小鼠树突状细胞瘤转移相关基因的研究和生物信息学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤细胞向其他组织或器官转移是肿瘤的一个基本特征,也是恶性肿瘤难以治愈的关键原因,人们目前对于肿瘤的转移机制和影响转移的基因了解的还不很清楚,特别是不同肿瘤细胞的转移机制和影响其转移的关键基因存在一定的差异。恶性肿瘤的转移涉及到多阶段改变的过程,其中包括:局部侵袭、血流转运、溢出、增殖、定着靶器官等,这些过程包含多种基因的复杂变化。我们利用从小鼠树突状细胞瘤(DCS)分离出来的肺转移能力明显差异的两株亚克隆细胞株,采用高密度的Affymetrix基因芯片检测这两株细胞的基因表达谱,用生物信息学的方法分析基因表达数据,获取表达显著差异的基因,进行了以下几方面的研究:
     1.小鼠树突状细胞瘤转移相关基因的研究
     小鼠树突状细胞瘤(DCS)是中国医学科学院(协和医科大学)基础医学研究所细胞中心所建的细胞系,他们用极限稀释方法从小鼠DCS母细胞系中分离到与同一母细胞来源的,转移能力明显差异的DD1和DG6细胞株,为消除细胞种群等其他因素的影响,专门研究DCS与肿瘤转移相关基因提供了良好的细胞模型。我们用高密度的Affymetrix基因表达芯片(小鼠MOE-430A),比较两株细胞基因表达的差异,高通量地筛选出可能与小鼠DCS肺转移相关的基因。结果发现,高转移细胞株DD1和低转移细胞株DG6在转录因子、RNA过程、细胞增殖和凋亡、分子转运和蛋白质修饰等方面均存在差异;通过RT-PCR和细胞免疫荧光试验,在RNA和蛋白质水平上我们验证了影响细胞分化的转录因子Ehf、凋亡相关基因Pedf、细胞粘附因子Nectin-3和趋化因子Mcp-1(CCL2)在这两株细胞中存在着显著的差异,提示这些基因可能与小鼠DCS肺转移相关。
     2. DNA甲基化与小鼠树突状细胞瘤的基因表达
     我们选择在高转移DD1和低转移DG6细胞株中表达差异较大一些转录因子Smcy,Ehf及与细胞凋亡Pedf、细胞粘附Nectin-3有关的基因,通过检测这些基因启动子区DNA甲基化情况,探讨是否由于DNA甲基化而控制这些基因的上调和下调,初步探寻影响小鼠DCS细胞基因表达的机制。我们采用亚硫酸氢盐处理高转移细胞株DD1和低转移细胞株DG6的基因组DNA后,用不含CG序列的特异性引物经PCR扩增出这几个基因的启动子序列,然后测序观察结果,CG序列中未甲基化的胞嘧啶C被转化胸腺嘧啶T,而甲基化的C保持不变。结果发现Pedf基因有一个位点的甲基化改变(C变为T);Smcy和Ehf基因启动子区的DNA甲基化模式没有明显改变,我们倾向认为,可能不是由于DNA甲基化控制这几个基因的高表达、低表达,而是其他原因如转录因子之间的相互作用影响这几个基因的上调或下调。
     3.小鼠树突状细胞瘤基因表达谱分析
     我们用Affymetrix基因表达芯片(小鼠MOE-430A)测定了小鼠树突状细胞瘤不同肺转移潜能的DD1和DG6细胞株的基因表达谱,同时我们从NCBI的基因表达数据库GEO和EBI的芯片数据库ArrayExpress at database下载了与树突状细胞(DC)发育相关的基因表达数据,下载的这些数据均是Affymetrix小鼠MG-U74av2芯片数据,我们用Affymetrix提供的两种芯片探针的匹配度筛选出最佳匹配的探针集,用内源的11个管家基因对2个自已测定的和32个从数据库下载的与DC发育相关的表达数据标准化,采用分层聚类分析、主成分分析、最近邻分析和自组织映射分析方法,将小鼠DD1和DG6细胞株的基因表达谱与数据库中树突状细胞(DC)发育各阶段的基因表达谱进行比较,结果发现小鼠树突状细胞瘤的基因表达谱与骨髓来源的造血干细胞和DC前体细胞相似,而与脾脏来源的相对成熟的DC差异较大,我们的结果支持肿瘤细胞来源于干细胞,干细胞发育障碍而导致肿瘤发生的理论,另外,结果还显示DD1和DG6基因表达谱与已知DC前体细胞的相似性,这个结果也提示合作单位分离的细胞为小鼠树突状细胞。
     4.含有同源异型结构的转录因子的生物信息学分析
     Affymetrix高密度表达芯片检测结果显示,高转移的DD1细胞株高表达同源异型基因En1(Engrailed 1 homeobox),低转移的DG6细胞株高表达lhx2(LIM homeobox protein 2)和prrx2(paired related homeobox 2)同源异型基因,提示同源异型基因与小鼠树突状细胞瘤可能有相关性。含有同源异型结构(homeobox)的蛋白在胚胎发育、基因表达调节、细胞分化、神经发生等方面发挥重要作用。同源异型结构的氨基酸残基在疏水性和带正电的氨基酸残基具有保守性,含有同源异型结构的蛋白质与基因启动子区富含A和T核酸序列结合。同源异型框与其它结构域同时存在,如PAX、POU、LIM、OAR、CUT、ELK、bZIP、SIX、PHD-finger、Engrailed等,近来还发现它通过基因融合或基因失调控方式参与肿瘤的发生,而且Nanog homeobox和OCT4(为POU复合homeobox结构)是胚胎干细胞维持自我更新过程所必需的。
     5.利用启动子区序列的同源性,寻找转录因子结合位点
     胰岛素启动因子1(IPF1,insulin promoter factor-1或PDX1,pancreatic duodenal homeobox-1)是含有同源异型结构(homeobox)蛋白质,和神经分化因子1(NDF1,neurogenic differentiation factor 1或NeuroD)、肝细胞核因子4(HNF4,hepatocyte nuclear factor 4)共同参与胰岛素基因表达的调控,均为MODY (maturity onset diabetes of the young)基因,这几个因子的功能缺陷是二型糖尿病发生重要的遗传因素。
     我们通过比较人、小鼠、大鼠这三种核蛋白氨基酸一级序列和结构域,发现其序列和结构十分相似,推测这些DNA结合蛋白与胰岛素基因结合的核苷酸序列相似;用ClustalW比较三者Promotor区的核苷酸序列,显示有几段核苷酸序列较为相似,同时搜索TRANSFAC基因转录数据库中NDF1、IPF1和HNF4蛋白核苷酸结合位点,发现核酸比对保守的部分序列与TRANSFAC数据库中这三个转录因子的DNA结合位点一致,另外一些核酸保守序列可能为其他未知DNA结合蛋白的结合位点。这为分子生物学实验寻找和验证新的胰岛素DNA结合蛋白与核苷酸的结合位点提供了基础。
It is a common feature that the tumor cells metastasize to other tissues or organs, and the metastasis is the principal reason leading to death in individuals with tumor. Yet its molecular basis is not well understood. Especially, the recent studies have indicated that the key genes associated with metastasis and the mechanisms are diverse among the different tissues or of tumor types. Metastasis is a complex process involving multiple stages, such as local invasion, transit through the bloodstream, extravasation, proliferation and survival within a favorable target organ. We use the model of highly and poorly metastatic cell lines from the same parent (mouse Dendritic Cell Sarcoma, DCS) to examine differences of their gene expression profiles with Affymetrix high-density microarrays. We try to screen the genes related with lung metastasis of mouse DCS by the high-throughput method. The followings are the main points of our studies.
     1. The study of the genes associated with metastasis of mouse DCS
     Mouse dendritic cell sarcoma (DCS) was a cell line that established and identified by Institute of Basic Medical Sciences at Chinese Academy of Medical Sciences. They isolated the highly and poorly metastatic cells (DD1 and DG6) from the parent cell line DCS by limited dilution method. It is a good model to study the metastasis of mouse DCS to lung for the nearly same genetic background between DD1 and DG6 subclones. We use the Affymetrix high-density microarrays to screen the genes that may be associated with metastasis by comparing the differences of genome-wide expression.
     The results show that expressed genes are quite different in transcription factors, RNA process, cell proliferation and apoptosis, transport, protein synthesis and modification, and other aspects between the DD1 (highly metastasis to lung) and the DG6 (poorly metastasis to lung) cells. Furthermore, several expression-difference genes have identified by the methods of RT-PCR and Immunocytochemistry, such as the transcription factor Ehf that influences the cell differentiation, potential tumor suppressors and apoptosis related gene Pedf, adhesion molecule Nectin-3 and the chemokine Mcp-1(CCL2). The results suggest these genes might be associated with the DCS metastasis.
     2. DNA methylation and the gene expression of mouse DCS
     We choose some obvious up or down-regulated genes of transcription factors Smcy and Ehf, potential apoptosis molecule Pedf and adhesion molecule Nectin-3 to detect the DNA methylation status. It is to find whether the DNA methylation status in promoter region controls these genes over or lower-expression and try to explore the possible mechanism of gene expressions associated lung metastasis of mouse DCS. The genome DNA of DD1 and DG6 cells are transformed by bisulfite and as a template for PCR amplification using the primers that sequences not contain CG sequences. The DNA methylation status can be obtained by sequencing for conversion of the unmethylated cytosine is transformed into thymine with regions of interest. The result demonstrates that there is a site of CG difference in Pedf gene between DD1 and DG6 cells (changing C into T), and not obvious alteration in Smcy and Ehf genes between the two cells. From the results, we tendencious consider that the DNA methylation is not the main element to influence the three gene expression. There may be some other elements, such as the interaction with other transcription factors, to impact on the up or down-regulation expression.
     3. Gene expression analyses of mouse DCS
     We isolated and screened two tumor cell clones DD1 and DG6 with different capacity of metastasis from the same parent cell line, a mouse dendritic cell (DC) sarcoma, using limited dilution method. The genome-wide expressions of DD1 and DG6 cells are done by Affymetrix’s MOE-430A microarray. The expressionprofiles related with mouse DC development are downloaded from GEO at NCBI and ArrayExpress at EBI database. In order to compare expression of DC sarcoma and DC developmental arrays which performed by MG-U74av2, we have screened the best matched probesets between MOE-430A and MG-U74av2 according to the probe identities from Affymetrix technical annotation. After the normalization of 11 housekeeping genes across the 34 arrays (2 DC sarcomas and 32 DC developmental arrays), all these expression profiles are analyzed by the methods of hierarchical clustering, principal component analysis, nearest-neighborhood and self-organizing maps. The results indicate that expression profiles of DC sarcoma are closer to the DC progenitors and hematopoietic stem cells from bone marrow compared with the sorted DCs from spleen. The results support the hypothesis that cancers (tumors or sarcomas) arise from stem cells. Furthermore, the results also suggest cells isolated from mouse are DC sarcoma cell lines for they are similar to the DC progenitors in gene expressions.
     4. Bioinformatics analysis on the transcription factors containing homeobox
     The results of Affymetrix microarray show that En1(Engrailed 1 homeobox)and Hlxb9(homeobox gene HB9)are up-regulated in DD1 cell, lhx2(LIM homeobox protein 2)and prrx2(paired related homeobox 2)are down-regulated in the cell. The result indicates that the homeobox gene may be related with metastasis of mouse DCS. The proteins with 'homeobox' (HOX) domain play an important role in embryonic development, gene regulation, cell differentiation and tumorigenecity. Hydrophobic and positively charged residues in HOX domain are conservative, and the proteins with HOX bind to the rich A or T nucleotides in the gene promoters. Some other domains are found in the proteins together with HOX, such as PAX, POU, LIM, OAR, ELK, SIX, bZIP, PHD-finger, Engrailed, hexapeptide domains. These“complex homeobox”also take part in tumorigenesis by the way of gene fusions and deregulation. Recently, the new homeobox gene Nanog and OCT4(POU complex homeobox)are discovered that they are essential in self-renewal of embryonic stem cell.
     5. Finding binding sites by comparing the homology of promoter sequences
     Insulin promoter factor-1(IPF1 or PDX1,pancreatic duodenal homeobox-1)is an important transcription factor containing homeodomain which takes part in regulating the expression of insulin gene as well as neurogenic differentiation factor 1(NDF1 or NeuroD) and hepatocyte nuclear factor 4(HNF4). All of them are MODY (maturity onset diabetes of the young) genes. The dysfunction of these factors is the key genetic element for type 2 diabetes. The sequences and domains of the three factors are homologous by the residues alignment of human, mouse and rat. It is supposed that the nucleotide binding sites are similar in the promoters of insulin gene. The ClustalW program of multiple alignment is used to compare the promoters of insulin genes. Meanwhile, the nucleotide binding sites of NDF1, IPF1 and HNF4 are searched in the TRANSFAC gene regulation database. The conservative nucleotide sequences are found in insulin promoters and some sequences are identified as the binding sites of several known transcription factors. There are also other conservative DNA sequences in the promoters perhaps are the binding sites of unknown factors. The alignment could offer a simple and applicable method to find and confirm the nucleotide binding sites of DBPs for the molecular biology experiments.
引文
[1] Poste G & Fidler IJ. The pathogenesis of cancer metastasis. Nature,1980,283,139-145
    [2] Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33(1):49-54.
    [3] Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med. 2004;10(2):175-81.
    [4] Fleuren GJ, Gorter A, Kuppen PJ, Litvinov S, Warnaar SO. Tumor heterogeneity and immunotherapy of cancer. Immunol Rev. 1995;145:91-122. Review.
    [5] Huff V, Amos CI, Douglass EC, Fisher R, Geiser CF, Krill CE, Li FP, Strong LC, McDonald JM. Evidence for genetic heterogeneity in familial Wilms' tumor. Cancer Res. 1997;57(10):1859-62.
    [6] Shmulevich I, Hunt K, El-Naggar A, Taylor E, Ramdas L, Laborde P, Hess KR, Pollock R, Zhang W. Tumor specific gene expression profiles in human leiomyosarcoma: an evaluation of intratumor heterogeneity. Cancer. 2002;94(7):2069-75.
    [7] Pieretti M, Hopenhayn-Rich C, Khattar NH, Cao Y, Huang B, Tucker TC. Heterogeneity of ovarian cancer: relationships among histological group, stage of disease, tumor markers, patient characteristics, and survival. Cancer Invest. 2002;20(1):11-23.
    [8] Fidler IJ.The pathogenesis of cancer metastasis: the ‘seed and soil’hypothesis revisited. Nature Reviews Cancer 2003; 3,1-6
    [9]Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med. 2003;9(4):416-23.
    [10] Takeuchi H, Fujimoto A, Tanaka M, Yamano T, Hsueh E, Hoon DS. CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res. 2004;10:2351-2358.
    [11] Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R, Hewitt SM, Helman LJ. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10(2):182-186.
    [12] 高进,刘玉琴,段德义,李存玺,小鼠树突状细胞肉瘤细胞系的建立和鉴定及其转移相关特性的研究,中国肿瘤生物治疗杂志,1997,4(4):310-312
    [13] 刘玉琴,顾蓓,赵雪梅,李存玺,高进,章静波,小鼠树突状细胞肉瘤不同转移能力克隆的分离筛选鉴定,解剖学报,2000,31(4):332-335
    [14] Liang Peng, & Arthur B. Pardee. Science,1992;257:967-971
    [15] Liang P, Weimin Zhu,et al. Nucleic Acids Res.,1994,22 (25):5763-5764
    [16] Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W.. Serial Analysis Of GeneExpression. Science (1995)270, 484-487.
    [17] Velculescu, V. E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M. A., Bassett, D. E., Hieter, P., Vogelstein, B., and Kinzler, K. W.. Characterization of the yeast transcriptome. Cell 1997;88.
    [18] Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R., Lockhart, D.J. High density synthetic oligonucleotide arrays. Nature Genetics Chipping Forecast,1999, 21, 20-24
    [19] AlexAnder K. Microarray processing technology: using array image analysis bo combat HTS bottleneck. Genetic Engineering News, 1999, 15.
    [20] 何志巍, 姚开泰. DNA微阵列(或芯片)技术原理及应用. 生物化学与生物物理进展,1999.26(5): 507-510.
    [21] Chee M, Yang R, Hubbel, et al. 1996. Accessing genetic information with high-density DNA arrays. Science, 274:610-613.
    [22] 孙啸,陆祖宏,谢建明. 生物信息学基础,北京:清华大学出版社,2005;283-285
    [23] Affymetrix GeneChip expression analyisis. Data Analysis Fundamentals, 2003;1-42.
    [24] Ron Edgar, Michael Domrachev, Alex E. Lash. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 2002, 30(1): 207-210
    [25] Brazma A, Parkinson H, Sarkans U, et al. ArrayExpress--a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2003;31(1):68-71.
    [26] Butte A. The use and analysis of microarray data. Nat Rev Drug Discov, 2002;1(12): 951-60.
    [27] Butte A.J. Challenges in bioinformatics: infrastructure, models and analytics. Trends Biotechnol, 2001; 19(5): 159-60.
    [28] Siegfried Z & Cedar H. DNA methylation: A molecular lock. Curr. Biol. 1997;R305-R307
    [29] Twyman RW 著. 陈淳,徐沁. 译 高级分子生物学要义. 北京:科学出版社,2000. 217-222
    [30] Zhang Y& Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Gene Dev. 2001;15:2343–2360
    [31] Harrington, C., Rosenow, C., Retief, J. Monitoring gene expression using DNA microarrays. Current Opinion in Microbiology .2000;3: 285-291.
    [32] Notterman, D.A., Alon, U., Sierk, A.J., Levine, A.J. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Research. 2001;61: 3124-3130
    [33]. Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer. 2002; 2(10):777-85. Review.
    [1] Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell. 2001;106(3):259-62. Review.
    [2] 高进,刘玉琴,段德义,李存玺. 小鼠树突状细胞肉瘤细胞系的建立和鉴定及其转移相关特性的研究,中国肿瘤生物治疗杂志,1997,4(4):310-312
    [3] 刘玉琴,顾蓓,赵雪梅,李存玺,高进,章静波. 小鼠树突状细胞肉瘤不同转移能力克隆的分离筛选鉴定,解剖学报,2000,31(4):332-335
    [4] 高进. 癌细胞转移模型的建立及应用. 见高进主编《癌的侵袭与转移——基础研究与临床》. 北京: 北京医科大学中国协和医科大学联合出版社, 1996: 53~63.
    [5] Affymetrix GeneChip expression analyisis. 2003;Technical manual.
    [6] The Gene Ontology Consortium.. Creating the gene ontology resource: design and implementation. Genome Res. 2001;11,1425-1433.
    [7] The Gene Ontology Consortium.. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004;32,D258-D261.
    [8] Kataoka K, Nakajima A, Takata Y, Saito S, Huh N. Screening for genes involved in tissue invasion based on placenta formation and cancer cell lines with low and high metastatic potential. Cancer Lett. 2001;163:213-219
    [9] Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33(1):49-54.
    [10] Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, Trepel J, Meltzer P, Helman L. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res. 2001;61(9):3750-9.
    [11] Takeuchi H, Fujimoto A, Tanaka M, Yamano T, Hsueh E, Hoon DS. CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res. 2004;10(7):2351-8.
    [12] Takeuchi H, Fujimoto A, Tanaka M, Yamano T, Hsueh E, Hoon DS. CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res. 2004;10(7):2351-8.
    [13] Khanna C, Wan X, Bose S, Cassaday R, Olomu O, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10(2):182-6.
    [14]Garcia M, Fernandez-Garcia NI, Rivas V, et al. Inhibition of xenografted human melanoma growth and prevention of metastasis development by dual antiangiogenic/antitumor activities of pigment epithelium-derived factor. Cancer Res. 2004;64(16):5632-5642.
    [15] Volpert OV, Zaichuk T, Zhou W, Reiher F, Ferguson TA, Stuart PM, Amin M, Bouck NP. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med. 2002 ;8(4):349-357.
    [16] Doll JA, Stellmach VM, Bouck NP, Bergh AR, Lee C, Abramson LP, Cornwell ML, Pins MR, Borensztajn J, Crawford SE. Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med. 2003;9(6):774-80.
    [17] Tomizawa Y, Sekido Y, Kondo M, Gao B, Yokota J, Roche J, Drabkin H, et al. Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci U S A. 2001;98(24):13954-13959
    [18] Ochi K, Mori T, Toyama Y, Nakamura Y, Arakawa H. Identification of semaphorin3B as a direct target of p53. Neoplasia. 2002;4(1):82-7.
    [19] Spengler D, Villalba M, Hoffmann A, Pantaloni C, Houssami S, Bockaert J, Journot L. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J. 1997;16(10):2814-2825
    [20] Huang SM, Stallcup MR. Mouse Zac1, a transcriptional coactivator and repressor for nuclear receptors. Mol Cell Biol. 2000;20(5):1855-1867
    [21] Satoh-Horikawa K, Nakanishi H, Takahashi K, Miyahara M, Nishimura M, et al. Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J Biol Chem. 2000;275: 10291-10299.
    [22] Ikeda W, Kakunaga S, Takekuni K, Shingai T, Satoh K, Morimoto K, et al. Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-dependent, Nectin-3-independent manner. J Biol Chem. 2004;279: 18015-18025.
    [1] Li E, Bestor T H, Jaenisch R, et al. Targeted mutation of the DNA methytransferase genes results in embryonic lethality. Cell,1992:69:915-926
    [2] Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell, 1999;99:451-454
    [3] Bayin S B. Tying it all together: epigenetics, cell cycle, and cancer. Science, 1997;277:1948-1949
    [4] Bestor T H, Tycko B. Creation of genomic methylation patterns. Nat. Genet., 1996,12:363-367
    [5] Cedar H. DNA methylation and geneactivity. Cell,1988;53:3-4
    [6] Antequera F, Bird A. Number of CpG island and genes in human and mouse. Proc. Natl. Acad. Sci. USA,1993;90:11995-11999
    [7] Vu TH, Li T, Nguyen D, Nguyen BT, et al..Symmetric and asymmetric DNA methylation in the human IGF2-H19 imprinted region.Genomics. 2000;64(2):132-143.
    [8] Srivastava M, Frolova E, Rottinghaus B, et al. Imprint control element-mediated secondary methylation imprints at the Igf2/H19 locus. J Biol Chem. 2003;278(8):5977-83.
    [9] Frommer M, McDonald L E, Millar D S, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.PNAS, 1992, 89: 1827-1831
    [10] Hiltunen M O, Alhonen L, Koistinaho J, et al.Hypermethylation of the APC (adenomatous polyposis coli) gene promoter region in human colorectal carcinoma.Int J Cancer, 1997, 70(6): 644-648
    [11] Stirzaker C, Millar D S, Paul C L, et al. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors.Cancer Res, 1997, 57(11): 2229-2237
    [12] Rice J C, Massey-Brown K S, Futscher B W.Aberrant methylation of the BRCA1 CpG island promoter is associated with decreased BRCA1 mRNA in sporadic breast cancer cells. Oncogene, 1998, 17(14): 1807-1812
    [13] Melki J R, Vincent P C, Clark S J.Concurrent DNA hypermethylation of multiple gene in acute myeloid leukemia. Cancer Res, 1999, 59(15): 3730-3740
    [14] Long-Cheng Li and Rajvir Dahiya. MethPrimer: Design primers for methylation PCRs. Bioinformatics, 2002;18(11):1427-1431
    [15] Doll JA, Stellmach VM, Bouck NP, Bergh AR, Lee C, Abramson LP, Cornwell ML, Pins MR, Borensztajn J, Crawford SE. Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med. 2003;9(6):774-80.
    [16] Bochert MA, Kleinbaum LA, Sun LY, Burton FH. Molecular cloning and expression of Ehf, a new member of the ets transcription factor/oncoprotein gene family. Biochem Biophys Res Commun. 1998 ;246(1):176-81
    [1] Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002 ;2(3):151-61. Review.
    [2] Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell. 2001;106(3):259-62. Review.
    [3] Despars G, O'Neill HC. A role for niches in the development of a multiplicity of dendritic cell subsets. Exp Hematol. 2004;32(3):235-243. Review.
    [4] Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, Kuhl C, Jorgas T, Kurz SM, Rose-John S, Yokota Y, Zenke M. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol. 2003;4(4):380-386.
    [5] Ron Edgar, Michael Domrachev, Alex E. Lash. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 2002, 30(1): 207-210
    [6] Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA. ArrayExpress--a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2003;31(1):68-71.
    [7] Li C, Wong WH: Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application, Genome Biology. 2001;2(8), 0032.1-0032.11
    [8] Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185-193.
    [9] Affymetrix (2003) GeneChip expression analyisis. Technical manual.
    [10] Edwards AD, Chaussabel D, Tomlinson S, Schulz O, Sher A, Reis e Sousa C. Relationships among murine CD11c(high) dendritic cell subsets as revealed by baseline gene expression patterns.J Immunol. 2003;171(1):47-60.
    [11] Wong AW, Brickey WJ, Taxman DJ, van Deventer HW, Reed W, Gao JX, Zheng P, Liu Y, Li P, Blum JS, McKinnon KP, Ting JP. CIITA-regulated plexin-A1 affects T-cell-dendritic cell interactions. Nat Immunol. 2003;4(9):891-898.
    [12] Chozhavendan Rathinam, Robert Geffers, Raif Yücel, Jan Buer, Karl Welte, Tarik M?r?y, Christoph Klein. Gene expression in early DC development. E-MEXP-151 in ArrayExpress database at EBI.
    [13] de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest. 2005 ;85(1):154-9.
    [14]孙啸,生物信息学,基因表达数据分析
    [15] Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95, 14863–14868.
    [16] Kohonen T. 1997. Self-organizing map. Springer, Berlin
    [17] Golub TR. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A. 1999;96(6):2907-2912.
    [18] 张文彤 主编. SPSS11统计分析教程(高级篇). 北京:北京希望电子出出版社,2002. 190-212
    [19] Butte A. The use and analysis of microarray data. Nat Rev Drug Discov. 2002;1(12):951-960. Review.
    [20] Yeung, K. Y., and Ruzzo, W. L. (2001). Principal Component Analysis for clustering gene expression data. Bioinformatics 17, 763–774.
    [21] Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring.Science,1999 286:531–537.
    [22] Pablo Tamayo, Michael Reich, Keith Ohm, Aravind Subramanian, Ken Ross, Sridhar Ramaswamy, Jill Mesirov, Todd Golub and Michael Angelo.(2002) Molecular Pattern Recognition with GeneCluster 2:Tutorial and Examples
    [23] Ardavin C, Martinez del Hoyo G, Martin P, et al. Origin and differentiation of dendritic cells. Trends Immunol. 2001;22:691-700
    [24] Sell S. Stem cell origin of cancer and differentiation therapy. Critical Reviews in Oncology/Hematology 2004;51:1–28
    [25] Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14(15):1837-1851
    [26] Taipale J, Beachy PA. The hedgehog and Wnt signaling pathways in cancer. Nature,2001;411(6835):349-354
    [27] Karanu FN, Murdoch B, Bhatia M, et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cell. J Exp. Med, 2000;192(9): 1365-1372
    [1] Bharathan G, Janssen BJ, Kellogg EA, et al. Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa? Proc Natl Acad Sci U S A. 1997;94(25):13749-53. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, [2] Bourne PE. The Protein Data Bank. Nucleic Acids Research, 2000;28, 235-242.
    [3] Falquet L, Pagni M, Bucher P, et al. The PROSITE database, its status in 2002. : Nucleic Acids Res 2002;30(1):235-238
    [4] Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator, Genome Research, 2004;14:1188-1190
    [5] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22:4673-80
    [6] Schneider TD, Stephens RM. Sequence Logos: A New Way to Display Consensus Sequences. Nucleic Acids Res. 1990;18:6097-6100
    [7] Olivier C, Nathalie M, Ginette B, et al. DNA Binding by Cut Homeodomain Proteins Is Down-modulated by Casein Kinase II. J. Biological Chemistry 1998;273(5): 2561–2566.
    [8] Awakami K, Sato S, Ozaki H, Ikeda K. Six family genes--structure and function as transcription factors and their roles in development. Bioessays. 2000; 22(7):616-26. Review.
    [9] Stuart BS,Hooic EE,Jennifer RC. et al.Paired-homeodomain transcription factor pax4 acts as a transcriptional repressor in early pancreatic development. Molecular and Cellular Biology.1999;19(2):8272-8280
    [10] Leonard J, Serup P, Gonzalez G, et al. The LIM family transcription factor Isl-1 requires cAMP response element binding protein to promote somatostatin expression in pancreatic islet cells. Proc. Natl. Acad. Sci. USA. 1992;89:6247-6251.
    [11] Verrijzer CP, Alkema MJ, van Weperen WW, et al. The DNA binding specificity of the bipartite POU domain and its subdomains. EMBO J 1992;11(13):4993-5003
    [12] Rohrig S, Rockelein I, Donhauser R, et al. Protein interaction surface of the POU transcription factor UNC-86 selectively used in touch neurons. EMBO J. 2000..19(14):3694-703.
    [13] Klemm J.D., Rould M.A., Aurora R., et al. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules.Cell .1994;77: 21-32.
    [14] Muller L, Xu G, Wells R, et al. LRG1 is expressed during sporulation in Saccharomyces cerevisiae and contains motifs similar to LIM and rho/racGAP domains Nucleic Acids Research, 1994;22(15):3151-3154
    [15] Rein Aasland, Toby J. Gibson and A. Francis Stewart The PHD-finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 1995; 20(2): 56-59
    [16] Kristi AB, Zhi-Chun L, Sudhir K. Evolution and functional diversification of the paired-box(PAX) DNA-binding domains. Mol. Bio.Evol. 1997;14(8):829-842
    [17] Gehring WJ The homeobox in perspective. Trends Biochem Sci. 1992 ;17(8):277-80.
    [18] Angerer R.C. , Humphreys T. , Yang Q. , Wang G. , Lum R. , Gagnon M.L. , Dolecki G.J. , Angerer L.M. Progressively restricted expression of a homeobox gene within the aboral ectoderm of developing sea urchin embryos. Genes Dev. 1989; 3: 370- 383
    [19] Palomino T, Sanchez PA, Pena P. et al. A direct protein-protein interaction is involved in the cooperation between thyroid hormone and retinoic acid receptors and transcription factor GHF-1. FASEB J. 1998;12:1201-1209.
    [20]. Cohen LE, Hashimoto Y, Zanger K, et al. CREB-independent regulation by CBP is a novel mechanism of human growth hormone gene expression. J Clin. Invest. 1999;104:1123-1130
    [21] Chasman D, Cepek K, Sharp PA, et al. Crystal structure of an OCA-B peptide bound to an Oct-1 pou domain/octamer DNA complex: specific recognition of a protein-DNA interface. Genes Dev. 1999;13:2650-2657
    [22] Duggan A, Ma C, Chalfie M. Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes. Development. 1998;125:4107-4119
    [23] Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113(5):643-55.
    [24] Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Cell. 2003;113(5):631-42.
    [25] Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene. 2004;23(43):7150-60. Review.
    [26]. Semina EV, Reiter R, Leysens N.J, et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome.Nat. Genet. 1996; 14:392-399.
    [27] Semina E.V., Reiter R.S., Murray J.C. A new human homeobox gene OGI2X is a member of the most conserved homeobox gene family and is expressed during heart development in mouse. Hum. Mol. Genet. 1998,7:415-422.
    [28] Semina EV, Ferrell RE, Mintz-Hittner HA, et al. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat. Genet. 1998,19:167-170.
    [29] Thomas R. Bürglin. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Research. 1997;25(21): 4173–4180
    [30] Asuka N, Masanori T, Tomoaki k, et al. Over-Expression of Tobacco knotted1-Type Class1 Homeobox Genes Alters Various Leaf Morphology. Plant Cell Physiol. 2000;41(5): 583–590
    [31] Schena M. , Davis R.W. Structure of homeobox-leucine zipper genes suggests a model for the evolution of gene families. Proc. Natl. Acad. Sci. U.S.A. 1994,91: 8393- 8397
    [32] Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL. The eye specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 1997;91:881-891.
    [33] Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma Science. 2000 ; 289(5483):1357-60. Erratum in: Science 2000 ; 289(5484):1474.
    [34] Barr, F. G. The role of chimeric paired box transcription factors in the pathogenesis of paediatric rhabdomysarcoma. Cancer Res. 1999,59, 1711s–1715s.
    [35] Nakamura T, Yamazaki Y, Hatano Y, Miura I. NUP98 is fused to PMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15).Blood. 1999;94(2):741-7.
    [36] Kim M, Canio W, Kessler S, Sinha N. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science. 2001; 293(5528):287-9.
    [37] Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer. 2002; 2(10):777-85. Review.
    [1] Miyachi T,Maruyama H,Kitamura T,et al. Structure and regulation of the human NeuroD (BETA2/BHF1) gene. Brain Res. Mol. Brain Res. 1999, 69:223-231
    [2] Inoue H, Riggs AC, Tanizawa Y, et al. Isolation, characterization, and chromosomal mapping of the human insulin promoter factor 1 (IPF-1) gene. Diabetes. 1996, 45:789-794
    [3] Kritis AA,Argyrokastritis A,Moschonas NK,et al. Isolation and characterization of a third isoform of human hepatocyte nuclear factor 4. Gene, 1996,173:275-280
    [4] Malecki MT, Jhala US, Antonellis A, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat. Genet. 1999,23:323-328
    [5] Hani EH,Stoffers DA,Chevre JC,et al. Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus.J. Clin. Invest. 1999, 104:R41-R48
    [6] Moller AM, Urhammer SA, Dalgaard LT, et al. Studies of the genetic variability of the coding region of the hepatocyte nuclear factor-4alpha in Caucasians with maturity onset NIDDM. Diabetologia. 1997, 40:980-983
    [7] Gasteiger E, Jung E, Bairoch A. SWISS-PROT: Connecting biological knowledge via a protein database. Curr. Issues Mol. Biol. 2001, 3:47-55
    [8] Stoesser G, Baker W, van den Broek A, et al. The EMBL Nucleotide Sequence Database. Nucleic Acids Res. 2001, 29: 17-21.
    [9] Benson DA, Karsch-Mizrachi I, Lipman DJ,et al. GenBank. Nucleic Acids Res. 2001, 28: 15-18.
    [10] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22:4673-80
    [11] Mount DW. 生物信息学:序列与基因组分析(影印版). 北京:科学出版社,2000. 329-331
    [12] Falquet L, Pagni M, Bucher P, et al. The PROSITE database, its status in 2002. : Nucleic Acids Res. 2002;30:235-238
    [13] Schultz J, Milpetz F, Bork P, et al. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A, 1998 , 26; 95:5857-64
    [14] Ivica L, Leo G, Nicholas JD, et al. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Research, 2002,30:242-244
    [15] Yokoyama M, Nishi Y, Miyamoto Y, et al. Molecular cloning of a human neuroD from a neuroblastoma cell line specifically expressed in the fetal brain and adult cerebellum. Brain Res. Mol. Brain Res. 1996, 42:135-139
    [16] Stoffel M, Stein R, Wright CV, et al. Localization of human homeodomain transcription factor insulin promoter factor 1 (IPF1) to chromosome band 13q12.1. Genomics. 1995;28:125-126
    [17] Price J A, Fossey S C, Sale M M. et al. Analysis of the HNF4 alpha gene in Caucasian type II diabetic nephropathic patients.Diabetologia. 2000;43:364-372
    [18] Wentworth BM, Schaefer IM, Villa-Komaroff,L.et al. Characterization of the two nonallelic genes encoding mouse preproinsulin . J Mol. Evol. 1986, 23:305-312
    [19] Sheau YS, Christine M M. Stellrecht, et al. Molecular Characterization of the Rat Insulin Enhancer-binding Complex 3b2. J. Biol. Chem. 1995;270: 21503-21508.
    [20] Twyman RW 著. 陈淳,徐沁. 译 高级分子生物学要义. 北京:科学出版社,2000. 217-222
    [21] Arava Y, Adamsky K, Ezerzer C, et al. Specific gene expression in pancreatic β–cells: cloning and characterization of differentially expressed genes. Diabetes. 1999, 48:552-556.
    [22] Arava Y, Adamsky K, Belleli A, et al. Differential expression of the protein kinase A regulatory subunit (R1α) in pancreatic endocrine cells. FEBS Lett. 1998,425:24-28
    [23] Glick E, Leshkowitz D, Walker MD. Transcription factor β2 acts cooperatively with E2A and PDX1 to activate the insulin gene promoter. J. Biol. Chem. 2000,275:2199-2204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700