奶牛泌乳性能候选基因的遗传特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究分别以中国荷斯坦、澳大利亚荷斯坦、加拿大荷斯坦及陇州奶牛的395份血样为材料提取基因组DNA,运用生物信息学方法和同源序列克隆技术结合电子PCR(ePCR),对牛的磷酸甘油酰基转移酶ζ(AGPAT6)基因的基因组DNA序列进行了克隆与序列分析。运用PCR-SSCP、PCR-RFLP以及PCR-RFLP、SSCP结合的方法对奶牛泌乳性能两个候选基因的部分基因组DNA片段进行了单核苷酸多态(SNP)检测,运用一般线性模型研究了AGPAT6基因和PRLR基因与上述4个奶牛群体泌乳性能性状的相关性,在5个方面取得了研究进展。
     1.牛AGPAT6基因的克隆
     利用快速扩增cDNA末端(RACE)技术克隆了牛AGPAT6基因5′cDNA,用PCR技术克隆到牛AGPAT6基因的8个内含子序列,获得了包含外显子和内含子的AGPAT6基因的基因组DNA片段,并为GenBank数据库收录,收录号为EF432784。
     2.牛AGPAT6基因SNPs及其与奶牛泌乳性能性状的关系
     检测牛AGPAT6基因部分序列,发现了11个SNPs,并分析了这些SNPs与泌乳性能性状的关系,结果如下:
     (1)在第2内含子发现了1个PCR-SSCP SNP位点(281T-281C),此PCR-SSCP(281T-281C)位点不同基因型的个体的305天产奶成年当量(305dME)、乳脂率和乳蛋白率存在显著差异(P<0.05):杂合型个体的305dME显著高于纯合基因型个体(P<0.05),BB基因型个体的乳脂率和乳蛋白率显著高于AA基因型个体(P<0.05)。
     (2)在第3内含子发现了5个SNPs位点(410G-410T、489G-489T、600G-600T、649G-649A、729-729A),其中的1个PCR-RFLP SNP(410G-410T)位点不同基因型的个体,乳脂率和乳中体细胞评分(SCS)存在显著差异(P<0.05);BB基因型个体的乳脂率显著高于AA基因型(P<0.05),BB基因型个体的SCS显著低于AA基因型(P<0.05)。第3内含子的另一个PCR-RFLP SNP(489G-489T)位点不同基因型的个体,305dME和乳脂率存在显著差异(P<0.05);CC基因型的305dME显著高于DD基因型(P<0.05),DD基因型个体的乳脂率显著高于CC基因型(P<0.05)。
     (3)在第4内含子发现了2个PCR-SSCP SNP位点(153A-153G、606A-606G),位点组合不同基因型的个体SCS存在显著差异(P<0.05);在第10、11内含子发现了3个PCR-SSCP SNP(341A-341G、430C-430T、451C-451G),位点组合不同基因型的个体305dME、乳脂率和SCS存在显著差异(P<0.05):在第6、7、8、9内含子均来发现PCR-RFLP多态。
     3.牛PRLR基因SNPs及其与奶牛泌乳性能性状的关系
     检测牛PRLR基因部分序列发现了11个SNPs,分析这些SNPs与泌乳性能性状的关系,结果如下:
     (1)在第3外显子发现了3个PCR-SSCP SNPs位点(1104A缺失、1267A-1267G、1268C-1268T),3个SNPs位点不同基因型的个体305dME存在极显著差异(P<0.01);AD基因型的305dME最高。
     (2)在第5外显子发现了1个PCR-SSCP SNP位点(3365T-3365C),此SNP位点不同基因型的个体泌乳性能性状差异不显著(P>0.05)。
     (3)在第7外显子发现了4个PCR-SSCP SNPs位点(5533C-5533T、5650A-5650G、5651G-5651A、5652A-5652T),4个SNPs位点不同基因型的个体305dME、乳脂率、乳蛋白率和SCS存在显著差异(P<0.05):AA基因型个体的305dME最低,但乳脂率和乳蛋白率最高,AC基因型个体的SCS显著高于其他基因型个体。
     (4)在第8内含子发现了1个PCR-RFLP SNP位点(7740A-7740G),该位点不同基因型的个体305dME存在显著差异(P<0.05)、乳蛋白率存在极显著的差异(P<0.01):AA基因型个体的305dME较高、BB基因型个体的蛋白率极显著高于其他基因型个体。
     (5)在第10外显子发现的SNPs存在群体间差异。在澳大利亚荷斯坦牛群体发现1个PCR-SSCP SNP位点(9742A-9742G),在加拿大荷斯坦个群体发现2个PCR-SSCP SNPs位点(9681C-9681T、9902G-9902C),在陇州奶牛群体中发现3个PCR-SSCP SNP位点(9681C-9681T、9757G一9757T、9939G插入),在中国荷斯坦群体发现3个PCR-SSCP SNP位点(9681C-9681T、9742A-9742G、9902G-9902C),5个SNPs位点不同基因型的个体305dME存在极显著差异(P<0.01),乳脂率、乳中干物质含量和SCS存在显著差异(P<0.05):DD基因型个体的305dME极显著的高于其他基因型,EE基因型个体的乳脂率显著高于CC、DD基因型个体,CC基因型个体的SCS显著高于BB基因型个体。
     4.基因型的组合效应对奶牛泌乳性能的影响
     组合AGPAT6基因第2内含子和第3内含子的SNPs位点不同基因型分析其与奶牛泌乳性能的关系,结果表明:AGPAT6基因第2内含子和第3内含子的SNPs位点间存在互作效应,其组合效应值均高于第2内含子和第3内含子SNPs的单标记效应值:组合1(A1A1A2A2C2C2基因型)个体的305dME和乳脂率高于其他组合。因此,可初步确定SNPs组合位点(281T、410G、489G)为影响牛乳品质的最佳SNPs组合基因型。
     组合PRLR基因第3外显子、第7外显子、第8内含子和第10外显子的SNPs位点不同基因型分析其与奶牛泌乳性能的关系,结果表明:PRLR基因第3、7、10外显子和第8内含子的SNPs位点存在互作效应,其305dME组合效应值均高于第3、7、10外显子和第8内含子SNPs的单标记效应值:组合4(A1A1B3B3A5B5E4E4)个体的305dME高于其他组合,可初步确定组合4(A1A1B3B3A5B5E4E4)为影响牛产奶量的最佳组合基因型。
     5.AGPAT6、PRLR基因多态与中国荷斯坦奶牛群体泌乳性能的关系
     在中国荷斯坦牛品种内,分析了AGPAT6和PRLR基因上17个SNPs位点不同基因型与奶牛泌乳性能不同性状的关系,结果显示:PRLR基因第3外显子3个SNPs位点不同基因型个体的初次配种日龄存在显著差异(P<0.05)、初次产犊日龄存在极显著差异(P<0.01),BB基因型个体的初次配种日龄显著地高于其他基因型个体,初次产犊日龄存在极显著地高于其他基因型个体。第5外显子的SNP位点不同基因型个体的乳脂率和乳蛋白率存在显著差异(P<0.05),AA基因型个体的乳脂率和乳蛋白率显著地高于BB基因型个体。第7外显子4个SNPs化点不同基因型的个体305dME和初次产犊日龄存在显著差异(P<0.05);BB基因型个体的305dME最高,AA基因型个体的初次产犊日龄最高。第10外显子的5个SNPs位点不同基因型个体的乳脂率存在显著差异(P<0.05);DD基因型个体的乳脂率和乳干物质含量显著低于FF基因型个体(P<0.05)。
395 blood samples from 4 dairy cattle populations, Chinese Holstein, Canadian Holstein, Australia Holstein and Longzhou dairy cattle were collected to extract genomic DNA in this study. The identification and sequence analysis to the bovine acyl-sn-glycerol-3-phosphate acyltransferaseζ(AGPAT6) gene was performed by homology cloning and bioinformatics approach combined with 5' RACE technique. Afterwards, detection of SNPs within some genomic fragments of the AGPAT6 gene and PRLR gene were employed with the use of sequencing and PCR-SSCP, PCR-RFLP method. Finally, the association among AGPAT6 and PRLR gene with milk performance traits of dairy cattle in 4 populations were investigated. The advances have been acquired in 5 points.
     1. Cloning of bovine AGPAT6 gene
     The RACE technology was used to clone bovine AGPAT6 gene 5'-cDNA, and PCR technology was used to clone AGPAT6 gene 8 introns. Exons and introns contained in AGPAT6 genomic DNA were rebuild one sequence that was accepted by GenBank database, its accession number was EF432784.
     2. Relativity of PCR-SSCP or PCR-RFLP SNPs of the bovine AGPAT6 gene with milk performance traits of dairy cattle
     Identification for mutations in the amplified fragments of AGPAT6 gene was performed and the 11 SNPs were detected by PCR-SSCP or PCR-RFLP. These SNPs were genotyped in the experimental populations. The analysis of general lineal model was used to employ to association between the SNPs and milk performance traits of dairy cattle. The results showed as follows:
     (1) 1 SNP (281T-281C) were detected by PCR-SSCP in intron 2 of AGPAT6 genes. The different genotypes of PCR-SSCP (281T-281C) loci have the significant difference on 305d matured equivalency (305dME), milk fat percentage, and milk protein percentage (P<0.05).
     (2) 5 SNPs (410G-410T, 489G-489T, 600G-600T, 649G-649A, 729-729A) were detected by PCR-RFLP in intron 3 of AGPAT6 gene. The different genotypes of PCR-RFLP (410G-410T) loci have the significant difference on milk fat percentage, and somatic cell score (SCS) (P<0.05). The different genotypes of PCR-RFLP (489G-489T) loci have the significant difference on 305dME, and milk fat percentage (P<0.05).
     (3) 2 SNPs (153A-153G, 606A-606G) were detected by PCR-SSCP in intron 4 of AGPAT6 gene. The different genotypes of SNPs loci have the significant difference on SCS (P<0.05). 3 SNPs (341A-341G, 430C-430T, 451C-451G) were detected by PCR-SSCP in intron 10 of AGPAT6 genes. The different genotypes of PCR-SSCP SNPs loci have the significant difference on SCS (P<0.05). No SNPs was found in intron 6, 7, 8, 9 of AGPAT6 gene.
     3. Relativity of PCR-SSCP SNPs of the bovine PRLR gene with milk performance traits of dairy cattle
     Identification for mutations in the amplified fragments of PRLR gene was performed and the 11 SNPs were detected by PCR-SSCP. These SNPs were genotyped in the experimental populations. The analysis of general lineal model was used to employ to association between the SNPs and milk performance traits of dairy cattle. The results showed as follows:
     (1) 3 SNPs (1104A delete, 1267A-1267G, 1268C-1268T) were detected by PCR-SSCP in exon 3 of PRLR gene. The different genotypes of PCR-SSCP SNPs loci have the significant difference on 305dME (P<0.01).
     (2) 1 SNPs (3365T-3365C) were detected by PCR-SSCP in exon 5 of PRLR gene. The different genotypes of PCR-SSCP SNPs loci have no significant difference on milk performance traits of dairy cattle.
     (3) 4 SNPs (5533C-5533T, 5650A-5650G, 5651G-5651A, 5652A-5652T) were detected by PCR-SSCP in exon 7 of PRLR genes. The different genotypes of PCR-SSCP SNPs loci have the significant difference on 305dME, milk fat percentage, milk protein percentage, and SCS(P<0.05).
     (4) 1 SNP (7740A-7740G) were detected by PCR-RFLP in intron 8 of PRLR gene. The different genotypes of PCR-RFLP SNP loci have the significant difference on 305dME, and milk protein percentage (P<0.05).
     (5) 5 SNPs (9681C-9681T, 9742A-9742G, 9757G-9757T, 9902G-9902C, 9939G insert) were detected by PCR-SSCP in exon 10 of PRLR gene. The different genotypes of PCR-SSCP SNPs loci have the significant difference on 305dME, milk fat percentage, and SCS (P<0.05).
     4. Analysis on combination of genotype of 11 SNPs of AGPAT6 gene and genotype of 11 SNPs of PRLR gene effects
     (1) Combination of genotype of AGPAT6 gene intron 2 and intron 3 with milk performance traits of dairy cattle were analysis. Interaction between genotype of AGPAT6 gene intron 2 and intron 3 were found. The effect of combination 1 (A1A1A2A2C2C2) had significant positive relation with 305dME and milk fat percentage.
     (2)Combination of genotype of PRLR gene exon 3, 7, 10 and intron 8 with milk performance traits of dairy cattle were analysis. Interaction between genotype of PRLR gene exon 3, 7, 10 and intron 8 were found. The effect of combination 4 (A1A1B3B3A5B5E4E4) had significant positive relation with 305dME.
     5. Relativity of SNPs of the bovine AGPAT6 and PRLR gene with milk performance traits of Chinese Holstein
     In Chinese Holstein population, 17 SNPs of AGPAT6 and PRLR gene were associated to the milk performance traits of dairy cattle. The result showed as follow:
     The different genotypes of PCR-SSCP SNPs loci of PRLR gene exon 3 have the significant difference on days of first mate and days of first calving (P<0.05).
     The different genotypes of PCR-SSCP SNP loci of PRLR gene exon 5 have the significant difference on milk fat percentage, milk protein percentage, and dry matter of milk content (P<0.05).
     The different genotypes of PCR-SSCP SNPs loci of PRLR gene exon 7 have the significant difference on 305dME and days of first calving (P<0.05).
     The different genotypes of PCR-SSCP SNPs loci of PRLR gene exon 10 have the significant difference on milk fat percentage (P<0.05).
引文
[1] Goffin V, Shiverick K T, Kelly P A, et al. Sequence function relationships within the expanding family of prolactin, growth hormone, placental lactogen and related proteins in mammals[J]. Endocr. Rev.,1996,17:385-410.
    [2] Feysot C B, Goffin V, Edery M, et al. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice[J]. Endocrine Reviews, 1998, 19(3):225-268.
    [3] Walker W H, Fitzpatrick S L, Barrera-Saldana H A, et al. The human placental lactogen genes: structure, function, evolution and transcriptional regulation[J]. Endocr. Rev.,1991,12:316-328.
    [4] Soares M J, Muller H, Orwig K E, et al. The uteroplacental prolactin family and pregnancy[J]. Biol.Reprod.,1998,58:273-284.
    [5]Sinha Y N. Structural variants of prolactin: occurrence and physiological significance[J]. Endocr. Rev.,1995,16:354-369.
    [6]Jonathan N B, Mershon J L, Allen D L, et al. Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects[J]. Endocr. Rev.,1996,17:639-669.
    [7]Goffin V, Martial J A, Summers N L. Use of a model to understand prolactin and growth hormone specificities[J]. Protein Eng.,1995,8:1215-1231.
    [8] DeVos A M, Ultsch M, Kossiakoff A A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex[J]. Science, 1992,255: 306-312.
    
    [9] Goffin V, Kelly P A. Prolactin and growth hormone receptors[J].Clin. Endocrinol, 1996,45:247-255.
    [10]Goffin V, Kelly P A. The prolactin/growth hormone receptor family: structure/function relationships[J]. J Mammary Gland Biol. Neopl.,1996,2:7-17.
    [11]Goffin V, Ferrag F, Kelly P A. Molecular aspects of prolactin and growth hormone receptors[C]. Advances in Mol. Cell Endocrinol.[C]. Le Roith D(ed):JAI Press,1998.1-33
    [12]Finidori J, Kelly P A. Cytokine receptor signaling through two novel families of transducer molecules: Janus kinases, and signal transducers and activators of transcription[J]. J. Endocrinol., 1995,147:11-23.
    [13]Wells J A, De Vos A M. Hematopoietic receptor complexes[J]. Annu. Rev. Biochem.,1996, 65:609-634.
    [14]Vincent V, Goffin V, Adcock M R, et al. Identification of cytoplasmic motifs required for short prolactin receptor internalization[J]. J. Biol. Chem., 1997,272:7062-7068.
    [15]Chen X, Horseman N D. Cloning, expression and mutational analysis of the pigeon prolactin receptor[J]. Endocrinology, 1994,135:269-276.
    [16]Gao J, Hughes J P, Auperin B, et al. Interactions among Janus kinases and the prolactin(PRL) receptor in the regulation of a PRL response element[J]. Mol. Endocrinol,1996,10:847-856.
    [17]Boutin J M, Jolicoeur C, Okamura H, et al. Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family[J]. Cell,1988,53:69-77.
    [18]Shirota M, Banville D, Ali S. Expression of two forms of PRL receptor in rat ovary and liver[J]. Mol.Endocrinol, 1990,4:1136-1143.
    [19]Moore R C , Oka T. Cloning and sequencing of the cDNA encoding the murine mammary gland long-form prolactin receptor[J].Gene, 1993,134:263-265.
    [20]Anthony R V, Smith G W, Duong A, et al. Two forms of the prolactin receptor messenger ribonucleic acid are present in ovine fetal liver and adult ovary[J]. Endocrine, 1995,3:291-295.
    [21]Berlanga J J, Garcia R, Perrot A, et al. The short form of the prolactin(PRL) receptor silences PRL induction of the beta-casein gene promoter[J]. Molecular Endocrinology, 1997,11 (10): 1449-1457.
    [22]Jahn G A, Edery M, Belair L, et al. Prolactin receptor gene expression in rat mammary glandand liver during pregnancy and lactation[J]. Endocrinology, 1991,128(6):2976-2984.
    [23] Moldrup A, Ormandy C, Nagano M, et al. Differential promoter usage in prolactin receptor gene expression: hepatocyte nuclear factor 4 binds to and activates the promoter preferentially active in the liver[J]. Mol. Endocrinol, 1996,10(6): 661-670.
    [24]Buck K, Vanek M, Groner B, et al. Multiple forms of prolactin receptor messenger ribonucleic acid are specifically expression and regulated in murine tissues and the mammary cell line HCII[J]. Endocrinology, 1992,130(3): 1108-1114.
    [25]Tzeng S J, Linaer D. Prolactin receptor expression in the developing mouse embryo[J]. Molecular Reproduction and Development,1997,48(l):45-52.
    
    [26]Royster M, Driscoll P, Kelly P A, et al. The prolactin receptor in the fetal rat: cellular localization of messenger RNA, immunoreactive protein, and ligand binding activity and induction of expression in late gestation[J]. Endocrinology, 1995,136:3892-3900.
    
    [27]Cassy S, Charlier M, Belair L, et al. Developmental expression and localization of the prolactin receptor(PRL-R)gene in ewe mammary gland during pregnancy and lactation: estimation of the ratio of the two forms of PRLR messenger ribonucleic acid[J].Biology of Reproduction, 1998, 58: 1290-1296.
    
    [28]Tchelet A, Staten N R, Cewwly D P, et al. Extracellular domain of prolactin receptor from bovine mammary gland: expression in Escherichia coli. purification and characterization of its interaction with lactogenic hormones[J].Journal of Endocrinology, 1995,144(3):393-403.
    
    [29]Feng J C, Loh T T, Sheng H P. Lactation increases prolactin receptor expression in spleen and thymus of rats[J]. Life Sci.,1998,63:111-119.
    [30]Auchtung T L, Kendall P E, Salak-Johnson J L, et al. Effects of photoperiod and bromocriptine on prolactin receptor mRNA expression in bovine liver, mammary gland, and peripheral blood lymphocytes[J]. Endocrinol,2003,179: 347-356.
    [31]Berlanga J J, Garcia-Ruiz J P, Perrot-Applanat M, et al. The short form of the prolactin (PRL) receptor silences PRL induction of the β-casein gene promoter[J]. Mol.Endocrinol, 1997, 11:1449-1457.
    [32]Jabbour H N, and Kelly P A. Prolactin receptor subtypes: A possible mode of tissue specific regulation of prolactin function[J]. Rev. Reprod., 1997,2: 14-18.
    [33]Binart N, Imbert-Bollore P, Baran N, et al. A short form of the prolactin (PRL) receptor is able to rescue mammopoiesis in heterozygous PRL receptor mice[J]. Mol. Endocrinol.,2003,17:1066-1074.
    [34]Auchtung T L, Morin D E, Mallard C C, et al. Photoperiod manipulation during the dry period: effects on general health and mastitis occurrence[A]. Proc. 42nd Annu. Natl. Mast. Mtg.[A]. Madison WI: Fort Worth, TX. Natl. Mastitis Counc.,2003,278-279.
    [35]Auchtung T L, Rius A G, Kendall P E, et al. Effects of photoperiod during the dry period on prolactin, prolactin receptor, and milk production of dairy cows[J]. J. Dairy Sci.,2005,88:121-127.
    [36]Beato M and Klug J. Steroid hormone receptors: an update[J].Human Reproduction Update, 2000, 6(3): 225-236.
    [37] Auchtung T L, Kendall P E, Salak-Johnson J, et al. Photoperiod and bromocriptine treatment effects on expression of prolactin receptor mRNA in bovine liver, mammary gland and peripheral blood lymphocytes[J]. J. Endocrinol., 2003,179:347-356.
    [38]Rozakis-Adcock M, Kelly P A. Identification of ligand binding determinants of the prolactin receptor[J]. Journal of Biology Chemistry, 1992,267:7428-7433.
    [39]Somers W, Ultsch M, DeVos A M, et al. The X-ray structure of the growth hormone-prolactin receptor complex[J]. Nature, 1994,372:478-481.
    [40]Baumgartner J W, Wells C A, Chen C M, et al. The role of the WSxWS motif in growth hormone receptor function[J]. Journal of Biology Chemistry, 1994, 269:29094-29101.
    [41]Sandowski Y, Nagano M, Bignon C, et al. Preparation and characterization of recombinant prolactin receptor extracellular domain from rat[J]. Mol. Cell Endocrinol, 1995,115:1-11.
    [42]Buteau H, Pezet A, Ferrag F, et al. N-glycosylation of the prolactin receptor is not required for activation of gene transcription but is critical for its cell surface targeting[J]. Mol. Endocrinol, 1998, 12:544-555.
    [43]Barker C S, Bear S, Keler T, et al. Activation of the prolactin receptor gene by promoter insertion in a moloney murine leukemia virus induced rat thymoma[J]. Journal of Virology,1992,66(ll):6763-6768.
    [44]Kelly P A, Djiane J, Postel-Vinay M C, et al. The prolactin/growth hormone receptor family[J]. Endocr. Rev.,1991,12:235-251.
    [45]Bazan F. A novel family of growth factor receptors: acommon binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and p75IL-2 receptor (3-chain[J].Biochem. Biophys. Res. Commun., 1989,164:788-795.
    [46]Goffin V, Shiverick K T, Kelly P A, et al. Sequence function relationships within the expanding family of prolactin, growth hormone, placental lactogen and related proteins in mammals[J]. Endocr. Rev.,1996,17:385-410.
    [47]Leseur L, Edery M, Ali S, et al. Comparison of long and short forms of the prolactin receptor on prolactin- induced milk protein gene transcription[J].Proc. Natl. Acad. Sci. USA,1991,88:824-828.
    [48]Das R, Vonderhaar B K. Transduction of prolactin's (PRL) growth signal through both long and short forms of the PRL receptor[J]. Mol. Endocrinol., 1995,9:1750-1759.
    [49]Berlanga J J, Garcia R, Perrot A, et al. The short form of the prolactin receptor silences PRL induction of the beta-casein gene prompter[J]. Mol. Endocrinol, 1997,11 (10): 1449-1457.
    [50]Bole-Feysot C, Goffin V, Edery M, et al. Prolactin(PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice[J]. Endocr. Rev.,1998,19:225-268.
    [51]Olazabal I, Munoz J, Ogueta S, et al. Prolactin (PRL)-PRL receptor system increases cell proliferation involving JNK(c-Jun amino terminal kinase) and AP-1 activation; inhibition by glucocorticoids. Mol. Endocrinol,2000,14: 564-575.
    [52]Bittorf T, Soares M J, Soares M J. Induction of erythroid proliferation and differentiation by a trophoblast-specific cytokine involves activation of the JAK/STAT pathway[J]. Journal of Molecular Endocrinology,2000,25(02):253-262.
    [53]Groskopf J C , Syu L J, Saltiel A R, et al. Proliferin induces endothelial cell chemotaxis through a G protein-coupled, mitogen-activated protein kinase-dependent pathway[J]. Endocrinology, 1997, 138: 2835-2840.
    [54]Lebrun J J, Ali S, Sofer L, et al. Prolactin induced proliferation of Nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase[J]. J. Biol. Chem., 1994, 269:14021-14026.
    [55]Jabbour H N, Critchley H O, Boddy S C. Expression of functional prolactin receptors in nonpregnant human endometrinm: janus kinase-2, signal transducer and activator of transcription-1 (STAT1), and STATS proteins are phosphorylated after stimulation with prolactin[J]. J. Clin. Endocrinol. Metab., 1998, 83(7): 2545-2553.
    [56]Struman I, Bentzien F, Maintroid V, et al. Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis[J]. Pros. Natl. Acad. Sci., USA,1999,96(4):1246-1251.
    [57]Ihle J N. Signaling by the cytokine receptor superfamily. Just another kinase story[J]. Trends Endocrinol. Metab., 1994,5:13 7-143.
    [58]Ihle J N, Witthuhn B A, Quelle F W, et al. Signaling by the cytokine receptor superfamily: JAKs and STATs[J]. TIBS, 1994,19:222-227.
    [59]Dusanter-Fourt I, Muller O, Ziemiecki A, et al. Identification of Jak protein tyrosine kinases as signaling molecules for prolactin. Functional analysis of prolactin receptor and prolactin-erythropoietin receptor chimera expressed in lymphoid cells[J].EMBO J, 1994,13:2583-2591.
    [60]Campbell G S, Argetsinger L S, Ihle J N, et al. Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants[J]. Proc. Natl. Acad. Sci. USA, 1994, 91: 5232-5236.
    [61]Rui H, Kirken R A, Farrar W L. Activation of receptor-associated tyrosine kinase JAK2 by prolactin[J]. J Biol. Chem., 1994,269:5364-5368.
    [62]Silvennoinen O, Wittuhn B, Quelle F W, et al. Structure of JAK2 protein tyrosine and its role in IL-3 signal transduction [J]. Proc. Natl. Acad. Sci. USA, 1993,90:8429-33.
    [63]Wang Y F, ONeal K D, Yu-Lee L-Y. Multiple prolactin receptor cytoplasmic residues and Statl mediate prolactin signaling to the IRF-1 promoter[J]. Mol. Endocrinol,1997,ll:1353-1364.
    [64]Goujon L, Allevato G, Simonin G, et al. Cytoplasmic sequences of the growth hormone receptor necessary for signal transduction [A]. Proc. Natl. Acad. Sci. USA, 1994,91:957-961.
    [65]Ihle J N. STATs: Signal Transducers and Activators of Transcription[J]. Cell, 1996, 84:331-334.
    [66]Wakao H, Gouilleux F, Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response[J]. EMBO J,1994, 13: 2182-2191.
    [67]Chang W P, Ye Y, Clevenger C V. Stoichiometric structure function analysis of the prolactin receptor signaling domain by receptor chimeras[J]. Mol. Cell Biol., 1998,18:896-905.
    [68]Rao Y P, Buckley D J, Buckley A R. Rapid activation of mitogen activated protein kinase and p21~(ras) by prolactin and interleukin-2 in rat Nb2 node lymphoma cells[J]. Cell Growth Differ.,1995,6:1235-1244.
    [69]Bokemer D, Sorokin A, Dunn M J. Multiple intercellular MAP kinase signaling cascades[J]. Kidney Int, 1996,49:1187
    [70] Ferrell J E, Bhatt R R. Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase[J]. J. Biol. Chem., 1997, 272: 19008-19016.
    [71] 朱锦芳,郊仲承,刘新.细胞因子受体及其介导的信号传导[J].生命的化学,1996,(3):14-18.
    [72] Ihle J N. STATs and MAPKs: obligate or opportunistic partners in signaling[J]. Bioessays, 1996, 18: 95-98.
    [73] Erwin R A, Kirken R A, Malabarba M G, et al. Prolactin activates Ras via signaling proteins SHC, growth factor receptor bound 2, and son of sevenless[J]. Endocrinology, 1995, 136: 3512-3518.
    [74] Das R, Vonderhaar B K. Activation of raf-1, MEK, and MAP kinase in prolactin responsive mammary cells[J]. Breast Cancer Res Treat, 1996, 40: 141-149.
    [75] Clevenger C V, Torigoe T, Reed J C. Prolactin induces rapid phosphorylation and activation of prolactin receptor-associated RAF-1 kinase in a T-cell line[J]. J. Biol. Chem., 1994, 269: 5559-5565.
    [76] Clevenger C V, Ngo W, Sokol D L, et al. Vav is necessary for prolactin stimulated proliferation and is translocated into the nucleus of a T-cell line[J]. J. Biol. Chem., 1995, 270: 13246-13253.
    [77] Buckley A R, Rao Y P, Buckley D J, et al. Prolactin-induced phosphorylation and nuclear translocation of MAP kinase in Nb2 lymphoma cells[J]. Biochem. Biophys. Res. Commun., 1994, 204: 1158-1164.
    [78] Maier H, Wanschitz J, Sedivy R, et al. Proliferation and DNA fragmentation in meningioma subtypes[J]. Neuropathol Appl Neurobiol, 1997, 23(6): 496-506.
    [79] Ng H K, Chen L. Apoptosis is associated with atypical or malignant change in meningiomas. An in situ labelling and immunohistochemical study[J]. Histopathology, 1998, 33(1): 64-70.
    [80] Patsouris E, Davaki P, Kapranos N, et al. A study of apoptosis in brain tumors by in situ end-labeling method[J]. Clin. Neuropathl, 1996, 15(6): 337-341.
    [81] Feysot C B, Goffin V, Edery M, et al. Prolactin(PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice[J]. Endocrine Reviews, 1998, 19(3): 225-268.
    [82] Girolomoni G, Phillips J T, Bergstresser P R. Prolactin stimulates proliferation of cultured human keratinocytes[J]. J. Invest. Dermatol, 1993, 101: 275-279.
    [83] Sauro M D, Buckley A R, Russell D H, et al. Prolactin stimulation of protein kinase C activity in rat aortic smooth muscle[J]. Life Sci., 1989, 44: 1787-1792.
    [84] Nielsen J H, Moldrup A, Billestrup N, et al. The role of growth hormone and prolactin in cell growth and regeneration[J]. Adv. Exp. Med. Biol., 1992, 321: 9-17.
    [85] DeVito W J, Okulicz W C, Stone S, et al. Prolactin stimulated mitogenesis of cultured astrocytes[J]. Endocrinology, 1992, 130: 2549-2556.
    [86] Vergani G, Mayerhofer A, Bartke A. Acute effects of rat growth hormone(GH), human GH and prolactin on proliferating rat liver cells in vitro: a study of mitotic behaviour and ultrastructural alterations[J]. Tissue Cell, 1994, 26: 457-465.
    [87] Piccoletti R, Maroni P, Bendinelli P, et al. Rapid stimulation of mitogen-activated protein kinase of rat liver by prolactin[J]. Biochem. J., 1994 303: 429-433.
    [88] Martinet L, Mondain-Monval M, Monnerie R. Endogenous circannual rhythms and photorefractoriness of testis activity, moult and prolactin concentrations in mink(Mustelavison)[J]. J. Reprod. Fertil., 1992, 95: 325-338.
    [89] Sauro M D, Bing B, Zom N E. Prolactin induces growth-related gene expression in rat aortic smooth muscle in vivo[J]. Eur. J. Pharmaco, 1992, 225: 351-354.
    [90] Curlewis J D, Loudon A S, Milne J A, et al. Effects of chronic long-term bromocriptine treatment on liveweight, voluntary food intake, coat growth and breeding season in non-pregnant red deer hinds[J]. J Endocrinol, 1988, 119: 413-420.
    [91] Ibraheem M, Galbraith H, Scaife J, et al. Growth of secondary hair follicles of the Cashmere goat in vitro and their response to prolactin and melatonin[J]. J, Anat., 1994, 185: 135-142.
    [92] Kumaran B, Gunasekar P G, Aruldhas M M, et al. Influence of prolactin on neural and glial cellular adenosine triphosphatases in immature male bonnet monkeys(Macacaradiata, Geoffroy)[J]. Indian J. Exp. Biol., 1989, 27: 17-19.
    [93] Machida T, Taga M, Minaguchi H. Effect of prolactin(PRL) on lipoprotein lipase(LPL) activity in the rat fetal liver[J]. Asia Oceania J Obstet Gynaecol, 1990, 16: 261-265.
    [94] Sorenson R L, Brelje T C, Hegre O D, et al. Prolactin(in vitro) decreases the glucose stimulation threshold, enhances insulin secretion, and increases dye coupling among islet cells[J]. Endocrinology, 1987, 121: 1447-1453.
    [95] Villalba M, Zabala M T, Martinez-Serrano A, et al. Prolactin increases cyto solicfre calcium concentration in hepatocytes of lactating rats[J]. Endocrinology, 1991, 129: 2857-2861.
    [96] Kelly P A, Djiane J, Postel-Vinay M C, et al. The prolactin/growth hormone receptor family[J]. Endocr. Rev., 1991, 12: 235-251
    [97] Bridges R S, Robertson M C, Shiu R P, et al. Central lactogenic regulation of maternal behavior in rats: steroid dependence, hormone specificity, and behavioral potencies of rat prolactin and rat placental lactogen[J]. Endocrinology, 1997, 138: 756-763
    [98] DeVito W J, Stone S, Avakian C. Prolactin stimulation of protein kinase C activity in the rathypothalamus[J]. BiochemBiophys Res. Commun., 1991, 176: 660-667.
    [99] Luka A, Clarke D, Wathes C et al. Expression and localization of prolactin receptor messenger ribonucleic acid in red deer ovary during the estrous cycle and pregnancy[J]. Biol. Reprod., 1991, 57: 865.
    [100] Nakamura Y. A study of the luteolytic mechanism of the antiprogesterone RU486 during the lateluteal phase in pseudopregnant rats[J]. J Endocrinol, 1996, 150(1): 93.
    [101] Murray S C, Keeble S C, Muse K N et al. Regulation of granulosa cell-derived ovarian metalloproteinase inhibitor(s) by prolactin[J]. J. Reprod. Fertil., 1996, 107(1): 103.
    [102] Mazor M, Hershkowitz R, Ghezzi F, et al. Prolactin concentrations in preterm and term pregnancy and labor[J]. Arch Gynecol. Obstet., 1996, 258(2): 69
    [103] Vijayan E, Jayashree J. Prolactin suppression duringpre and radiate[J]. Indian J. Exp. Biol., 1993, 27: 329-333.
    [104] 黄永汉,戴继灿.精浆中催乳素浓度与精子活动力的关系及临床意义[J].广东医学院学报,2000,(3):24-25.
    [105] Dombrowicz D, Sente B, Closset J, et al. Dose-dependent effects of human prolactin on the immature hypophysectomized rat testis[J]. Endocrinology, 1992, 130: 695-700.
    [106] Chikanza I C. Prolactin and neuroimmunomodulation: in vitro and in viva observations[J]. Ann. NY Acad Sci., 1999, 876: 119-130.
    [107]Jara L J, Vara-Lastra O, Miranda J M, et al. Prolactin in human systemic lupus erythematosus[J]. Lupus,2001,10(10):748-756.
    
    [108]Sakane T, Suzuki N. Neuro-endocrine-immune axis in human rheumtoid arthritis[J]. Arch Immunol. Then Exp.,2000,48(5):417-427.
    [109]Bhatavdekar J M , Patel D D, Shah N G, et al. Prolactin as a local growth promoter in patients with breast cancer: GCRI experience[J]. Eur. J. Surg. Oncol., 2000,26:540-547.
    [110]Abu-Bedair F A, El-Gamal B A, Ibrahim N A, et al. Hormonal prfiles and estrogen receptors in Egyptian female breast cancer patients[J]. Tumori., 2000,86(1): 24-29.
    
    [111]Bittorf T, Soares M J, Soares M J. Induction of erythroid proliferation and differentiation by a trophoblast-specific cytokine involves activation of the JAK/STAT pathway [J]. Journal of Molecular Endocrinology,2000,25(02):253-262.
    [112]Carter-Su C, Schwartz J, Smit L S. Molecular mechanism of growth hormone action[A]. Annu. Rev. Physiol.,1996,58:187-207.
    [113]Ram P A, Park S H, Choi K H, et al. Growth hormone activation of Statl, Stat3 and Stat5 in rat liver[J]. Biol. Chem., 1996,271:5929-5940.
    [114]Ayesh B, Matouk I, Ohana P, et al. Inhibition of tumor by DT-A expressed under the control of IGF2 P3 and P4 promoter sequences[J]. Mol. Ther., 2003,7(4): 535-541.
    [115]Tang S H, Yang D H, Huang W, et al. Differential promoter usage for insulin like growth factor II gene in Chinese hepatocellular carcinoma with hepatitis B virus infection[J]. Carcinoma Detect Prev.,2006,30(2):192-203.
    [116]Yao X, Hu J F, Daniels M, et al. A methylated oligonucleotide inhibits IGF-2 expression and enhances surivival in a model of hepatocellular carcinoma[J]. J. Clin. Invest.,2003,111(2):265-273.
    [117]Von Horn H, Ekstrom C, Ellis E, et al. GH is a regulator of IGF2 promoter specific transcription in human liver[J]. J. Endocrinol.,2002,172(23):457-465.
    [118]Owens P C, Campbell R G, Francis G L, et al. Growth hormone, gender and insulin-like growth factors: relationship to growth performance in pigs [J]. Anim. Sci., 1994, 72:253 (Abstract).
    [119]Lamberson W R, Safranski T J, Bates R O, et al. Relationship of serum insulin-like growth factor-I concentrations to growth, composition, and reproductive traits of swine[J]. Anim. Sci., 1995, 73: 3241-3245.
    [120]Silva C M, Lu H, Weber M J, et al. Differential tyrosine phosphorylation of jakl, Jak2 and Statl by growth hormone and IFN-r in IM-9 cells [J]. Biol. Chem., 1994,1269:27532-27539.
    [121]Jones J, Clemmons D R. Insulin-like growth factors and their binding proteins: biological actions[J]. Endocr. Rev., 1995,16:3-34.
    [122]Owens P C, Moyse K J, Walton P E, et al. Genetic differences in insulin-like growth factors and binding proteins: relationship to growth rate[A]. Proc. Endocr. Soc. (USA), 1993, 863 (Abstract)
    [123]Moralez A M, Maile L A, Clarke J, et al. Insulin-like growth factor binding protein-5 (IGFBP-5) interacts with thrombospondin-1 to induce negative regulatory effects on IGF-I actions[J]. J. Cell Physiol., 2005,203(2):328-334.
    [124]Firth S M, Baxter R C. Cellular actions of the insulin-like growth factor binding proteinsfJ]. Endocr. Rev., 2002,23:824-854.
    [125]Spike T E. Survey of somatropin use worldwide[A]. IDF Bulletin, 1997, 319:6.
    [126]Plant K, Ikeda M, Vonderhaar B K. Role of growth hormone and insulin-like growth factor I in mammary development[J]. Endocr., 1993, 133 (4): 1843-1848.
    [127] Akers R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows[J]. J. Dairy Sci.,2006,89: 1222-1234.
    [128]Hu X, Juneja S C, Maihle N J, et al. Leptin-a growth factor in normal and malignant breast cells and for normal mammary gland development[J]. J. Natl. Cancer Inst, 2002,94(22): 1704-1711.
    [129]Sone M, Osamura R Y. Leptin and the pituitary[J].Pituitary,2001,4:15-23.
    [130]Chiu J J, Sgagias M K, Cowan K H. Interleukin 6 acts as a paracrine growth factor in human mammary carcinoma cell lines [J].Clin Cancer Res,1996,2(l):215-221.
    [131]Okada H, Miyake Y, Ohtsuka H, et al. Effects of isoprothiolaneon cell growth of cultured bovine mammary epithelial cells[J]. J. Vet. Med. Sci., 1999,61(5): 553-556.
    [132]Michaela A, Teresa L. Expression of the insulin-like growth factor binding proteins during postnatal development of the murine mammary gland[J]. Endocrinology,2004,145(5):2467-2477.
    [133]Boutinaud M, Shand J H, Parkm A, et al. Aquantitative RT-PCR study of the mRNA expression profile of the IGF axis during mammary gland development[J] Journal of Molecular Endocrinology,2004,33(1): 195-207.
    [134]Teresa L W, Monica M R, Malinda A S, et al. The insulin-like growth factors (IGFs) and IGF binding proteins in postnatal development of murine mammary glands[J]. Journal of Mammary Gland Biology and Neoplasia,2000,5(1):31-41.
    [135]Monica M R, Teresa L W. The Insulin-Like Growth Factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions[J]. Endocrinology, 1999,140(1): 454-461.
    [136]Emma M, Green K A, David J F, et al. Insulin-like growth factor binding protein5 and apoptosis in mammary epithelial cells[J]. Journal of Cell Science, 2003,116(4): 675-682.
    [137]Accorsip A, Pacioni B, Pezzi C, et al. Role of prolactin, growth hormone and insulin-Like growth factor 1 in mammary gland involution in the dairy cow[J].J. Dairy Sci.,2002,85(3):507-513.
    [138]Emma M, Charlesh S. Insulin-like growth factors and insulin-like growth factor binding proteins in mammary gland function[J]. Breast Cancer Res,2002, 4(6):231-239.
    [139]Hadsell D L, Alexeenko T, Klemintidis Y, et al. Inability of overexpressed des(l-3) human insulin-like growth factorl(IGF-I) to inhibit forced mammary gland involution is associated with decreased expression of IGF signaling molecules[J]. Endocrinology,2001,142(4): 1479-1488.
    [140]Suem F, Robert C B. Cellular actions of the insulin-like growth factor binding proteins[J]. Endocrine Reviews,2002,23(6):824-854.
    [141]Gabler P A, Gabler C, Sinowatz F, et al. The expression of the IGF family and GH receptor in the bovine mammary gland[J].Journal of Endocrinology,2001,68(1): 39-48.
    [142]Tonner E, Barber M C, Travers M T, et al. Hormonal control of insulin-like growth factor-binding Protein-5 production in the involuting mammary gland of the rat[J]. Endocrinology, 1997, 138(12): 5101-5107.
    [143]Kumar R, Vadlamudir K, Adam L. Apoptosis in mammary gland and cancer[J]. Endocrine-Related Cancer,2000,7(4):257-269.
    [144]Schindler C, Strehlow I. Cytokines and STAT signaling[J]. Adv. Pharmacol, 2000,47:113-174.
    [145] Le M N, Kohanski R A, Wang L H, et al. Dual mechanism of signal transducer and activator of transcription5 activation by the insulin receptor[J]. Mol. Endocrinol, 2002, 16(12): 2764-2779.
    [146] Benitah S A, Valeron P F, Rui H, et al. STAT5a activation mediates the epithelial to mesenchymal transition induced by oncogenic RhoA[J]. Mol. Biol. Cell, 2003, 14(1): 40-53.
    [147] Krebs D, Hiton D. A new role for SOCS in insulin action. Suppressor of cytokine signaling[J]. Sci. STKE, 2003(169): PE61.
    [148] Krebs D, Hilton D. SOCS proteins: negative regulators of cytokine signaling[J]. Stem Cells, 2001, 19(5): 378-387.
    [149] Nevalainen M T, Xie J W, Bubendorf L, et al. Basal activation of transcription factor signal transducer and activator of transcription(STAT5) in nonpregnant mouse and human breast epithelium[J]. Mol. Endocrinol, 2002, 16(5): 1108-1124.
    [150] Buettner R, Mora L B, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention[J]. Clin. Cancer Res., 2002, 8(4): 945-954.
    [151] Yang J, Kennelly J J, Barcos V E. Physiological levels of Stat5 DNA binding activity and protein in bovine mammary gland[J]. J. Anim. Sci. 2000, 78: 3126-3134.
    [152] Rudolph M C, McManaman J L, Hunter L, et al. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution[J]. Journal of Mammary Gland Biology and Neoplasia, 2003, 8(2): 287-307.
    [153] 曹新,王强.牛催乳素基因组及其cDNA全长序列的分子克隆和分析[J].遗传学报,2002,29(9):768-773.
    [154] Cowan C M, Dentine M R, Ax R L, et al. Structural variation around prolactin gene linked to quantitative traits in an elite Holstein sire family[J]. Theor. Appl. Genet., 1990, 79: 577-582.
    [155] Udina I G, Turkova S O, Kostiuchenko M V, et al. Polymorphism of cattle prolactin gene: microsatellites, PSR-RFLP[J]. Genetika, 2001, 37(4): 511-516.
    [156] 李吉涛,杜立新.中国荷斯坦牛催乳素基因型与产奶性状的相关分析[J].山东农业大学学报(自然科学版),2004,35(4):553-555.
    [157] Auchtung T L, Rius A G, Kendall P E, et al. Effects of Photoperiod During the Dry Period on Prolactin, Prolactin Receptor, and Milk Production of Dairy Cows[J]. Journal of Dairy Science, 2005, 88(1): 121-127.
    [158] Arden K C, BoutinJ M, jianeJ D, et al. The receptors for prolactin and growth hormore are localized in the same region of human chromosome 5[J]. Cytogenet. Cell Genet., 1990, 53: 161-165.
    [159] Vincent A L, Wan g L, Tuggle C K, et al. Prolactin receptor maps to pig chromosome 16[J]. Mammalian Genome, 1997, 8: 793-794.
    [160] Tomas A, Casellas J, Ramirez O, et al. High amino acid variation in the intracellular domain of the pig prolactin receptor(PRLR) and its relation to ovulation rate and piglet survival traits[J]. Journal of Animal Science, 2006, 84: 1991-1998.
    [161] 徐宁迎,章胜乔,彭淑红.金华猪3个繁殖性状主基因的分布及其效应的研究[J].遗传学报,2003,30(12):1090-1096.
    [162] Birgitte T M, Gary J E, Lendea T. Components of litter size in gilts with different prolactin receptor genotypes[J]. Theriogenology, 2003, 59: 915-926.
    [163] Vaclavicek A, Hemminki K, Bartram C R, et al. Association of prolactin and its receptor gene regions with familial breast cancer[J]. The Journal of Clinical Endocrinology & Metabolism, 2006, 91: 1513-1519.
    [164] Bhatavdekar J M, Patel D D, Shah N G, et al. Prolactin as a local growth promoter in patients with breast cancer: GCRI experience[J]. European Journal of Surgical Oncology, 2000, 26(6): 540-547.
    [165] Hayes H, Chalonye C Le, Goubin G, et al. Localization of ZNF164, ZNF146, GGTA1, SOX2, PRLR and EEF2 on homoeologous cattle, sheep and goat chromosomes by fluorescent in situ hybridization and comparison with the human gene map[J]. Cytogenet. Cell Genet., 1996, 72(4): 342-346.
    [166] Viitala S, Szyda J, Blott S, et al. The role of the bovine growth hormone receptor and. prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle[J]. Genetics, 2006, 173: 2151-2164.
    [167] Mistry D H, Depeters E J, Medrano J F. Comparative composition of total and sn-2 fatty acids in bovine and ovine milk fat[J]. Lait, 2002, 82(2): 255-259.
    [168] Ye G M, Chen C, Huang S, et al. Cloning and characterization a novel human 1-acyl-sn-glycerol-3-phosphate acyltransferase gene AGPAT7[J]. DNA Sequence-The Journal of Sequencing and Mapping, 2005, 16: 386-390.
    [169] Hu X J, Haney N, Kropp D, et al. Lysophosphatidic Acid(LPA) Protects Primary Chronic Lymphocytic Leukemia Cells from Apoptosis through LPA Receptor Activation of the Anti-apoptotic Protein AKT/PKB[J]. Journal of Biology Chemistry, 2005, 280(10): 9498-9508.
    [170] Lu B, Jiang Y J, Zhou Y L, et al. Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by PPARα in murine heart[J]. Biochemistry Journal, 2005(385): 469-477.
    [171] Lu B, Jiang Y J, Man M Q, et al. Expression and regulation of 1-acyl-sn-glycerol-3-phosphate acyltransferases in the epidermis[J]. Journal of Lipid Research, 2005, 46(11): 448-457.
    [172] Beigneux A P, Vergnes L, Qiao X, et al. Agpat6—a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium[J]. Journal of Lipid Research, 2006, 47: 734-744.
    [173] Vergnes L, Beigneux A P, Davis R, et al. Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity[J]. Journal of Lipid Research, 2006, 47: 745-754.
    [174] Collins F S. Generation and initial analysis of more than 15, 000 full-length human and mouse cDNA sequences[J]. Proc. Natl. Acad. Sci. USA, 2002, 99(26): 16899-16903.
    [175] 吴常信,张沅,李宁.畜禽遗传育种的分子生物学基础研究[J].中国畜牧杂志,1998,34(3):52-54.
    [176] 吴常信.畜禽主要经济性状(肉、蛋、奶)的遗传改进与育种新技术[C].第九次全国动物遗传学术讨论会论文集,1997.1-6.
    [177] 李宁,吴常信.动物分子育种——一门发展中的新型学科[J].农业生物技术学报,1997(6):142-147.
    [178] Beuzen N D, Stear M J, Chang K C. Molecular markers and their use in animal breeding[J]. Vet. J., 2000, 160(1): 42-52.
    [179] Webb Miller. Comparison of genomic DNA sequences: solved and unsolved problems[J]. Bioinformatics, 2001, 17: 391-397.
    [180] 高红彬,张军民.主要奶业国家的育种目标[J].乳业科技,2006,(9):3-4.
    [181] 张沅,张勤,秦志锐.中国奶牛育种的现状及发展趋势[J].农牧产品开发,2001(6):4-8.
    [182] 张沅.中国荷斯坦奶牛良种繁育体系建设[J].黑龙江畜牧兽医,2004,(1):21-23.
    [183] 邱怀.黄牛改良是科教兴农振兴农村经济的重要手段[J].家畜养殖,1999,(7):1.
    [184] Carroll S M, DePeters E J, Rosenberg M. Efficacy of a novel whey protein gel complex to increase the unsaturated fatty acid composition of bovine milk fat[J]. Journal of Dairy Science, 2006, 89(2): 640-650.
    [185] Depeters E J, German J B, Taylor S J, et al. Fatty acid and triglyceride composition of milk fat from lactating Holstein cows in response to supplemental canola oil[J]. Journal of Dairy Science, 2001, 84: 929-936.
    [186] Vergnes L, Beigrleux A P, Davis R, et al. Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity[J]. J. Lipid Res., 2006, 47: 745-754.
    [187] 高雪.牛生长发育性状侯选基因的分子标记研究[D].博士研究生学位论文:陕西杨凌:西北农林科技大学,2004.
    [188] 高树新.BoLA基因多态性及其与奶牛乳房炎的关联研究[D].博士研究生学位论文:内蒙古呼和浩特:内蒙古农业大学,2005.
    [189] Wiggans G R, Shook G E. A lactation measure of somatic cell count[J]. Journal of Dairy Science, 1987, 70: 2666-2672
    [190] φdegard J, Klemetsdal G, Heringstad B. Genetic improvement of mastitis resistance: Validation of somatic cell score and clinical mastitis as selection criteria[J]. Journal of Dairy Science, 2003, 86: 4129-4136.
    [191] 徐秀容.DGAT1和DGAT2基因多态性与牛部分经济性状相关性的研究[D].陕西,杨凌:西北农林科技大学,2004.
    [192] 高树新,许尚忠,李金泉,高雪,任红艳,陈金宝,马云.BoLA-DQA、DRB3 exon2多态性及其与奶牛乳房炎的关联分析[J].畜牧兽医学报,2006,37(4):317-320
    [193] Winkelman A M. Calculation of the economic weight for somatic cell count for inclusion in the New Zealand dairy cattle breeding objective[J]. Tech. Rep. Livest. Improvement Corp., Hamilton, New Zealand. 2003.
    [194] Winter A, Kramer W, Werner F, et al. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA: diacylglycerol acyltransferase DGAT1 with variation at a quantitative trait locus for milk fat content[J]. Proc. Natl. Acad. Sci. USA, 2002, 99(14): 9300-9335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700