基于微流控芯片平台的基因诊断和细胞—药物相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以微流控芯片为基本平台,结合临床医学研究对象进行了基因诊断和细胞-药物相互作用研究,为微流控芯片的生物医学应用进行了有益的尝试。
     用自行设计研制的微流控芯片系统进行了基因诊断研究,包括:⑴利用生物信息学方法分析了SARS病毒基因组并选择特异性序列设计引物,以反转录多重PCR与微流控芯片电泳结合完成了18例SARS临床样品的基因诊断;⑵设计和制作了一种集成有等速电泳预浓缩和筛分电泳分离的微流控芯片,其检测限较传统电泳芯片降低了300倍。将该芯片与基因亚型序列特异性PCR方法联合使用,完成了200例乙型肝炎病毒基因分型研究。研究结果表明采用这种芯片可以缩短PCR扩增时间,提高检测灵敏度。上述基因诊断研究证实微流控芯片具有高灵敏度、高分离效率、快速分离和低样品消耗等特点,可作为基因诊断的一种潜在平台。
     用自行设计研制的微流控芯片系统进行了细胞-药物相互作用研究。该芯片具有5组微流控梯度形成通路和30个细胞培养池,集成了细胞种植、培养、不同种药物梯度浓度刺激、荧光标记和荧光信号检测等功能单元。利用这种微流控芯片研究了乳腺癌MCF-7细胞内谷胱甘肽含量与化学治疗敏感性的关系,结果显示三氧化二砷和N-乙酰丝氨酸分别具有降低和升高细胞内谷胱甘肽水平的作用,同时还显示细胞内谷胱甘肽的消耗可以改善肿瘤细胞的化疗敏感性。
This thesis focuses on developing microfluidic chips for biomedical applications on genetic diagnosis and cell-drug interaction. The in-house built microfluidic system was applied in genetic diagnosis.
     (1) We analyzed SARS coronavirus genome with bioinformatics tools and selected sequence specific region for primer design, and applied microfluidic chip electrophoresis, in combination with reverse transcription-multiplex PCR, in genetic diagnosis of 18 SARS cases; (2) We designed and fabricated a microfluidic chip integrated isotachophoresis preconcentration and sieving electrophoresis separation, which can attain 300 times lower detection limit than that of conventional electrophoresis microchip. The microfluidic chip-based analysis, in combination with subtype sequence specific PCR, was used in genotyping of 200 Hepatitis B virus cases. This method provided genotyping information in reduced PCR amplification time with higher detection rate when compared with conventional methods. The above work showed that microfluidic chip for genetic diagnosis has advantages of high sensitivity, high resolution, fast separation and low consumption. It has the potential to be used in clinical genetic diagnosis.
     Microfluidic chip was also used in study on cell-drug interaction. We designed and fabricated a microfluidic chip featuring parallel-gradient generating networksfor studying cell-drug interaction. The microfluidic chip contains 5 gradient generators and 30 cell culture chambers where the resulted chemical concentration gradients are delivered to stimulate on-chip cultured cells. This microfluidic chip exploits the advantage of lab-on-a-chip technology by integrating cell seeding, culture, stimulation and staining into a single chip. The microfluidic chip was applied in studying the role of reduced glutathione (GSH) in MCF-7 cells’chemotherapy sensitivity. Suppression of intracellular GSH by treatment with arsenic trioxside has been shown to increase chemotherapy sensitivity; conversely, elevation of GSH production by treatment with N-acetyl cysteine leads to increased drug resistance. The results indicated that high GSH level has negative effect on chemotherapeutic sensitivity, and depletion of cellular GSH may serve as an effective way to improve chemotherapy sensitivity. The microfluidic chip is able to perform multiple chemical stimulating and multiparametric cell analysis with easy operation, thus holds great potential for extrapolation to the high-throughput drug screening.
引文
[1] Whitesides, G. M., The origins and the future of microfluidics. Nature, 2006, 442(7101): 368-373.
    [2] Harrison, D. J., Manz, A., Fan, Z. H., Ludi, H., Widmer, H. M., Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip. Analytical Chemistry, 1992, 64(17): 1926-1932.
    [3] Woolley, A. T., Mathies, R. A., Ultra-High-Speed DNA-Sequencing Using Capillary Electrophoresis Chips. Analytical Chemistry, 1995, 67(20): 3676-3680.
    [4] Emrich, C. A., Tian, H. J., Medintz, I. L., Mathies, R. A., Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Analytical Chemistry, 2002, 74(19): 5076-5083.
    [5] Thorsen, T., Maerkl, S. J., Quake, S. R., Microfluidic large-scale integration. Science, 2002, 298(5593): 580-4.
    [6] Hung, P. J., Lee, P. J., Sabounchi, P., Lin, R., Lee, L. P., Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnology and Bioengineering, 2005, 89(1): 1-8.
    [7] Hong, J. W., Studer, V., Hang, G., Anderson, W. F., Quake, S. R., A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology, 2004, 22(4): 435-439.
    [8] Marcus, J. S., Anderson, W. F., Quake, S. R., Microfluidic single-cell mRNA isolation and analysis. Analytical Chemistry, 2006, 78(9): 3084-3089.
    [9] Liu, R. H., Yang, J., Lenigk, R., Bonanno, J., Grodzinski, P., Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem, 2004, 76(7): 1824-31.
    [10] Blaze, R. G., Kumaresan, P., Mathies, R. A., Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(19): 7240-7245.
    [11] Tian, H. J., Jaquins-Gerstl, A., Munro, N., Trucco, M., Brody, L. C., Landers, J. P., Single-strand conformation polymorphism analysis by capillary and microchip electrophoresis: A fast, simple method for detection of common mutations in BRCA1 and BRCA2. Genomics, 2000, 63(1): 25-34.
    [12] Tian, H. J., Brody, L. C., Fan, S. J., Huang, Z. L., Landers, J. P., Capillary and microchip electrophoresis for rapid detection of known mutations by combining allele-specific DNA amplification with heteroduplex analysis. Clinical Chemistry, 2001, 47(2): 173-185.
    [13] Tian, H. J., Brody, L. C., Landers, J. P., Rapid detection of deletion, insertion, and substitution mutations via heteroduplex analysis using capillary- and microchip-based electrophoresis. Genome Research, 2000, 10(9): 1403-1413.
    [14] Matsuo, M., Duchenne and Becker muscular dystrophy: From gene diagnosis to molecular therapy. Iubmb Life, 2002, 53(3): 147-152.
    [15] Ferrance, J., Snow, K., Landers, J. P., Evaluation of microchip electrophoresis as a molecular diagnostic method for Duchenne musculardystrophy. Clin Chem, 2002, 48(2): 380-3.
    [16] Umeno, M., Shinka, T., Sato, Y., Yang, X. J., Baba, Y., Iwamoto, T., Nakahori, Y., A rapid and simple system of detecting deletions on the Y chromosome related with male infertility using multiplex PCR. J Med Invest, 2006, 53(1-2): 147-52.
    [17] Munro, N. J., Snow, K., Kant, J. A., Landers, J. P., Molecular diagnostics on microfabricated electrophoretic devices: from slab gel- to capillary- to microchip-based assays for T- and B-cell lymphoproliferative disorders. Clin Chem, 1999, 45(11): 1906-17.
    [18] Zhou, X. M., Shao, S. J., Xu, G. D., Zhong, R. T., Liu, D. Y., Tang, J. W., Gao, Y. N., Cheng, S. J., Lin, B. C., Highly sensitive determination of the methylated p16 gene in cancer patients by microchip electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci, 2005, 816(1-2): 145-51.
    [19] Banerjea, A., Phillips, S. M., Dorudi, S., Bustin, S. A., Colorectal cancers with mononucleotide microsatellite instability can be identified using microfabricated chip technology. Anal Biochem, 2003, 322(1): 130-3.
    [20] Manage, D. P., Zheng, Y., Somerville, M. J., Backhouse, C. J., On-chip HA/SSCP for the detection of hereditary haemochromatosis. Microfluidics and Nanofluidics, 2005, 1(4): 364-372.
    [21] Medintz, I., Wong, W. W., Berti, L., Shiow, L., Tom, J., Scherer, J., Sensabaugh, G., Mathies, R. A., High-performance multiplex SNP analysis of three hemochromatosis-related mutations with capillary array electrophoresis microplates. Genome Research, 2001, 11(3): 413-421.
    [22] Sung, W. C., Lee, G. B., Tzeng, C. C., Chen, S. H., Plastic microchip electrophoresis for genetic screening: the analysis of polymerase chainreactions products of fragile X (CGG)n alleles. Electrophoresis, 2001, 22(6): 1188-93.
    [23] Cantafora, A., Blotta, I., Bruzzese, N., Calandra, S., Bertolini, S., Rapid sizing of microsatellite alleles by gel electrophoresis on microfabricated channels: Application to the D19S394 tetranucleotide repeat for cosegregation study of familial hypercholesterolemia. Electrophoresis, 2001, 22(18): 4012-4015.
    [24] Schmalzing, D., Koutny, L., Adourian, A., Belgrader, P., Matsudaira, P., Ehrlich, D., DNA typing in thirty seconds with a microfabricated device. Proc Natl Acad Sci U S A, 1997, 94(19): 10273-8.
    [25] Schmalzing, D., Koutny, L., Chisholm, D., Adourian, A., Matsudaira, P., Ehrlich, D., Two-color multiplexed analysis of eight short tandem repeat loci with an electrophoretic microdevice. Anal Biochem, 1999, 270(1): 148-52.
    [26] Mitnik, L., Carey, L., Burger, R., Desmarais, S., Koutny, L., Wernet, O., Matsudaira, P., Ehrlich, D., High-speed analysis of multiplexed short tandem repeats with an electrophoretic microdevice. Electrophoresis, 2002, 23(5): 719-26.
    [27] Medintz, I. L., Berti, L., Emrich, C. A., Tom, J., Scherer, J. R., Mathies, R. A., Genotyping energy-transfer-cassette-labeled short-tandem-repeat amplicons with capillary array electrophoresis microchannel plates. Clin Chem, 2001, 47(9): 1614-21.
    [28] Hofgartner, W. T., Huhmer, A. F. R., Landers, J. P., Kant, J. A., Rapid diagnosis of herpes simplex encephalitis using microchip electrophoresis of PCR products. Clinical Chemistry, 1999, 45(12): 2120-2128.
    [29] Chen, Y. H., Wang, W. C., Young, K. C., Chang, T. T., Chen, S. H., Plastic microchip electrophoresis for analysis of PCR products of hepatitis C virus. Clinical Chemistry, 1999, 45(11): 1938-1943.
    [30] Liao, C. S., Lee, G. B., Liu, H. S., Hsieh, T. M., Luo, C. H., Miniature RT-PCR system for diagnosis of RNA-based viruses. Nucleic Acids Research, 2005, 33(18): -.
    [31] Marcus, J. S., Anderson, W. F., Quake, S. R., Parallel picoliter RT-PCR assays using microfluidics. Analytical Chemistry, 2006, 78(3): 956-958.
    [32] Lagally, E. T., Scherer, J. R., Blazej, R. G., Toriello, N. M., Diep, B. A., Ramchandani, M., Sensabaugh, G. F., Riley, L. W., Mathies, R. A., Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal Chem, 2004, 76(11): 3162-70.
    [33] Pal, R., Yang, M., Lin, R., Johnson, B. N., Srivastava, N., Razzacki, S. Z., Chomistek, K. J., Heldsinger, D. C., Haque, R. M., Ugaz, V. M., Thwar, P. K., Chen, Z., Alfano, K., Yim, M. B., Krishnan, M., Fuller, A. O., Larson, R. G., Burke, D. T., Burns, M. A., An integrated microfluidic device for influenza and other genetic analyses. Lab on a Chip, 2005, 5(10): 1024-1032.
    [34] Liu, R. H., Lodes, M. J., Nguyen, T., Siuda, T., Slota, M., Fuji, H. S., McShea, A., Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing. Analytical Chemistry, 2006, 78(12): 4184-4193.
    [35] Karin, M., Castrillo, J. L., Theill, L. E., Growth hormone gene regulation: a paradigm for cell-type-specific gene activation. Trends Genet, 1990, 6(3): 92-6.
    [36] Rubin, H., Selected cell and selective microenvironment in neoplastic development. Cancer Res, 2001, 61(3): 799-807.
    [37] Hazlehurst, L. A., Landowski, T. H., Dalton, W. S., Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene, 2003, 22(47): 7396-402.
    [38] Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H., Ismagilov, R. F., Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature, 2005, 434(7037): 1134-8.
    [39] Lucchetta, E. M., Munson, M. S., Ismagilov, R. F., Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device. Lab Chip, 2006, 6(2): 185-90.
    [40] Mitrovski, S. M., Nuzzo, R. G., An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients. Lab Chip, 2005, 5(6): 634-45.
    [41] Walker, G. M., Sai, J., Richmond, A., Stremler, M., Chung, C. Y., Wikswo, J. P., Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip, 2005, 5(6): 611-8.
    [42] Abhyankar, V. V., Lokuta, M. A., Huttenlocher, A., Beebe, D. J., Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip, 2006, 6(3): 389-93.
    [43] Yang, M., Li, C. W., Yang, J., Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal Chem, 2002, 74(16): 3991-4001.
    [44] Li, C. W., Yang, J., Yang, M., Dose-dependent cell-based assays in V-shaped microfluidic channels. Lab Chip, 2006, 6(7): 921-9.
    [45] Li Jeon, N., Baskaran, H., Dertinger, S. K., Whitesides, G. M., Van de Water, L., Toner, M., Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol, 2002, 20(8): 826-30.
    [46] Gunawan, R. C., Silvestre, J., Gaskins, H. R., Kenis, P. J., Leckband, D. E., Cell migration and polarity on microfabricated gradients of extracellular matrix proteins. Langmuir, 2006, 22(9): 4250-8.
    [47] Koyama, S., Amarie, D., Soini, H. A., Novotny, M. V., Jacobson, S. C., Chemotaxis assays of mouse sperm on microfluidic devices. Anal Chem, 2006, 78(10): 3354-9.
    [48] Saadi, W., Wang, S. J., Lin, F., Jeon, N. L., A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed Microdevices, 2006, 8(2): 109-18.
    [49] Thompson, D. M., King, K. R., Wieder, K. J., Toner, M., Yarmush, M. L., Jayaraman, A., Dynamic gene expression profiling using a microfabricated living cell array. Anal Chem, 2004, 76(14): 4098-103.
    [50] Gunawan, R. C., Choban, E. R., Conour, J. E., Silvestre, J., Schook, L. B., Gaskins, H. R., Leckband, D. E., Kenis, P. J., Regiospecific control of protein expression in cells cultured on two-component counter gradients of extracellular matrix proteins. Langmuir, 2005, 21(7): 3061-8.
    [51] Kim, L., Vahey, M. D., Lee, H. Y., Voldman, J., Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip, 2006, 6(3): 394-406.
    [52] Chung, B. G., Flanagan, L. A., Rhee, S. W., Schwartz, P. H., Lee, A. P., Monuki, E. S., Jeon, N. L., Human neural stem cell growth anddifferentiation in a gradient-generating microfluidic device. Lab Chip, 2005, 5(4): 401-6.
    [53] Fujii, S., Uematsu, M., Yabuki, S., Abo, M., Yoshimura, E., Sato, K., Microbioassay system for an anti-cancer agent test using animal cells on a microfluidic gradient mixer. Anal Sci, 2006, 22(1): 87-90.
    1. Jacobson, S.C.C., C. T.; Daler, J. E.; Ramsey, J. M., Microchip Structures for Submillisecond Electrophoresis Anal. Chem., 1998. 70(16): p. 3476-3480.
    2. Emrich, C.A., et al., Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem, 2002. 74(19): p. 5076-83.
    3. Liu, R.H., et al., Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem, 2004. 76(7): p. 1824-31.
    4. 周小棉, 芯片电泳系统研制与应用研究,中国科学院研究生博士学位论文. 2005. 67-84.
    5. Ksiazek, T.G., et al., A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 2003. 348(20): p. 1953-66.
    6. Drosten, C., et al., Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 2003. 348(20): p. 1967-76.
    7. Peiris, J.S., et al., Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003. 361(9366): p. 1319-25.
    8. Nie, Q.H., X.D. Luo, and W.L. Hui, Advances in clinical diagnosis and treatment of severe acute respiratory syndrome. World J Gastroenterol, 2003. 9(6): p. 1139-43.
    9. Li, G., X. Chen, and A. Xu, Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med, 2003. 349(5): p. 508-9.
    10. Marra, M.A., et al., The Genome sequence of the SARS-associated coronavirus. Science, 2003. 300(5624): p. 1399-404.
    11. Ruan, Y.J., et al., Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet, 2003. 361(9371): p. 1779-85.
    12. Yam, W.C., et al., Evaluation of reverse transcription-PCR assays for rapid diagnosis of severe acute respiratory syndrome associated with a novel coronavirus. J Clin Microbiol, 2003. 41(10): p. 4521-4.
    13. Poon, L.L., et al., Early diagnosis of SARS coronavirus infection by real time RT-PCR. J Clin Virol, 2003. 28(3): p. 233-8.
    14. Poon, L.L., et al., Detection of SARS coronavirus in patients with severe acute respiratory syndrome by conventional and real-time quantitative reverse transcription-PCR assays. Clin Chem, 2004. 50(1): p. 67-72.
    15. Woolley, A.T. and R.A. Mathies, Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci U S A, 1994. 91(24): p. 11348-52.
    16. Effenhauser, C.S., G.J. Bruin, and A. Paulus, Integrated chip-based capillary electrophoresis. Electrophoresis, 1997. 18(12-13): p. 2203-13.
    17. McCormick, R.M., et al., Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal Chem, 1997. 69(14): p. 2626-30.
    18. Barta, C., et al., Analysis of dopamine D4 receptor gene polymorphism using microchip electrophoresis. J Chromatogr A, 2001. 924(1-2): p. 285-90.
    19. Ronai, Z., et al., Genotyping the -521C/T functional polymorphism in the promoter region of dopamine D4 receptor (DRD4) gene. Electrophoresis, 2001. 22(6): p. 1102-5.
    20. World Health Organization Severe acute respiration syndrome (SARS). Wkly. Rec. 2003(78): p. 86-87.
    [1] Zuckerman, J. N., Zuckerman, A. J., Current topics in hepatitis B. J Infect, 2000, 41(2): 130-6.
    [2] Schaefer, S., Hepatitis B virus: significance of genotypes. J Viral Hepat, 2005, 12(2): 111-24.
    [3] Sakai, T., Shiraki, K., Inoue, H., Okano, H., Deguchi, M., Sugimoto, K., Ohmori, S., Murata, K., Fujioka, H., Takase, K., Tameda, Y., Nakano, T., HBV subtype as a marker of the clinical course of chronic HBV infection in Japanese patients. J Med Virol, 2002, 68(2): 175-81.
    [4] Akuta, N., Kumada, H., Influence of hepatitis B virus genotypes on the response to antiviral therapies. J Antimicrob Chemother, 2005, 55(2): 139-42.
    [5] Sung, J. L., Chen, D. S., Geographical distribution of the subtype of hepatitis B surface antigen in Chinese. Gastroenterol Jpn, 1977, 12(2): 58-63.
    [6] Sung, J. L., Chen, D. S., Clustering of different subtypes of hepatitis B surface antigen in families of patients with chronic liver diseases. Am J Gastroenterol, 1978, 69(5): 559-64.
    [7] Kobayashi, M., Akuta, N., Suzuki, F., Suzuki, Y., Arase, Y., Ikeda, K., Hosaka, T., Saitoh, S., Kobayashi, M., Someya, T., Sato, J., Watabiki, S., Miyakawa, Y., Kumada, H., Virological outcomes in patients infected chronically with hepatitis B virus genotype A in comparison with genotypes B and C. J Med Virol, 2006, 78(1): 60-7.
    [8] Chu, C. M., Liaw, Y. F., Genotype C hepatitis B virus infection is associated with a higher risk of reactivation of hepatitis B and progression to cirrhosis than genotype B: a longitudinal study of hepatitis B e antigen-positive patients with normal aminotransferase levels at baseline. J Hepatol, 2005, 43(3): 411-7.
    [9] Chan, H. L., Hui, A. Y., Wong, M. L., Tse, A. M., Hung, L. C., Wong, V. W., Sung, J. J., Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut, 2004, 53(10): 1494-8.
    [10] D. Jed Harrison, A. M., Zhonghui Fan, Hans Luedi, and H. Michael Widmer, Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem, 1992, 64(17): 1926.
    [11] R.H. Stephen C. Jacobson, L. B. K., R. J. Warmack, and J. Michael Ramsey, Anal. Chem., 1994, 66: 1107.
    [12] Woolley, A. T., Mathies, R. A., Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Anal Chem, 1995, 67(20): 3676-80.
    [13] Zhou, X. M., Shao, S. J., Xu, G. D., Zhong, R. T., Liu, D. Y., Tang, J. W., Gao, Y. N., Cheng, S. J., Lin, B. C., Highly sensitive determination of the methylated p16 gene in cancer patients by microchip electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci, 2005, 816(1-2): 145-51.
    [15] Hempel, G., Strategies to improve the sensitivity in capillary electrophoresis for the analysis of drugs in biological fluids. Electrophoresis, 2000, 21(4): 691-8.
    [16] Chen, S., Lee, M. L., Automated instrumentation for comprehensive isotachophoresis-capillary zone electrophoresis. Anal Chem, 2000, 72(4): 816-20.
    [17] Kvasnicka, F., Application of isotachophoresis in food analysis. Electrophoresis, 2000, 21(14): 2780-7.
    [18] 林炳承, 毛细管电泳导论. 1996, 北京: 科学出版社.
    [14] Zhou, X., Liu, D., Zhong, R., Dai, Z., Wu, D., Wang, H., Du, Y., Xia, Z., Zhang, L., Mei, X., Lin, B., Determination of SARS-coronavirus by a microfluidic chip system. Electrophoresis, 2004, 25(17): 3032-9.
    [20] Wainright, A., Nguyen, U. T., Bjornson, T., Boone, T. D., Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices. Electrophoresis, 2003, 24(21): 3784-3792.
    [21] Kramvis, A., Bukofzer, S., Kew, M. C., Comparison of hepatitis B virus DNA extractions from serum by the QIAamp blood kit, GeneReleaser, and the phenol-chloroform method. J Clin Microbiol, 1996, 34(11): 2731-3.
    [22] Naito, H., Hayashi, ., Abe, K., Rapid and specific genotyping system for hepatitis B virus corresponding to six major genotypes by PCR using type-specific primers. J Clin Microbiol, 2001, 39(1): 362-4.
    [23] Hjertén, S., J. Chromatogr, 1985, 347: 191-198.
    [19] Huang, H., Xu, F., Dai, Z., Lin, B., On-line isotachophoretic preconcentration and gel electrophoretic separation of sodium dodecyl sulfate-proteins on a microchip. Electrophoresis, 2005, 26(11): 2254-60.
    [1] El-Ali, J., Sorger, P. K., Jensen, K. F., Cells on chips. Nature, 2006, 442(7101): 403-411.
    [2] Dertinger, S. K. W., Chiu, D. T., Jeon, N. L., Whitesides, G. M., Generation of gradients having complex shapes using. microfluidic networks. Analytical Chemistry, 2001, 73(6): 1240-1246.
    [3]- Walker, G. M., Sai, J. Q., Richmond, A., Stremler, M., Chung, C. Y., Wikswo, J. P., Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab on a Chip, 2005, 5(6): 611-618.
    [4] Jeon, N. L., Baskaran, H., Dertinger, S. K. W., Whitesides, G. M., Van de ?Water, L., Toner, M., Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature Biotechnology, 2002,20(8): 826-830.
    [5] Mao, H. B., Cremer, P. S., Manson, M. D., A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9): 5449-5454.
    [6] Diao, J. P., Young, L., Kim, S., Fogarty, E. A., Heilman, S. M., Zhou, P., Shuler, M. L., Wu, M. M., DeLisa, M. P., A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab on a Chip, 2006, 6(3): 381-388.
    [7] Thompson, D. M, King, K. R., Wieder, K. J., Toner, M., Yarmush, M. L., Jayaraman, A., Dynamic gene expression profiling using a microfabricated living cell array. Analytical Chemistry, 2004, 76(14): 4098-4103.
    [8] Yue, S., Xue-Feng, Y., Novel multi-depth microfluidic chip for single cell analysis. J Chromatogr A, 2006, 1117(2): 228-33.
    [9] Scott, N., Hatlelid, K. M., MacKenzie, N. E., Carter, D. E., Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol,1993, 6(1): 102-6.
    [1] Ozben, T., Mechanisms and strategies to overcome multiple drug resistance in cancer. Febs Letters, 2006, 580(12): 2903-2909.
    [2] Luqmani, Y. A., Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract, 2005, 14 Suppl 1: 35-48.
    [3] Ozols, R. F., O'Dwyer, P. J., Hamilton, T. C., Young, R. C., The role of glutathione in drug resistance. Cancer Treat Rev, 1990, 17 Suppl A: 45-50.
    [4] Tew, K. D., Glutathione-Associated Enzymes in Anticancer Drug-Resistance. Cancer Research, 1994, 54(16): 4313-4320.
    [5] Davis, W., Jr., Ronai, Z., Tew, K. D., Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther, 2001, 296(1): 1-6.
    [6] Meister, A., Glutathione metabolism and its selective modification. J Biol Chem, 1988, 263(33): 17205-8.
    [7] Eastman, A., Cross-linking of glutathione to DNA by cancer chemotherapeutic platinum coordination complexes. Chem Biol Interact, 1987, 61(3): 241-8.
    [8] Schroder, C. P., Godwin, A. K., O'Dwyer, P. J., Tew, K. D., Hamilton, T. C., Ozols, R. F., Glutathione and drug resistance. Cancer Invest, 1996, 14(2): 158-68.
    [9] Anderson, M. E., Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact, 1998, 111-112: 1-14.
    [10] Ishikawa, T., Ali-Osman, F., Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem, 1993, 268(27): 20116-25.
    [11] Vahter, M., Concha, G., Role of metabolism in arsenic toxicity. Pharmacol Toxicol, 2001, 89(1): 1-5.
    [12] Shimizu, M., Hochadel, J. F., Fulmer, B. A., Waalkes, M. P., Effect ofglutathione depletion and metallothionein gene expression on arsenic-induced cytotoxicity and c-myc expression in vitro. Toxicol Sci, 1998, 45(2): 204-11.
    [13] Qin, J., Ye, N., Yu, L., Liu, D., Fung, Y., Wang, W., Ma, X., Lin, B., Simultaneous and ultrarapid determination of reactive oxygen species and reduced glutathione in apoptotic leukemia cells by microchip electrophoresis. Electrophoresis, 2005, 26(6): 1155-62.
    [14] Yim, C. Y., Hibbs, J. B., Mcgregor, J. R., Galinsky, R. E., Samlowski, W. E., Use of N-Acetyl Cysteine to Increase Intracellular Glutathione during the Induction of Antitumor Responses by Il-2. Journal of Immunology, 1994, 152(12): 5796-5805.
    [15] Wang, X., Kong, L., Zhao, J., Yang, P., Arsenic trioxide in the mechanism of drug resistance reversal in MCF-7/ADM cell line of human breast cancer. Zhonghua Zhong Liu Za Zhi, 2002, 24(4): 339-43.
    [16] Shiga, H., Heath, E. I., Rasmussen, A. A., Trock, B., Johnston, P. G., Forastiere, A. A., Langmacher, M., Baylor, A., Lee, M., Cullen, K. J., Prognostic value of p53, glutathione S-transferase pi, and thymidylate synthase for neoadjuvant cisplatin-based chemotherapy in head and neck cancer. Clin Cancer Res, 1999, 5(12): 4097-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700