上皮性卵巢癌中微卫星不稳定性和错配修复基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:卵巢癌是死亡率最高的生殖系统肿瘤,其中90%为上皮性卵巢癌,其发生发展是一个多因素参与的多阶段、多步骤的演变过程。卵巢癌是成年妇女中最常见的具有遗传因素的肿瘤之一,也是HNPCC最常见的伴发肿瘤之一。本课题通过检测新鲜卵巢癌组织标本中的微卫星不稳定性及错配修复基因mRNA的表达,来了解卵巢癌中是否存在基因组不稳定性及错配修复基因的失活,并了解微卫星不稳定性与错配修复基因表达与卵巢癌的分期,分级,分型的关系。同时通过检测错配修复基因启动子区域的甲基化从DNA水平来探讨卵巢癌中错配修复基因失活的机制,有助于阐明卵巢癌的发生机制。
     第一部分上皮性卵巢癌和微卫星不稳定性
     方法:收集2004年6月-2005年1月复旦大学附属肿瘤医院和附属妇产科医院的90例上皮性卵巢癌新鲜切除标本及同一患者的5ml术前外周静脉血作为判断微卫星不稳定性的正常对照,并同时收集20例同期手术的良性卵巢囊肿患者的卵巢病灶新鲜组织和5ml术前外周静脉血作为对照组:分别抽提病例组和对照组组织和外周血基因组DNA,选取国际合作HNPCC小组推荐的五个检测位点是:BAT25、BAT26、D2S123、D5S346、D17S250,进行毛细管凝胶电泳,分析软件自动分析得出结果,用SPSS11.0统计软件分析,P<0.05提示差别有统计学意义。
     结果:1):病例组中和对照组MSI-H的发生率为20%、0,差异具有显著。(P<0.05);
     2):上皮性卵巢癌中MSI-H的发生率与分期显著显著相关(P=0.003),Ⅰ期发生率较高,为:45%;
     3):上皮性卵巢癌中MSI-H的发生率在低分化的肿瘤、粘液性腺癌、和透明细胞癌中的发生率较其他类型的卵巢癌高,但是MSI—H的发生率与患者年龄、肿瘤的分化、病理分型没有显著相关性(P>0.05)。结论:微卫星不稳定性在上皮性卵巢癌中是一重要现象;在不同亚型的上皮性卵巢癌中的作用不同:多发生于疾病的早期,在上皮性卵巢癌的发病中起一定的作用,并推动疾病的恶变进程。
     第二部分上皮性卵巢癌中错配修复基因表达和微卫星不稳定性
     方法:收集2004年6月-2005年1月复旦大学附属肿瘤医院和附属妇产科医院的90例上皮性卵巢癌新鲜切除标本并同时收集20例同期手术的良性卵巢囊肿患者的卵巢病灶新鲜组织做为对照,提取mRNA;用实时荧光定量PCR仪相对定量分析对照组和病例组中hMLH1、hMSH2、hMSH3、hMSH6、hPMS1、hPMS2的表达;结果用SPSS11.0统计软件分析,P<0.05提示差别有统计学意义。
     结果:1):hMLH1的mRNA的表达在良性囊肿的表达明显高于上皮性卵巢癌组织(P<0.05);在微卫星稳定性的病例中明显高于微卫星不稳定性的病例(P<0.05);在分化低的病例中明显低于分化高的病例(P<0.05):与肿瘤的分期、分型没有显著性差异(P>0.05)。
     2):hMSH2的mRNA表达在良性囊肿和肿瘤组织没有显著性差异(P=0.987);其表达与肿瘤的分期、分级、分型及微卫星状态没有显著性差异(P>0.05)。
     3):hMSH3、hMSH6、hPMS1、hPMS2的mRNA的表达在良性囊肿和肿瘤组织有显著性差异(P<0.05);其表达与肿瘤的分期、分级、分型及微卫星状念没有显著性差异(P>0.05)。
     结论:人体错配修复系统中,hMLH1基因对DNA碱基错配修复具有重要的作用;错配修复基因表达的缺失尤其是hMLH1基因在上皮性卵巢癌的发生中起一定的作用:且促进疾病的恶性演进:并导致上皮性卵巢癌中的微卫星不稳定性。
     第三部分上皮性卵巢癌中hMLH1基因表达缺失和启动子甲基化
     方法:用甲基化特异PCR(MSP)的方法分析病例组和对照组中hMLH1基因启动子甲基化的状态,并分析病例组中hMLH1基因启动子甲基化的状态与肿瘤的临床病理特征和微卫星状态的关系。结果用SPSS11.0统计软件分析,P<0.05提示差别有统计学意义。
     结果:1):良性卵巢囊肿,上皮性卵巢癌中hMLH1基因启动子区甲基化的发生率分别为0、16.6%,差异有统计学意义(P<0.05);
     2):hMLH1基因启动予区甲基化的发生率在不同分期、分级、及分型的上皮性卵巢癌中没有显著性差异(P>0.05);
     3):hMLH1基因启动子区甲基化的发生与上皮性卵巢癌中微卫星不稳定性的发生及hMLH1基因的表达缺失显著相关(P<0.05)。
     结论:hMLH1基因启动子区甲基化是上皮性卵巢癌中hMLHl基因的表达缺失的主要机制,也可能是导致上皮性卵巢癌中微卫星不稳定性的主要机制。
Ovarian cancer represents the most lethal malignancy among gynecological tumours in China, in which 90% are epithelial ovarian tumors. Etiology is yet unknown. Multistep process, with accumul ation of genetic alterations concerning factors with key role in cell regulation -oncogenes, tumor-supressor genes and mismatch-repair genes is supposed. This study was conducted to evaluate the frequency of MSI and the expression of the mismatch repair gene in epithelial ovarian tumors and their relationship with clinicopathologic features, in order to know whether there is genomic instability and losing expression of mismatch repair gene. In this study we have explored the mechanism of hMLH1 gene silencing by analyzing the aberrant methylation of CpG islands in its promoter. It helps us to understand the molecular events involved in the development of ovarian tumors.
    Part I: Study of microsatellite instability and its relationship with
    clinicopathologic features in epithelial ovarian tumors
    Objective: This study was conducted to evaluate the frequency of MSI in
    epithelial ovarian tumors and its relationship with clinicopathologic
    features.
    Methods: ninety fresh specimens of epithelial ovarian tumors (primary 74,
    secondary 16) and twenty fresh specimens of ovarian cyst as control were
    collected from The Obstetrics and Gynecology Hospital of Medical Center
    of Fudan University from 2004 to 2005. Microsatellite analysis was carried
    out using 5 mono- and dinucleotide markers from the National Cancer
    Institute Consensus Panel by fluorescence-labeled polymerase chain
    reaction. The results were auto-analyzed by software of GeneScan
    Analysis3. 7 and Genotyper.
    Results: 1): Of the 20 ovarian cysts analyzed, all were demonstrated MSS.
    Of the 90 epithelial ovarian tumors analyzed, 18 were demonstrated a high
    level of MSI (MSI-H), 30 were demonstrated a low level of MSI (MSI-L),
    and the remaining 42 exhibited microsatellite stability (MSS).
    2): Frequency of MSI at loci BAT-25 was higher than that at any other loci. No correlation was found between MSI level and patient age, tumor type, tumor differentiation (P >0.05).
    3): The microsatellite instability-high phenotype correlate with clinical stage, it tended to occur more frequently in early-stage tumors (P=0.03).
    Conclusions: Our results indicate that there are frequent MSI in epithelial ovarian tumors. It is an early event and it is involved in the development of epithelial ovarian tumors.
    Part II: Study of expression of mismatch repair genes and its relationship with clinicopathologic features in epithelial ovarian tumors Objective: This study was conducted to evaluate the expression of mismatch repair genes in epithelial ovarian tumors and its relationship with clinicopathologic features. Investigate the correlation between the MSI and the expression of mismatch repair genes.
    Methods: Ninety fresh specimens of epithelial ovarian tumors (primary 74, secondary 16) and twenty fresh specimens of ovarian cyst as control were collected from The Obstetrics and Gynecology Hospital of Medical Center of Fudan University from 2004 to 2005. Comparatively quantitative analysis of expression of MMR genes (hMLH1、 hMSH2、 hMSH3、 hMSH6、 hPMS1、 hPMS2) were conducted by real-time polymerase chain reaction. Results:1): The quantity of expression of mRNA of the hMLH1 gene in the ovarian cyst is significantly higher than that in the epithelial ovarian tumors (P<0.05) . The quantity of expression of mRNA of the hMLHl gene in high grade tumor is significantly higher than that in the low grade tumor (P<0.05) .There is a significant correlation between the quantity of expression of mRNA of the hMLHl gene and the status of the microsatellite(P<0.05). No correlation was found between the quantity of expression of mRNA of the hMLHl gene and tumor type, tumor stage (P>0.05). 2) : The quantity of expression of mRNA of the hMSH2 gene in the ovarian cyst is not significantly higher than that in the epithelial ovarian tumors (P>0.05) . No correlation was found between the quantity of expression of mRNA of the hMSH2 gene and tumor type, tumor stage, tumor
    differentiation and the status of the microsatellite. (P>0.05).
    3): The quantity of expression of mRNA of the hMSH3、 hMSH6、 hPMS1、 hPMS2 gene in the ovarian cyst is significantly higher than that in the epithelial ovarian tumors (P<0.05) . No correlation was found between the quantity of expression of mRNA of the hMSH3、 hMSH6、 hPMS1、 hPMS2 gene and tumor type, tumor stage, tumor differentiation and the status of the microsatellite (P>0.05).
    Conclusions: The losing expression of MMR genes, especially hMLH1 gene have a key effect in the tumorgenesis of the epithelial ovarian tumors, which can result in MSI in the tumor.
    Part III: Study of aberrant methylation of promoter CpG islands of hMLHl
    gene in epithelial ovarian tumors
    Objective: To analyze the aberrant methylation of CpG islands in hMLHl
    gene promoter by using MSP (methylation specific polymerase chain
    reaction), and then to investigate its relationship with
    clinicopathologic features, the expression of hMLHl gene and the status
    of the microsatellite.
    Results: 1): The frequency of the methylation of CpG island in the hMLHl
    gene in control group (0%) were significantly lower than that in
    epithelial ovarian tumors (16.6%) (P<0.05).
    2): No correlation was found between the frequency of the methylation of CpG island in the hMLHl gene and tumor type, tumor stage, tumor differentiation (P>0. 05) .
    3) : There was a highly significant negative correlation among methylation of CpG island in hMLHl gene, mRNA expression of hMLHl gene and the status of the microsatellite(P>0.05).
    Conclusions: Methylation of CpG island in hMLHl is the main cause of its loss expression. It may be also the key mechanism which induce the MSI-H in the epithelial ovarian tumors.
引文
1. Bhagwat AS, Lieb M. Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coll. Mol Microbiol. 2002; 44(6): 1421-8.
    2. Prolla TA. DNA mismatch repair and cancer. Curr Opin Cell Biol. 1998: 10(3): 311-6.
    3. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998; 396(6712): 643-9.
    4. Orth K, Hung J, Gazdar A, et al. Genetic instability in human ovarian cancer cell lines. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9495-9.
    5. Peltomaki P. DNA mismatch repair and cancer. Mutat Res. 2001 Mar; 488(1): 77-85.
    6. Kariola R, Otway R, Lonnqvist KE, et al. Two mismatch repair gene mutations found in a colon cancer patient--which one is pathogenic? Hum Genet. 2003; 112(2): 105-9.
    7. Drummond JT, Genschel J, Wolf E, Modrich P. DHFR/MSH3 amplification in methotrexate-resistant cells alters the hMutSalpha/hMutSbeta ratio and reduces the efficiency of base-base mismatch repair. Proc Natl Acad Sci U S A. 1997; 94(19): 10144-9.
    8. Marra G, Iaccarino I, Lettieri T, et al. Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc Natl Acad Sci U S A. 1998; 95(15): 8568-73.
    9. Aaltonen LA, Peltomaki P, Mecklin JP, et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 1994; 54(7): 1645-8.
    10. Leach FS. Detection of mismatch repair gene expression in urologic malignancies. Methods Mol Biol. 2003;222:491-9.
    11. CastigliaD, Pagani E, Alvino E, et al. Biallelic somatic inactivation of the mismatch repair gene MLH1 in a primary skin melanoma. Genes Chromosomes. Cancer. 2003; 37(2):165-75.
    12. Seitz S, Wassmuth P, Plaschke J, et al. Identification of microsatellite instability and mismatch repair gene mutations in breast cancer cell lines.Genes Chromosomes. Cancer. 2003;37(1):29-35.
    13. Geisler JP, Goodheart MJ, Sood AK, et al. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer. 2003; 98(10): 2199-206.
    1. Habano W, Sugai T, NakamuraSI, etal. Microsatellite instability and mutation of mitochondrial and nuclear DNA in gastriccarcinoma[J]. Gas2 troenterology, 2000, 118(5):835-841.
    2. Bianchi NO, Bianchi MS, Richard SM. Mitochondrial genome instability In human cancers [J]. MutatRas, 2001, 488(1):9-23.
    3. Richard SM, Bailliet G, Paez GL, etal. Nuclear and mitochondrial genome instability in human breast cancer [J]. Cancer Res, 2000, 60(15) : 4231-4237.
    4. Geisler JP, Goodheart MJ, Sood AK, et al. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer. 2003, 98(10): 2199-206.
    5. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998, 58(22):5248-57.
    6. Duval A, Hamelin R. Genetic instability in human mismatch repair deficient cancers. Ann Genet. 2002, 45(2):71-5.
    7. Weissenbranch J, Gyapay G, Dib C, et al. A decond-generation linkage map of the human genome. Nature, 1992, 359:6398.
    8. Mccarthy K. Microsatellites: heroes and vilins. Lancet, 1995, 346:1177.
    9. Peltomaki P, Vasen HF. Mutations predipositing to hereditary nonpoyposis colorectal cancer: database and results of a collaborative study. Gastroenterology, 1997, 113:1146 - 1158.
    10. Hoang JM, Cottu P H, Benedicte, T, et al. BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res., 57: 300 - 303, 1997.
    11. Parsons R, Myeroff LL, Liu B, et al. Microsatellite instability and mutations of the transforming growth factor b type II receptor gene in colorectal cancer. Cancer Res., 55: 5548-5550, 1995.
    12. Schlottreer C. Slippage synthesis of simple sequence DNA. Nuclec Acids Res, 1992, 20:211-215.
    13. Hammond HA, Redman JB, Caskey CT, et al. Evolution of 13 short tandem repeats loci for use in personal identification applications. Am J Hum Genet, 1994, 55:175-189.
    14. Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science, 1993, 160:812 - 6.
    15. Wooster R, Cleton-Jansen AM, Collins N, et al. Instability of short tandem repeats (microsatellite) in human cancer. Nature Genet, 1994, 6:152
    16. Thrash-Bingham C, Salazar H, Freed J, et al. Comprehensive alletotyping of human renal cell carcinomas using microsatellite DNA probes. Proc Natl Acad Sci USA, 1995,92:285.
    17. Scartozzi M, De Nictolis M, Galizia E, et al. Loss of hMLH1 expression correlates with improved survival in stage III—IV ovarian cancer patients. Eur J Cancer. 2003, 39(8): 1144-9.
    18. Wada M, Suzuki M, Saga Y, et al: DNA replication errors are frequent in mucinous cystadenocarcinoma of the ovary. Cancer Genet Cytogenet 117:61-65, 2000.
    19. Sood AK, Buller RE: Genomic instability in ovarian cancer: A reassessment using an arbitrarily primed polymerase chain reaction. Oncogene 13:2499-2504, 1996.
    20. Shih YC, Kerr J, Hurst TG, et al: No evidence for microsatellite instability from allelotype analysis of benign and low malignant potential ovarian neoplasms. Gynecol Oncol 69:210-213, 1998.
    21. Allen HJ, DiCioccio RA, Hohmann P, et al: Microsatellite instability in ovarian and other pelvic carcinomas. Cancer Genet Cytogenet 117:163-166, 2000.
    22. Haas CJ, Diebold J, Hirschmann A, et al: Microsatellite analysis in serous tumors of the ovary. Int J Gynecol Pathol 18:158-162, 1999.
    23. Fjita M, Enomoto T, Yoshino K, et al: Microsatellite instability and alterations in the hMSH2 gene in human ovarian cancer. Int J Cancer 64:361-366, 1995.
    24.宋英娜,郎景和.微卫星不稳定性在妇科肿瘤中的研究进展.中华医学杂志.2000,80(7).
    25. Angir J, Loughridge NS, Berkowitz RS, et al: Frequent microsatellite instability in epithelial borderline ovarian tumors. Cancer Res 56:2501-2505, 1996.
    26. Haas CJ, Diebold J, Hirschmann A, et al: Microsatellite analysis in serous tumors of the ovary. Int J Gynecol Pathol 18:158-162, 1999.
    27. Shih YC, Kerr J, Hurst TG, et al: No evidence for microsatellite instability from allelotype analysis of benign and low malignant potential ovarian neoplasms. Gynecol Oncol 69:210-213, 1998.
    28. Arzimanoglou Ⅱ, Lallas T, Osborne M, et al: Microsatellite instability differences between familial and sporadic ovarian cancers. Carcinogenesis 17:1799-1804, 1996.
    29. Sood AK, Holmes R, Hendrix MJ, et al: Application of the National Cancer Institute international criteria for determination of microsatellite instability in ovarian cancer. Cancer Res 61:4371-4374, 2001
    30. Gras E, Catasus L, Arguelles R, et al: Microsatellite instability, MLH-1 promoter hypermethylation, and frame shift mutations at coding mononucleotide repeat microsatellites in ovarian tumors. Cancer 92:2829-2836, 2001.
    31. Liu.J, Albarracin CT, Chang KH, et al: Microsatellite instability and expression of hMLH1 and hMSH2 proteins in ovarian endometrioid cancer. Mod Pathol 17:75-80, 2004.
    32. Kathy QC, Constance A, Danel R, et al: Microsatellite Instability and Alteration of the Expression of hMLH1 and hMSH2 in Ovarian Clear Cell Carcinoma. Human Pathol 35; 552-559, 2004.
    33. Delias A, Puhl A, Schraml P, et al: Molecular and clinicopathological analysis of ovarian carcinomas with and without microsatellite instability. Anticancer Res. 24; 361-9, 2004.
    1. Wada C, Shionoya S, Fujino Y, et al. Genomic Instability of Microsatellite Repeats and Its Association With the Evolution of Chronic Myelogenous Leukemia. Blood, 1994 ,83:3449—3456.
    2. Modrich P. Mismatch repair, genetic stability, and cancer. Science. 1994, 266(5193): 1959-60.
    3. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998, 396(6712):643-9.
    4. Modrich P. Mismatch repair, genetic stability, and cancer. Science, 1994, 266:1959-1960
    5. Fishel R, Lescoe MK, Rao MRS, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell,1993, 75: 1027-1038
    6. Heinen CD, Schmutte C, Fishel R. DNA repair and tumorigenesis Lessons from hereditary cancer syndromes. Cancer Biol Ther, 2002, 1:477-485.
    7. Linkin SM, Wang V, Jacoby R, et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet, 2000, 24(1): 27-35.
    8. Peltomaki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet, 2001, 10(7):735-740.
    9. Wang Q, Montmain G, Ruano E, et al. Neurofibromatosis type 1 gene as a mutational target in a mismatch repair-deficient cell type. Hum Genet, 2003, 112(2): 117-23.
    10. Claij N, Te Riele H. Methylation tolerance in mismatch repair proficient cells with low MSH2 protein level. Oncogene, 2002, 21 (18): 2873-9.
    11. Nunn J, Nagini S, Risk JM, et al. Allelic imbalance at the DNA mismatch repair loci, hMSH2, hMLH1, hPMS1, hPMS2, and hMSH3, in squamous cell carcinoma of the head and neck. Oral Oncol, 2003, 39(2):115-29.
    12. Chung TK, Cheung TH, Wang VW, et al. Microsatellite instability, expression of hMSH2 and hMLH1 and HPV infection in cervical cancer and their clinico-pathological association. Gynecol Obster Invest, 2001, 52(2) :98-103.
    13. Hamid AA, Mandai M, Konishi I. Cyclical change of hMSH2 protein expression in normal endometrium during the menstrual cycle and its overexpression in endometrial hyperplasia and sporadic endometrial carcinoma. Cancer. 2002, 94(4) :997-1005.
    14. Maruyama A, Saito T, Hachitanda Y, et al. Cancer history and loss of MSH2 and MLH1 protein expression in patients with endometrial hyperplasia. Int J Gynecol Cancer, 2003, 13(3): 352-60.
    15. Yeh CC, Lee C, Dahiya R. DNA mismatch repair enzyme activity and gene expression in prostate cancer. Biochem Biophys Res Commmun, 2001, 285(2):409-413.
    16. Velasco A, Hewit SM, Albert PS. Differential expression of the mismatch repair gene hMSH2 in malignant prostate tissue is associated with cancer recurrence. Cancer, 2002, 94(3):690-9.
    17. Velasco A, Albert PS, Rosenberg H, et al. Clinicopathologic implications of hMSH2 gene expression and microsatellite instability in prostate cancer. Cancer Biol Ther, 2002, 1(4):362-7.
    18. Furihata M, Takeuchi T, Ohtsuki Y, et al. Genetic analysis of hMLH1 in transitional cell carcinoma of the urinary tract: promoter methylation or mutation. JUrol, 2001, 165(5):1760-1764.
    19. Suzuki M, OhwadaM, Saga Y, et al. Are DNA mismatch repair deficiencies responsible for accumulation of genetic alterations in epithelial ovarian cancers? Cancer Genet Cytogenet. 2001 Jan 5;124(2):152-8.
    20. Chiaravalli AM, Furlan D, Facco C, et al. Immunohistochemical pattern of hMSH2/hMLH1 in familial and sporadic colorectal, gastric, endometrial and ovarian carcinomas with instability in microsatellite sequences. Virchows Arch. 2001 Jan; 438(1):39-48.
    21. Cai KQ, Albarracin C, Rosen D, Microsatellite instability and alteration of the expression of hMLH1 and hMSH2 in ovarian clear cell carcinoma. Hum Pathol. 2004 May; 35(5):552-9.
    22. Baek MJ, Kang H, Kim SE, et al. Exprssion of hMLH1 is in activated in the gastric adenomas with enhanced microsatellite in stability. Br J Cancer, 2001, 85(8): 1147-1152.
    23. Kohya N, Miyazaki K, Matsukura S. Deficient expression of O(6)-methylguanine-DNA methyltransferase combined with mismatch-repair proteins hMLH1 and hMSH2 is related to poor prognosis in human biliary tract carcinoma. Ann Surg Oncol, 2002, 9(4):371-9.
    24. Ichikawa Y, Tsunoda H, Takano K, et al. Microsatellite instability and immunohistochemical analysis of MLH1 and MSH2 in normal endometrial hyperplasia and endometrial cancer from a hereditary nonpolyposis colorectal cancer patient. Jpn J Clin Oncol. 2002, 32(3) : 110-2.
    25. Kim JC, Kim HC, Roh SA, et al. hMLH1 and hMSH2 mutations in families with familial clustering of gastric cancer and hereditary non-polyposis colorectal cancer. Cancer Detect Prev, 2001, 25(6): 503-10.
    26. Kruschewski M, Noske A, Haier J, et al. Is reduced expression of mismatch repair genes MLH1 and MSH2 in patients with sporadic colorectal cancer related to their prognosis? Clin Exp Metastasis, 2002, 19(1): 71-7.
    27. Jansson A, Arbman G, Zhang H, et al. Combined deficiency of hMLH1, hMSH2, hMSH3 and hMSH6 is an independent prognostic factor in colorectal cancer. Int J Oncol, 2003, 22(1):41-9.
    28. PeiroG, Diebold J, Mayr D, et al. Prognostic relevance of hMLH1, hMSH2, and BAX protein expression in endometrial and carcinoma. Mod Pathol, 2001, 14(8) :777-783.
    29. Thykjaer T, Christensen M, Clark AB, et al. Functional analysis of the mismatch repair system in bladder cancer. Br J Cancer, 2001, 85 (4) : 568-575
    30. Catto JW, Xinarianos G, Burton JL, et al. Differential expression of hMLH1 and hMSH2 is related to bladder cancer grade, stage and prognosis but not microsatellite instability. Int J Cancer, 2003, 105 (4) :484-90.
    1. Plass C. Cancer epigenomics. Hum Mol Genet. 2002 Oct 1; 11 (20): 2479-88.
    2. Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A. 2002 Mar 19; 99(6): 3740-5.
    3. International human genome squencing consortium (2001)initial squencing and analysis of the human genome. Nature. 409,860-921.
    4. Eden A, Gaudet F, Waghmare A, et al. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003 Apr 18;300(5618) :455.
    5. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001. Aug 10; 293(5532):1068-70.
    6. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293(8):1089-1093.
    7. Baylin SB, Herman JG. DNA hypermethylation in tumorigenes is joins genetics Trends Genet, 2000, 16 (1):168-174.
    8. Plass C, Soloway PD. DNA methylation, imprinting and cancer. J Human Genet, 2002,10(1): 6-16.
    9. Yang B, Guo M, Herman JG, et al. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol, 2003,16 3(3):1101-1107.
    10. Kuroki T, Trapasso F, Yendamuri S, et al. Allele loss and promoter hyper methylation of VHL, RAR-beta, RASSFIA, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res,2003,63 (13):3724-3728.
    11. Oshita F, Sekiyama A, Suzuki R, et al. Detection of occult tumor cells in peripheral blood from patients with small cell lung cancer by romoter methylation and silencing of the retinoic acid receptor-beta.Oncol Rep,2003,10(1):105-108.
    12. Fukushima N , Walter KM, Uek T, et al. Diagnosing pancreatic cancer using methylation specific PCR analysis of pancreatic juice. C ancer Biol Ther, 2003, 2(1): 78-83.
    13. Jones PA. The role of DNA methylation in mammalian epigenetics. Science(Wash, DC), 2001, 293:1068-1070
    14. Bariol C, Suter C,Cheong K,et al. There lationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Patho, 2003, 162(4): 1361-1371.
    15. 14Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CgG island methylation has non-random and tumor-type specific patterns. Nat Genet 2000,24:132-138.
    16. Esteller M, Corn PG, Baylin SB, et al. A gene hypermethylation profile of human cancer.Cancer Res,2001, 61:3225-3229.
    17. Baylin SB, Herman JG, Graff JR, et al. Alteration in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res, 1998, 72:141-196.
    18. Costello JF, Joseph F. Methylation maters.J Med Genet, 2001, 38: 285-303.
    19. Roberson KD, Wolfe AP. DNA methylation in health and disease. Nat Rev Genet, 2000, 1:11-19.
    20. Kanaya T, Kyo S, Maida Y, Yatabe N, et al. Frequent hypermethylation of MLH1 promoter in normal endometrium of patients with endometrial cancers. Oncogene. 2003 Apr 17; 22(15) :2352-60.
    21. Kuismanen SA, Holmberg MT, Salovaara R, et al. Genetic and epigenetic modification of MLH1 accouts for a major share of microsatellite-unstable colorectal cancer. Am J Pathol, 2002, (156): 1773- 1779.
    22. Geisler JP, Goodheart MJ, Sood AK, et al. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer. 2003 Nov 15; 98(10):2199-206.
    1 Modrich P. Mismatch repair, genetic stability, and cancer. Science. 1994, 266(5193): 1959-60.
    2 Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998, 396(6712): 643-9.
    3 Cox EC. Bacterial mutator genes and the control of spontaneous mutation. Annu Rev Genet. 1976, 10: 135-56.
    4 Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993, 75(5): 1027-38.
    5 Prolla TA. DNA mismatch repair and cancer. Curr Opin Cell Biol. 1998,10(3): 311-6.
    6 Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994,263(5153): 1625-9.
    7 Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994,368(6468): 258-61.
    8 Bhagwat AS, Lieb M. Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coll. Mol Microbiol. 2002,44(6): 1421-8.
    9 宋英娜,郎景和.微卫星不稳定性在妇科肿瘤中的研究进展.中华医学杂志.2000,80(7).
    10 Acharya S, Wilson T, Gradia S, et al. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci U S A. 1996,93(24): 13629-34.
    11 Kariola R, Otway R, Lonnqvist KE, et al. Two mismatch repair gene mutations found in a colon cancer patient--which one is pathogenic? Hum Genet. 2003 ,112(2): 105-9.
    12 Drummond JT, Genschel J, Wolf E, Modrich P. DHFR/MSH3 amplification in methotrexate-resistant cells alters the hMutSalpha/hMutSbeta ratio and reduces the efficiency of base-base mismatch repair. Proc Natl Acad Sci U S A. 1997,94(19): 10144-9.
    13 Marra G, Iaccarino I, Lettieri T, et al. Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc Natl Acad Sci U S A. 1998,95(15): 8568-73.
    14 Bocker T, Diermann J, Friedl W, et al. Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res. 1997,57(21): 4739-43.
    15 Aaltonen LA, Peltomaki P, Mecklin JP, et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 1994,54(7): 1645-8.
    16 Dib C, Faure S, Fizames C, et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996,380(6570): 152-4.
    17 Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998, 58(22): 5248-57.
    18 Duval A, Hamelin R. Genetic instability in human mismatch repair deficient cancers. Ann Genet. 2002,45(2): 71-5.
    19 Le Beau MM, Rowley JD. Chromosomal abnormalities in leukemia and lymphoma: clinical and biological significance. Adv Hum Genet. 1986,15: 1-5.
    20 Vineis P. Cancer as an evolutionary process at the cell level: an epidemiological perspective. Carcinogenesis. 2003,24(1): 1-6.
    21 陈怀增,叶大风,谢幸等.卵巢粘液性肿瘤hMLH1启动子甲基化及微卫星不稳定性.中国医学科学院学报.2003,25(8).
    22 Geisler JP, Goodheart MJ, Sood AK, et al. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer. 2003, 98(10): 2199-206.
    23 Orth K, Hung J, Gazdar A, et al. Genetic instability in human ovarian cancer cell lines. Proc Natl Acad Sci U S A. 1994 ,91(20):9495-9.
    24 Karran P. Microsatellite instability and DNA mismatch repair in human cancer. Semin Cancer Biol. 1996,7(1): 15-24.
    25 Scartozzi M, De Nictolis M, Galizia E, et al. Loss of hMLH1 expression correlates with improved survival in stage Ⅲ-Ⅳ ovarian cancer patients. Cur J Cancer. 2003,39(8): 1144-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700