tumor suppressor genes. Clin Cancer Res. 1998 Apr;4(4):879-86.
    105.Antoni Castells, James F Gusella, Vijaya Ramesh, et al. A region of deletion on chromosome 22q13 is common to human breast and colorectal cancers. Cancer Res. 2000, 60:2836-2839
    106.Bei Huang, Petr Starostik, Joachim Kuhl, et al. Loss of heterozygosity on chromosome 22 in human ependymomas. Acta Neuropathol. 2002, 103:415-420
    107.Sergi Castellvi-Bel, Antoni Castells, Cameron N Johnstone, et al. Evaluation of PARVG located on 22q13 as a candidate tumor suppressor gene for colorectal and breast cancer. Cancer Genetics and Cytogenetics. 2003,144: 80-82
    
    108.Johnstone CN, Castellvi-Bel S, Chang LM, et al. ARHGAP8 is a novel member of the RHOGAP family related to ARHGAPl/CDC42GAP/p50RHOGAP: mutation and expression analyses in colorectal and breast cancers. Gene. 2004 ;336(1):59-71.
    
    109..Crowe DL, Chandraratna RA. A retinoid X receptor (RXR)-selective retinoid reveals that RXR-alpha is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res. 2004;6(5):R546-555.
    110.Ohali A, Avigad S, Cohen IJ, et al. High frequency of genomic instability in Ewing family of tumors. Cancer Genet Cytogenet. 2004 Apr l;150(l):50-6.
    111 .Zhang J, Zheng S, Gao Y, et al. A partial allelotyping of urothelial carcinoma of bladder in the Chinese. Carcinogenesis. 2004 Mar;25(3):343-7. Epub 2003 Nov 06.
    112.Tzai TS, Chen HH, Chan SH, et al. Clinical significance of allelotype profiling for urothelial carcinoma. Urology. 2003 Aug;62(2):378-84.
    113.Kahng YS, Lee YS, Kim BK, et al. Loss of heterozygosity of chromosome 8p and lip in the dysplastic nodule and hepatocellular carcinoma. J Gastroenterol Hepatol. 2003 Apr; 18(4):430-6.
    
    114.Man Y, Mannion C, Kuhls E, et al. Allelic losses at 3p and 11p are detected in both epithelial and stromalcomponents of cervical small-cell neuroendocrine carcinoma. Appl Immunohistochem Mol Morphol. 2001 Dec;9(4):340-5.
    115.E1-Naggar AK, Hurr K, Huff V, et al. Allelic loss and replication errors at microsatellite loci on chromosome lip in head and neck squamous carcinoma: association with aggressive biological features. Clin Cancer Res. 1996 May;2(5):903-7.
    
    116.Virmani AK, Fong KM, Kodagoda D, et al. Allelotyping demonstrates common and distinct patterns of chromosomal loss inhuman lung cancer types. Genes Chromosomes Cancer. 1998 Apr;21(4):308-19.
    
    117.Shipman R, Schraml P, Colombi M, et al. Allelic deletion at chromosome 11p13 defines a tumour suppressor region between the catalase gene and D11S935 in human non-small cell lung carcinoma. Int J Oncol. 1998 Jan;12(1):107-11.
    118.Sanchez-Cespedes M, Rosell R, Pifarre A, et al. Microsatellite alterations at 5q21, 11p13, and 11 p15.5 do not predict survival in non-small cell lung cancer. Clin Cancer Res. 1997 Jul;3(7):1229-35.
    119.Pulido HA, Fakruddin MJ, Chatterjee A, et al. Identification of a 6-cM minimal deletion at 11q23.1-23.2 and exclusion of PPP2R1B gene as a deletion target in cervical cancer. Cancer Res. 2000 Dec 1 ;60(23):6677-82.
    120.Yin XL, Pang JC, Liu YH, et al. Analysis of loss of heterozygosity on chromosomes 10q, 11, and 16 in medulloblastomas. J Neurosurg. 2001 May;94(5):799-805.
    121.Zhou X, Mok SC, Chen Z, et al. Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10K SNP mapping array. Hum Genet. 2004 Jul28
    122.Nakadate H, Yokomori K, Watanabe N, Tsuchiya T, Namiki T, Kobayshi H, Suita S,Tsunematsu Y, Horikoshi Y, Hatae Y, Endo M, Komada Y, Eguchi H, Toyoda Y, Kikuta
    123.Emi M, Matsumoto S, Iida A, et al. Correlation of Allelic Losses and Clinicopathological Factors in Primary Breast Cancers. Breast Cancer. 1997 Dec 25;4(4):243-246.
    124.BockmuhI U, Petersen S, Schmidt S, et al. Patterns of chromosomal alterations in metastasizing and nonmetastasizing primary head and neck carcinomas. Cancer Res. 1997 Dec 1 ;57(23):5213-6.
    125.Marhaba R, Zoller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004 Mar;35(3):211-31.
    
    126.Song G, Liao X, Zhou L, et al. HI44a, an anti-CD44 monoclonal antibody, induces differentiation and apoptosis of human acute myeloid leukemia cells. Leuk Res. 2004 Oct;28(10): 1089-96.
    127.Lakshman M, Subramaniam V, Rubenthiran U, et al. CD44 promotes resistance to apoptosis in human colon cancer cells. Exp Mol Pathol. 2004 Aug;77(1):18-25.
    128.Madjd Z, Pinder SE, Paish C, et al. Loss of CD59 expression in breast tumours correlates with poor survival. J Pathol. 2003 Aug;200(5):633-9.
    129.Landi AP, Wilson AB, Davies A, et al. Determination of CD59 protein in normal human serum by enzyme immunoassay, using octyl-glucoside detergent to release glycosyl-phosphatidylinositol-CD59 from lipid complex. Immunol Lett. 2003 Dec 15;90(2-3):209-13.
    
    130.Kadota M, Tamaki Y, Sekimoto M, et al. Loss of heterozygosity on chromosome 16p and 18q in anaplastic thyroid carcinoma. Oncol Rep. 2003 Jan-Feb;10(1):35-8.
    
    131.Maris JM, Weiss MJ, Mosse Y, et al. Evidence for a hereditary neuroblastoma predisposition locus at chromosome 16p12-13. Cancer Res. 2002 Nov 15;62(22):6651-8.
    
    132.Furuta S, Ohira M, Machida T, et al. Analysis of loss of heterozygosity at 16p 12-p 13 (familial neuroblastoma locus)in 470 neuroblastomas including both sporadic and mass screening tumors. Med Pediatr Oncol. 2000 Dec;35(6):531-3.
    
    133.Lininger RA, Park WS, Man YG, et al. LOH at 16p13 is a novel chromosomal alteration detected in benign and malignant microdissected papillary neoplasms of the breast. Hum Pathol. 1998 Oct;29(10):l 113-8.
    134.Boige V, Laurent-Puig P, Fouchet P, et al. Concerted nonsyntenic allelic losses in hyperploid hepatocellular carcinoma as determined by a high-resolution allelotype. Cancer Res. 1997 May 15;57( 10): 1986-90.
    
    135.Koyama M, Nagai H, Bando K, et al. Localization of a target region of allelic loss to a 1-cM interval on chromosome 16p.13.13 in hepatocellular carcinoma. Jpn J Cancer Res. 1999 Sep;90(9):951 -6.
    136.Taruscio D, Paradisi S, Zamboni G, et al. Pancreatic acinar carcinoma shows a distinct pattern of chromosomal imbalances by comparative genomic hybridization. Genes Chromosomes Cancer. 2000 Jul;28(3):294-9.
    137.Gogusev J, Murakami I, Doussau M, et al. Molecular cytogenetic aberrations in autosomal dominant polycystic kidney disease tissue. J Am Soc Nephrol. 2003 Feb;14(2):359-66.
    
    138.Kundu M, Liu PP. Function of the'inv(16) fusion gene CBFB-MYH11. Function of the inv(16) fusion gene CBFB-MYH11. Curr Opin Hematol. 2001 Jul;8(4):201-5.
    139.Kruh GD, Zeng H, Rea PA, et al. MRP subfamily transporters and resistance to anticancer agents. J Bioenerg Biomembr. 2001 Dec;33(6):493-501.
    140.O'Neill GM, Peters GB, Harvie RM, et al. Amplification and expression of the ABC transporters ARA and MRP in a series of multidrug - resistant leukaemia cell sublines. Br J Cancer. 1998 Jun ; 77 (12): 2076-80.
    
    141. Santos SC, Cavalli LR, Cavalli IJ, et al. Loss of heterozygosity of the BRCA1 and FHIT genes in patients with sporadic breast cancer from Southern Brazil. J Clin Pathol. 2004 Apr;57(4):374-7.
    
    142.Johnson SM, Shaw JA, Walker RA. Sporadic breast cancer in young women: prevalence of loss of heterozygosity at p53, BRCA1 and BRCA2. Int J Cancer. 2002 Mar 10;98(2):205-9.
    
    143.Lerebours F, Bertheau P, Bieche I, et al. Evidence of chromosome regions and gene involvement in inflammatory breast cancer. Int J Cancer. 2002 Dec 20; 102(6):618-22.
    
    144.Chuaqui R, Silva M, Emmert-Buck M. Allelic deletion mapping on chromosome 6q and X chromosome inactivation clonality patterns in cervical intraepithelial neoplasia and invasive carcinoma. Gynecol Oncol. 2001 Mar;80(3):364-71.
    
    145.Garcia A, Bussaglia E, Machin P, et al. Loss of heterozygosity on chromosome 17q in epithelial ovarian tumors: association with carcinomas with serous differentiation. Int J Gynecol Pathol. 2000 Apr; 19(2): 152-7.
    146.Caduff RF, Svoboda-Newman SM, Ferguson AW, et al. Comparison of alterations of chromosome 17 in carcinoma of the ovary and of the breast. Virchows Arch. 1999 Jun;434(6):517-22.
    
    147.Bertherat J, Groussin L, Sandrini F, et al. Molecular and functional analysis of PRKARIA and its locus (17q22-24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity. Cancer Res. 2003 Sep l;63(17):5308-19.
    
    148.Rizos E, Sourvinos G, Spandidos DA. Loss of heterozygosity at 8p, 9p and 17q in laryngeal cytological specimens. Oral Oncol. 1998 Nov;34(6):519-23.
    
    149.Abujiang P, Mori TJ, Takahashi T, T et al. Loss of heterozygosity (LOH) at 17q and 14q in human lung cancers. Oncogene. 1998 Dec 10;17(23):3029-33.
    
    150.Gao X, Zacharek A, Grignon DJ, et al. Localization of potential tumor suppressor loci to a < 2 Mb region on chromosome 17q in human prostate cancer. Oncogene. 1995 Oct 5; 11 (7): 1241-7.
    
    151 .Asirvatham AL, Galligan SG, Schillace RV, et al. A-kinase anchoring proteins interact with phosphodiesterases in T lymphocytecell lines. J Immunol. 2004 Oct15;173(8):4806-14.
    
    152.Ognjanovic S, Bao S, Yamamoto SY, et al. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. J Mol Endocrinol. 2001 Apr;26(2):107-17.
    153.Van Beijnum JR, Moerkerk PT, Gerbers AJ, et al. Target validation for genomics using peptide-specific phage antibodies: a study of five gene products overexpressed in colorectal cancer. Int J Cancer. 2002 Sep 10;101(2):118-27.
    
    154.Watanabe T, Imoto I, Kosugi Y, et al. A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization. Gynecol Oncol. 2001 May;81(2): 172-7.
    155.Bohmann K, Ferreira JA, Lamond AI. Mutational analysis of p80 coilin indicates a functional interaction between coiled bodies and the nucleolus. J Cell Biol. 1995 Nov;131(4):817-31.
    156.Hong S, Ka S, Kim S, et al. p80 coilin, a coiled body-specific protein, interacts with ataxin-1, the SCAlgene product. Biochim Biophys Acta. 2003 May 20;1638(1):35-42.
    157.Kameoka Y, Persad AS, Suzuki K Genomic variations in myeloperoxidase gene in the Japanese population. Jpn J Infect Dis. 2004 Oct;57(5):S12-3.
    158.Makela R, Karhunen PJ, Kunnas TA, et al. Myeloperoxidase gene variation as a determinant of atherosclerosis progression in the abdominal and thoracic aorta: an autopsy study Lab Invest. 2003 Jul;83(7):919-25.
    1. Goel A, Arnold CN, Niedzwiecki D, et al. Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res, 2003,63 (7): 1608-1614.
    2. Shivapurkar N, Maitra A, Milchgrub S, et al. Deletions of chromosome 4 occur early during the pathogenesis of colorectal carcinoma.Hum Pathol, 2001, 32 (2): 169-177.
    3. Flanagan JM, Healey S, Young J, et al .Mapping of a candidate colorectal cancer tumor-suppressor gene to a 900-kilobase region on the short arm of chromosome 8.Genes Chromosomes Cancer,2004,40(3):247-260.
    
    4. Bando T, Kato Y, Ihara Y, et al. Loss of heterozygosity of 14q32 in colorectal carcinoma. Cancer Genet Cytogenet, 1999,111 (2): 161 -165.
    
    5. Hadzija MP, Radosevic S, Kovacevic D, et al. Status of the DPC4 tumor suppressor gene in sporadic colon adenocarcinoma of Croatian patients: identification of a novel somatic mutation.Mutat Res,2004,548(1-2):61-73.
    
    6. Entius MM, Keller JJ, Westerman AM, et al. Molecular genetic alterations in hamartomatous polyps and carcinomas of patients with Peutz-Jeghers syndrome. J Clin Pathol,2001,54(2): 126-131.
    
    7. Lee AS, Seo YC, Chang A, et al. Detailed deletion mapping at chromosome 11q23 in colorectal carcinoma.Br J Cancer,2000,83(6):750-755.
    
    8. Kubo H, Miki C, Kusunoki M. Evaluation of genetic mutations of tumor suppresser genes in colorectal cancer patients. Hepatogastroenterology, 2004, 51(55):114-117.
    9. Ohki S, Onda M, Fukushima T, et al. Telomeric repeat-length alterations in colorectal carcinoma are associated with loss of heterozygosity and point mutation in p53 gene. Int J Mol Med,2003,11(4):485-490.
    
    10. Miyakura Y, Sugano K, Konishi F, et al. Methylation profile of the MLH1 promoter region and their relationship to colorectal carcinogenesis. Genes Chromosomes Cancer,2003,36(1): 17-25.
    
    11. Forslund A, Lonnroth C, Andersson M, et al .Mutations and allelic loss of p53 in primary tumor DNA from potentially cured patients with colorectal carcinoma. J Clin Oncol,2001,19(11):2829-2836.
    
    12. Hadija MP, Kapitanovic S, Radosevic S, et al. Loss of heterozygosity of DPC4 tumor suppressor gene in human sporadic colon cancer. J Mol Med,2001,79(2-3): 128-132.
    13. Koshiji M, Yonekura Y Saito T, et al .Genetic alterations in normal epithelium of colorectal cancer patients may be a useful indicator for subsequent metachronous tumor development. Ann Surg Oncol, 2002, 9(6): 580-586.
    
    14. Zauber NP, Sabbath-Solitare M, Marotta SP, et al .K-ras mutation and loss of heterozygosity of the adenomatous polyposis coli gene in patients with colorectal adenomas with in situ carcinoma.Cancer,1999,86(1):31-36.
    
    15. Zauber NP, Sabbath-Solitare M, Marotta SP, et al. Molecular changes in the Ki-ras and APC genes in colorectal adenomas and carcinomas arising in the same patient. J Pathol,2001,193(3):303-309.
    
    16. Blaker H, Graf M, Rieker RJ, et al .Comparison of losses of heterozygosity and replication errors in primary colorectal carcinomas and corresponding liver metastases. J Pathol,1999,188(3):258-262.
    
    17. Zauber P, Sabbath-Solitare M, Marotta SP, et al .Molecular changes in the Ki-ras and APC genes in primary colorectal carcinoma and synchronous metastases compared with the findings in accompanying adenomas. Mol Pathol,2003,56(3):137-140.
    
    18. Umetani N, Sasaki S, Watanabe T, et al. Genetic alterations in ulcerative colitis-associated neoplasia focusing on APC K-ras gene and microsatellite instability. Jpn J Cancer Res,1999,90(10):1081-1087.
    
    19. Kanazawa T, Watanabe T, Kazama S, et al. Poorly differentiated adenocarcinoma and mucinous carcinoma of the colon and rectum show higher rates of loss of heterozygosity and loss of E-cadherin expression due to methylation of promoter region.Int J Cancer,2002,102(3):225-229.
    
    20. Choi SW, Lee KJ, Bae YA, et al. Genetic classification of colorectal cancer based on chromosomal loss and microsatellite instability preditcts survival. Clin Cancer Res, 2002,8(7):2311 -2322.
    21. Zhang H, Arbman G, Sun XF. Codon 201 polymorphism of DCC gene is a prognostic factor in patients with colorectal cancer. Cancer Detect Prev, 2003, 27(3):216-221.
    
    22. Garcia JM,Rodriguez R,Dominguez G, et al. Prognostic significance of the allelic loss of the BRAC1 gene in colorectal cancer. Gut, 2003, 52(12): 1756-1763.
    
    23. Iniesta P, Massa MJ, Gonzalez-Quevedo R, et al .Loss of heterozygosity at 3p23 is correlated with poor survival in patients with colorectal carcinoma. Cancer,2000,89(6): 1220-1227.
    
    24. Kambara T, Sharp GB, Nagasaka T, et al. Allelic loss of a common microsatellite marker MYCLl:a useful pronostic factoa of poor outcomes in colorectal cancer .Clin Cancer Res, 2004,10(5): 1758-1763.
    1. Kirk BW, Feinsod M, Favis R, et al. Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res 2002;30:3295-3311.
    
    2. Fults D, Pedone CA, Thomas GA, et al. Allelotype of human malignant astrocytoma. Cancer Res 1990;50:5784-5789.
    
    3. Sato T, Tanigami A, Yamakawa K, et al.Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res 1990;50:7184-7189.
    
    4. Tsuchiya E, Nakamura Y, Weng SY, et al.Allelotype of non-small cell lung carcinoma—comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. Cancer Res 1992 ;52:2478-2481.
    
    5. Yamaguchi T, Toguchida J, Yamamuro T, et al. Allelotype analysis in osteosarcomas: frequent allele loss on 3q, 13q, 17p, and 18q. Cancer Res 1992;52:2419-2423.
    
    6. Thrash-Bingham CA, Greenberg RE, Howard S, et al.Comprehensive allelotyping of human renal cell carcinomas using microsatellite DNA probes. Proc Natl Acad Sci USA 1995;92:2854-2858.
    
    7. Knudson AG Hereditary cancer, oncogenes, and anti-oncogenes Princess Takamatsu Symp 1989;20:15-29.
    8. Janne PA, Li C, Zhao X, et al. Meyerson M. High-resolution single-nucleotide polymorphism array and clustering analysis of loss of heterozygosity in human lung cancer cell lines. Oncogene 2004 ;23:2716-2726.
    
    9. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971;68:820-823.
    
    10. Hansen MF, Cavenee WK. Genetics of cancer predisposition. Cancer Res 1987;47:5518-5527.
    
    11. Brown MA. Tumor suppressor genes and human cancer. Adv Genet 1997;36:45-135.
    
    12. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759-767.
    
    13. Thiagalingam S, Laken S, Willson JK, et al. Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc Natl Acad Sci USA 2001;98:2698-2702.
    
    14. Hoque MO, Lee CC, Cairns P, et al.Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer Res 2003; 63: 2216-2222.
    
    15. Mei R, Galipeau PC, Prass C, et al. Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. Genome Res 2000;10:1126-1137.
    
    16. Lindblad-Toh K, Tanenbaum DM, Daly MJ, et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nat Biotechnol 2000;18:1001-1005.
    
    17. Vogelstein B, Fearon ER, Kern SE, et al. Allelotype of colorectal carcinomas. Science 1989;244:207-211.
    
    18. Weissenbach J, Gyapay G, Dib C, et al. A second-generation linkage map of the human genome. Nature 1992;359:794-801.
    19. Gruis NA, Abeln EC, Bardoel AF, et al. PCR-based microsatellite polymorphisms in the detection of loss of heterozygosity in fresh and archival tumour tissue. Br J Cancer 1993;68:308-313.
    
    20. Hatta Y, Yamada Y, Tomonaga M, et al. Allelotype analysis of adult T-cell leukemia. Blood 1998;92:2113-2117.
    
    21. Piao Z, Park C, Park JH, et al. Allelotype analysis of hepatocellular carcinoma. IntJ Cancer 1998;75:29-33.
    
    22. Shih YC, Kerr J, Hurst TG, et al. No evidence for microsatellite instability from allelotype analysis of benign and low malignant potential ovarian neoplasms. Gynecol Oncol 1998 ;69:210-213.
    
    23. Mao X, Barfoot R, Hamoudi RA, et al.Allelotype of uterine leiomyomas. Cancer Genet Cytogenet 1999; 114:89-95.
    
    24. Yustein AS, Harper JC, Petroni GR, et al. Allelotype of gastric adenocarcinoma. Cancer Res 1999;59:1437-1441.
    
    25. Peng Z, Zhang F, Zhou C, et al. Genome-wide search for loss of heterozygosity in Chinese patients with sporadic colorectal cancer. Int J Gastrointest Cancer 2003;34:39-48.
    
    26. Peng Z, Zhou C, Zhang F, et al. Loss of heterozygosity of chromosome 20 in sporadic colorectal cancer. Chin Med J (Engl) 2002 ;115:1529-1532.
    
    27. Sachidanandam R, Weissman D, Schmidt SC, et al. International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001;409:928-933.
    
    28. Marth G, Yeh R, Minton M, et al. Single-nucleotide polymorphisms in the public domain: how useful are they? Nat Genet 2001 ;27:371-372.
    
    29. Patil N, Berno AJ, Hinds DA, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001;294:1719-1723.
    30. Wong KK, Tsang YT, Shen J, et al. Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA. Nucleic Acids Res 2004;32:e69.
    
    31. Hahn SA, Seymour AB, Hoque AT, et al. Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res 1995;55:4670-4675.
    
    32. Barrett MT, Galipeau PC, Sanchez CA, et al. Determination of the frequency of loss of heterozygosity in esophageal adenocarcinoma by cell sorting, whole genome amplification and microsatellite polymorphisms. Oncogene 1996;12:1873-1878.
    
    33. Paulson TG, Galipeau PC, Reid BJ. Loss of heterozygosity analysis using whole genome amplification, cell sorting, and fluorescence-based PCR. Genome Res 1999 ;9:482-491.
    
    34. Dumur CI, Dechsukhum C, Ware JL, et al.Genome-wide detection of LOH in prostate cancer using human SNP microarray technology. Genomics 2003;81:260-269.
    
    35. Zhao X, Li C, Paez JG, et al. An integrated view of copy number and allelicalterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res 2004 ;64:3060-3071.
    
    36. Greer CE, Lund JK, Manos MM. PCR amplification from paraffin-embedded tissues: recommendations on fixatives for long-term storage and prospective studies. PCR Methods Appl 1991 ; 1:46-50.
    
    37. Wang ZC, Lin M, Wei LJ, et al. Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers. Cancer Res 2004;64:64-71.
    
    38. Lieberfarb ME, Lin M, Lechpammer M, et al.Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res 2003;63:4781-4785.
    39. Zhou X, Mok SC, Chen Z, et al. Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10K SNP mapping array. Hum Genet 2004; 115:327-330.
    
    40. Primdahl H, Wikman FP, von der Maase H, et al.Allelic imbalances in human bladder cancer: genome-wide detection with high-density single-nucleotide polymorphism arrays. J Natl Cancer Inst 2002;94:216-223.
    
    41. Halushka MK, Fan JB, Bentley K, et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 1999;22:239-247.
    
    42. Lieberfarb ME, Lin M, Lechpammer M, et al. Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res 2003;63:4781-4785.
    
    43. Lin M, Wei LJ, Sellers WR, et al. dChipSNP: significance curve and clustering of SNP -array -based loss -of - heterozygosity data. Bioinformatics 2004;20:1233-1240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700