胆固醇及辛伐他汀规律前列腺癌Hedgehog激活机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌(prostate Cancer, PCa)是威胁男性健康的常见肿瘤之一。在美国,前列腺癌自1984年以来就是男性最常见的内脏恶性肿瘤。仅2005年就有232,090例新发病例,占所有男性肿瘤的1/3,2005年前列腺癌相关死亡30,350例,死亡率居所有肿瘤第二位。我国前列腺癌发病率也逐年升高,目前已位居男性泌尿系统恶性肿瘤第三位。雄激素阻断治疗是前列腺癌的治疗中不可替代的一种治疗方法,包括药物或外科手术阻断雄激素疗法(ADT),用于外科手术及放疗后的辅助治疗以及转移性前列腺癌的治疗,然而,这些治疗方法却伴随着许多副作用,例如脂质代谢紊乱和心血管疾病。ADT通常只能使肿瘤暂时缓解,最终将进展为雄激素非依赖性前列腺癌(AIPC)。
     近年来研究表明,高脂肪/胆固醇等“西方饮食”同前列腺癌的发病和进展密切相关。高血清胆固醇水平能够促进前列腺癌的发展并且刺激雄激素上调表达,通过改变饮食及药物降低血清胆固醇水平将有助于减缓前列腺癌的进展。一系列的病理和临床前观察已经证实,通过改变饮食及药物降低胆固醇水平有助于减缓前列腺癌的进展。尽管其具体作用机制尚未阐明,但是数据清楚表明这不是通过雄激素介导的机制。许多研究表明,普通前列腺增生和前列腺中都聚集了不同寻常的高水平胆固醇。目前尚不清楚为什么高胆固醇可变信号分子和导致肿瘤细胞增生,有证据表明肿瘤细胞细胞膜上的胆固醇积聚直接改变,甚至导致异常的信号转导。为什么改变细胞膜胆固醇水平影响肿瘤细胞的信号转导?
     我们的体外实验研究证实在低胆固醇水平条件下前列腺癌细胞LNCAP-AD, LNCAP-AI及PC-3增殖均受到抑制,分泌至细胞外的Hedgehog蛋白下调,而细胞内的Hedgehog蛋白表达上调。Hedgehog基因是一种分节极性基因,因突变的果蝇胚胎呈多毛团状,酷似受惊刺猬而得名。哺乳动物中存在三个Hedgehog的同源基因:Sonic Hedgehog(SHH、Indian Hedgehog(IHH)和Desert Hedgehog(DHH),分别编码Shh、Ihh和Dhh蛋白。Hedgehog在细胞分化、胚胎发育、器官形成、损伤修复和肿瘤发生中都有重要生理和病理意义。胆固醇促进前列腺癌细胞增殖的具体分子机制目前尚未完全阐明。胆固醇是否是Hedgehog信号通路的重要影响因子,以及在低胆固醇条件下是否是通过Hedgehog下调作用抑制前列腺癌细胞增殖目前尚无相关报道。
     本研究通过MTT (CCK-8)实验检测分别培养于普通培养基(NM)、胆固醇耗竭培养液(CDM),高胆固醇培养基(HCM)以及加入辛伐他汀后各组中的前列腺癌PC-3细胞、LNCaP细胞以及LNCaP-AI细胞的增殖情况,进一步采用半定量逆转录聚合酶链式反应(RT-PCR)、Real-time PCR检测Hedgehog的mRNA水平变化,同时检测Hedgehog下游信号通路蛋白Ptc, Smo和Gli的mRNA表达变化;ELISA方法检测分泌至胞外的Hedgehog蛋白水平变化;并进一步采用激光共聚焦方法检测Hedgehog蛋白的亚细胞定位情况;确定在低胆固醇和降血脂(辛伐他汀)条件下,是否是抑制Hedgehog信号通路激活从而抑制细胞增殖,从而论证在前列腺癌细胞中胆固醇是Hedgehog信号通路的重要影响因子。初步揭示高胆固醇条件下通过上调Hedgehog胞外分泌表达而促进前列腺癌发展的分子机制,为治疗前列腺癌提供新的思路。
     一、胆固醇规律前列腺癌细胞中Hedgehog的表达及意义目的:
     研究比较分别培养于NM、CDM、HCM各组中人前列腺癌PC-3细胞、LNCaP细胞以及LNCaP-AI细胞的增殖凋亡情况以及Hedgehog信号通路的表达差异,分析胆固醇对Hedgehog信号通路的影响与前列腺癌进展的关系。方法:
     以人前列腺癌PC-3细胞、LNCaP细胞以及LNCaP-AI细胞系为研究对象,分别培养于NM、CDM和HCM中。MTT方法检测细胞增殖凋亡情况,采用半定量逆转录聚合酶链式反应(RT-PCR)、Real-time PCR、ELISA方法检测Hedgehog的mRNA和蛋白水平变化;同时检测Hedgehog下游信号通路蛋白Ptc, Smo和Gli1的mRNA表达变化;并以激光共聚焦观察不同胆固醇浓度条件下Hedgehog在细胞内定位情况。
     结果:
     1、培养于CDM的前列腺癌细胞增殖曲线明显低于培养于NM和HCM的细胞。
     2、培养于CDM的前列腺癌细胞分泌Hedgehog的蛋白水平明显低于培养于NM和HCM的细胞表达,两者有显著差异。
     3、培养于CDM的前列腺癌细胞Hedgehog, Smo和Gli表达增加,而Ptc表达下降。
     4、激光共聚焦观察发现CDM组前列腺癌细胞的Hedgehog蛋白在细胞内表达明显高于NM和HCM组。
     结论:
     1、低胆固醇抑制前列腺癌PC-3细胞、LNCaP细胞以及LNCaP-AI细胞体外增殖。
     2、低胆固醇抑制前列腺癌PC-3细胞、LNCaP细胞以及LNCaP-AI细胞中的Hedgehog蛋白胞外分泌过程。
     3、低胆固醇抑制前列腺癌细胞增殖与Hedgehog的胞外分泌下调有关。
     二、辛伐他汀规律前列腺癌细胞中Hedgehog的表达及意义
     目的:
     研究比较分别培养于不同浓度辛伐他汀的NM、HCM各组中人前列腺癌PC-3细胞、LNCaP细胞以及LNCaP-AI细胞的增殖凋亡情况以及Hedgehog信号通路的表达差异,分析辛伐他汀对Hedgehog信号通路的影响与前列腺癌进展的关系。
     方法:
     以人前列腺癌PC-3细胞、LNCaP细胞以及LNCaP-AI细胞系为研究对象,分别培养于NM和HCM中,各组中分加不同浓度辛伐他汀。MTT方法检测细胞增殖凋亡情况,采用半定量逆转录聚合酶链式反应(RT-PCR)、Real-time PCR、ELISA方法检测Hedgehog的mRNA和蛋白水平变化;同时检测Hedgehog下游信号通路蛋白Ptc, Smo和Gli的mRNA表达变化;并以激光共聚焦观察不同辛伐他汀浓度条件下Hedgehog在细胞内定位情况。
     结果:
     1、培养于2.4μM辛伐他汀的NM和HCM前列腺癌细胞增殖曲线明显低于培养于未加辛伐他汀的NM和HCM培养基的细胞,呈浓度依赖关系。
     2、培养于2.4μM辛伐他汀的NM和HCM中的前列腺癌细胞上清液中Hedgehog的蛋白水平明显低于未加辛伐他汀的NM和HCM的细胞,两者有显著差异。
     3、培养于2.4μM辛伐他汀的NM和HCM中的前列腺癌细胞Hedgehog, Smo和Gli表达增加,而Ptc表达下降。
     4、激光共聚焦观察发现2.4μM辛伐他汀的NM和HCM组前列腺癌细胞的Hedgehog蛋白在细胞内表达明显高于未加辛伐他汀的NM和HCM组。
     结论:
     1、高浓度辛伐他汀抑制前列腺癌PC-3细胞、LNCaP细胞以及LNCaP-AI细胞体外增殖。
     2、高浓度辛伐他汀抑制前列腺癌PC-3细胞、LNCaP细胞以及LNCaP-AI细胞中的Hedgehog蛋白胞外分泌过程。
     3、高浓度辛伐他汀抑制前列腺癌细胞增殖与Hedgehog的胞外分泌下调有关。
     4、前列腺癌患者中应用降血脂药物可以减缓前列腺癌进展。
Prostate cancer is one of the most prevalent malignant tumors threaten male health. It is the most common form of non-cutaneous cancer and second most lethal cancer in American men with an incidence of 232,090 new cases, and 30,350 deaths in 2005 alone. The incidence rate of prostate cancer in China is going up recently, and reported cases already up to the third in urinary malignant tumor. Although in many cases this cancer is treatable through hormone therapy and/or surgery, these cures are associated with a host of medical problem(e.g. lipid metabolic disturbance and heart diseases). And often provide only temporary relief, as prostate cancer reoccurs in part of cases as a far less treatable and much more malignant disease-androgen independent prostate cancer(AIPC).
     Recent studies showed high fat/high cholesterol'Western-type diets'have been linked to PCa incidence and progression. High levels of serum cholesterol contribute to prostate cancer progression and upon stimulation with androgen. Modification of cholesterol levels through diet, exercise and the use of pharmaceuticals may contribute to slowing prostate cancer Progression.
     In our studies we demonstrate that Hedgehog protein expression decreased after treatment in cholesterol depletion media (CDM) and the tumor cells apoptosis ratio increased. Hedgehog gene is a sub-segment polarity genes, it is named because that in Drosophila embryos showed hairball-like which resembles a frightened Hedgehog to follow gene mutations. There are three Hedgehog homologous genes in mammalian: Sonic Hedgehog (SHH), Indian Hedgehog (IHH) and Desert Hedgehog (DHH), encoding Shh, Ihh, and Dhh proteins respectively. Hedgehog have important physiological and pathological significance in cell differentiation, embryonic development, organ formation, injury repairs and tumorigenesis, but the specific molecular mechanism has not been fully clarified about cholesterol promoting the apoptosis of prostate cancer. Whether or not Hedgehog is the major cholesterol-sensitive factors which affect the prostate cancer cell proliferation, as well as low-cholesterol conditions, whether it is inhibited by Hedgehog downward effect on the proliferation of prostate cancer there were no relevant reports.
     Our study research the prostate cancer PC-3 cells, LNCaP cells and LNCaP-AI cell proliferation, apoptosis by MTT experiments, and the prostate cancer cells were cultured in normal medium (NM), cholesterol depletion of culture medium (CDM), high cholesterol medium (HCM) and the addition of simvastatin in each group, then we use semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Real-time PCR, ELISA method to detect the mRNA and protein levels of Hedgehog change; the same time Detection of Hedgehog signaling pathway downstream of protein Ptc, Smo and Gli expression of the mRNA; and last we use confocal laser scanning detection of sub-cellular localization of Hedgehog; to determine the low cholesterol and lipid-lowering (simvastatin) conditions, whether inhibited Hedgehog promotes cell apoptosis and inhibit prostate cancer cell from hormonal-dependent to-independent transformation, thus demonstrated that the Hedgehog is a cholesterol-sensitive cytokine hypothesis in prostate cancer cells. Revealed the fact that low-cholesterol can down-regulating the expression of Hedgehog, then inhibits the development of prostate cancer, provide a new way of thinking for the treatment of prostate cancer.
     Objective:
     To comparative study the proliferation, apoptosis as well as differences in the expression of Hedgehog signaling pathway of human prostate cancer PC-3 cells, LNCaP cells and LNCaP-AI cell which were cultured in NM, CDM, HCM groups, To analyze the impact of cholesterol on Hedgehog signaling pathway and prostate cancer progression.
     Method:
     Human prostate cancer PC-3 cells, LNCaP cells and LNCaP-AI cells were cultured in NM, CDM, and in HCM. MTT method to detect cell proliferation and apoptosis, using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Real-time PCR, ELISA method to detect the change of Hedgehog mRNA and protein levels; Simultaneous detect Hedgehog signaling pathway protein Ptc, Smo and Glil; and observe the cell location of Hedgehog under the conditions of different concentrations of cholesterol by confocal laser.
     Result:
     1, the growth curves of prostate cancer cells cultured in CDM were significantly lower than cultured in NM and HCM cells.
     2, the Hedgehog protein levels of prostate cancer cells cultured in CDM were significantly lower than that in NM and HCM, it is a significant difference.
     3, Hedgehog signaling pathway-related protein of prostate cancer cells cultured in CDM, the expression of Hedgehog, Smo and Gli increased and Ptc expression reduced.
     4, we also observed that the CDM group of prostate cancer cells express Hedgehog protein in cells was significantly higher than NM and HCM groups by laser confocal.
     Conclusions:
     1, low-cholesterol inhibits prostate cancer PC-3 cells, LNCaP cells and LNCaP-AI cells in vitro.
     2, low-cholesterol inhibits Hedgehog protein in the process of extracellular secretion of prostate cancer PC-3 cells, LNCaP cells and LNCaP-AI cells.
     3, low-cholesterol inhibit prostate cancer cell proliferation correlate with the fall of extracellular secretion of Hedgehog.
     Objective:
     To comparative study the proliferation, apoptosis as well as differences in the expression of Hedgehog signaling pathway of human prostate cancer PC-3 cells, LNCaP cells and LNCaP-AI cell which were cultured in NM, HCM with different concentration of Simvastatin, To analyze the impact of Simvastatin on Hedgehog signaling pathway and prostate cancer progression.
     Method:
     Human prostate cancer PC-3 cells, LNCaP cells and LNCaP-AI cells were cultured in NM, and in HCM, each group plus different concentrations of simvastatin. MTT method to detect cell proliferation and apoptosis, using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Real-time PCR, ELISA method to detect the change of Hedgehog mRNA and protein levels; Simultaneous detect Hedgehog signaling pathway protein Ptc, Smo and Gli1; and observe the cell location of Hedgehog under the conditions of different concentrations of simvastatin by confocal laser.
     Result:
     1, the growth curves of prostate cancer cells cultured in 2AμM simvastatin NM and HCM were significantly lower than cultured in NM and HCM cells.
     2, the Hedgehog protein levels of prostate cancer cells cultured in 2.4μM simvastatin NM and HCM were significantly lower than that in NM and HCM, it is a significant difference between the two.
     3, Hedgehog signaling pathway-related protein of prostate cancer cells cultured in 2.4μM simvastatin NM and HCM, the expression Hedgehog, Smo and the Gli increased and Ptc expression decreased.
     4, we also observed that the 2.4μM simvastatin NM and HCM group of prostate cancer cells express Hedgehog protein in cells was significantly higher than NM and HCM groups by laser confocal
     Conclusions:
     1, simvastatin inhibit prostate cancer PC-3 cells, LNCaP cells and LNCaP-AI cells in vitro.
     2, simvastatin inhibit Hedgehog protein in the process of extracellular secretion of prostate cancer PC-3 cells, LNCaP cells and LNCaP-AI cells.
     3, simvastatin inhibit prostate cancer cell proliferation correlate with the fall of extracellular secretion of Hedgehog.
     4, prostate cancer patients apply the lipid-lowering drugs can slow the progress of prostate cancer.
引文
[1]. Stephenson, Klein. Prostate cancer over diagnosis and overtreatment. Analysis of US mortality and SEER incidence. Trends in the PSA and pre-PSA eras. Management of Prostate Cancer,2nd ed. Totowa, NJ:Humana Press; 2004:3-13.
    [2]. Stephenson, Smart, Mineau, et al. The fall in incidence of prostate cancer:On the down side of a PSA induced peak in incidence. Cancer 1996; 77:1342-1348.
    [3].顾方六.良性前列腺增生和前列腺癌的流行病学.实用医学杂志,2002,16:977-978
    [4].张灵,计国义,李晓萌,等.前列腺癌集团检诊对临床前列腺癌诊断的影响.中华泌尿外科杂志.2004,25(2):103-104
    [5]. Voegeli TA, Kurtz A, Grimm MO, et al:Anemia under androgen deprivation: Influence of flutamide, cyproterone acetate and orchiectomy on the erythropoietin system. Horm Metab Res 2005; 37:89-93.
    [6]. Hegeman, Liu, Wilding, et al. Newer therapies in advanced Prostate cancer. Clin prostate Cancer,2004,3(3):150-156.
    [7]. Miyamoto, Messing, Chang. Deprivation therapy for Prostate cancer:current status and future Prospects. Prostate,2004,61(4):332-353.
    [8]. Wu, Hu, Willett, et al. Dietary Patterns and risk of Prostate cancer in U.S'men' Cancer Epidemiol Biomarkers Prev,2006,15(1):167-171.
    [9]. Walker, Aronson, king, et al. Dietary Patterns and risk of Prostate cancer In Ontario, Canada. Int J Caneer,2005,116(4):592-598.
    [10]. Bravi, Seotti, Bosetti, et al. Self reported history of hypercholesterol aemia and gallstones and the risk of Prostate cancer. Ann Oncol.2006,13:125-132
    [11]. Zhuang, Kim, Adam, et al. Cholesterol targeting alters lipid raft composition and cell survival in Prostate cancer cells and xenografts. J Clin invest,2005,115(4):959-68.
    [12]. Freeman, Solomon. Cholesterol and Prostate cancer. J Cell Biochem 2004,91(1): 54-69.
    [13]. Nybakken, Perrimon. Hedgehog signal transduction:recent findings. Curt Opin Genet Dev,2002,15(5):503-511.
    [14]. Jeong J, McMahon AP. Cholesterol modification of Hedgehog family proteins. J Clin Invest,2002,110(5):591-596.
    [15]. Adam, Multhopadhyay, Kim, et al. Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res,2007,67(13):6238-46.
    [16]. Brown, London. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol,1998,164(2):103-14.
    [17]. Femandez, Lobo, Gomez-Coronado, et al. Cholesterol is essential for mitosis progression and its deficieney induces Polyploid cell formation. Exp Cell Res,2004, 300(1):109-20.
    [18]. Femandez, Martin, Gomez-Coronado, et al. Effects of distal cholesterol biosynthesis inhibitors on cell proliferation and cell cycle progression. J Lipid Res, 2005,46(5):920-9.
    [19]. Suarez, Femandez, Ledo, et al. Sterol stringency of proliferation and cell cycle progression in human cells. Biochem Biophys Acta,2005,1734(2):203-13.
    [20]. Agren M, Kogerman P, Kleman MI, et al. Expression of the PTC1 tumor suppressor gene is regulated by alternative promoters and a single functional Gli binding site [J]. Gene,2004,330:101-114
    [21]. Sheng T, Li C, Zhang X, et al. Activation of the Hedgehog pathway in advanced prostate cancer [J]. Mol Cancer,2004,3(1):29.
    [22]. Chen, Welsbie, Tran, et al. Molecular determinants of resistance to anti-androgen therapy. Nat Med,2004,10:33
    [23]. Sanchey, clement, altaba et al. therapeutic targeting of the Hedgehog-gli pathway in prostate cancer. Cancer res,2005,65:2990-2992.
    [24]. Karhadkar, Isaacs. Beachypa, et al. Hedgehog signaling in prostate regeneration neoplasia and metastasis. Nature,2004,431:707-712
    [25]. Chamoun, Mann, Nellen, et al. Skinny Hedgehog, an acyltransferase required for palmitoylation and activity of the Hedgehog signal. Science 2001:293:2080-2084,
    [26]. Gallet, Rodriguez, Ruel, et al. Cholesterol modification of Hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to Hedgehog. Dev Cell 2003; (4):191-204,
    [27]. Gallet, Ruel, Staccini-Lavenant, et al. Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia. Development, 2006; 133:407-418.
    [28]. Goetz, Singh, Suber, Kull, et al. A highly conserved amino-terminal region of sonic Hedgehog is required for the formation of its freely diffusible multimeric form. J Biol Chem.,2006; 281:4087-4093.
    [29]. Kohtz, Lee, Gaiano, et al. N-terminal fatty-acylation of sonic Hedgehog enhances the induction of rodent ventral forebrain neurons. Development,2001; 128:2351-2363.
    [30]. Guerrero and Chiang. A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol,2007; 17:1-5.
    [31]. Altmann, Davis, Zhu, et al. Niemann-Pick C1 Like 1 Protein is critical for intestinal cholesterol absorption. Science,2004,303(5661):1201-4.
    [32]. Jurado, Sei, Thompson, et al. Effectiveness of ezetimibe in clinical practice. Am J Cardiol,2004,93(5):641-3.
    [33]. Knopp, Gitter, Truitt,et al. Effects of ezetimibe, a new cholesterol absorption inhibitor, on Plasma lipids in Patients with Primary hyper-cholesterolemia. Eur Heart J, 2003,24(8):729-41.
    [34]. Artal, Tsang, Wilem, et al. The mitochondrial prohibitin complex is essential for embryonic viability and genuine function in Caeno-thabditis elegans. J Biol Chem, 2003,278(41):32091-32099.
    [35]. Coates, Nenutil, MeGregor, et al. Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp Cell Res,2001,265(2): 262-273.
    [36]. Manjeshwar, Branam, Lemer, et al. Tumor suppression by the prohibitin gene 3' untranslated region RNA in human breast cancer. Cancer Res,2003,63(17):5251-5256.
    [37]. Ingham, McMahon. Hedgehog signaling in animal development:paradigms and principles. Genes Dev 2001,15:3059-3087.
    [38]. McMahon, Ingham, Tabin, et al. The developmental roles and clinical significance of Hedgehog signaling. Curr Top Dev Biol.2002,53:in press.
    [39]. Goetz, Suber, Zeng, et al. Sonic Hedgehog as a mediator of long-range signaling. Bioassays 2002,24:157-165.
    [40]. Burke, Nellen, Bellotto, et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells. Cell 1999, 99:803-815.
    [41]. Porter, Young, Beachy, et al. Cholesterol modification of Hedgehog signaling proteins in animal development. Science.1996,274:255-259.
    [42]. Lewis, Dunn, McMahon, et al. Cholesterol modification of sonic Hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 2001,105:599-612.
    [43]. Ingham, Nystedt, Nakano, et al. Patched represses the Hedgehog signalling pathway by promoting modification of the Smoothened protein. Curr Biol 2000,10:1315-1318.
    [44]. Chuang, McMahon. Vertebrate Hedgehog signaling modulated by induction of a Hedgehog-binding protein. Nature.1999,397:617-621.
    [45]. Incardona, Lee, Robertson, et al. Receptor-mediated endocytosis of soluble and membrane-tethered sonic Hedgehog by Patched-1. Proc Nat Acad Sci USA 2000,97: 12044-12049.
    [46]. Croston, Milan, Marschke, et al. Androgen receptor-mediated antagonism of estrogen-dependent low density lipoprotein receptor transcription in cultured hepatocytes. Endocrinology.1997,138:3779-3786
    [47]. Borradaile, Dreu, Wilcox, et al. Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms. Biochem J 2002,366:531-539
    [48]. Anderson, McTernan, Harte, et al. The regulation of HSL and LPL expression by DHT and flutamide in human subcutaneous adipose tissue. Diabetes Obes Metab.2002, 4:209-213
    [49]. Pergola. The adipose tissue metabolism:role of testosterone and dehydroepiandrosterone. Int J Obes Relat Metab Disord.2000,24(Suppl 2):S59-S63
    [50]. Tchernof, Labrie, Belanger, et al. Relationships between endogenous steroid hormone, sex hormone-binding globulin and lipoprotein levels in men:contribution of visceral obesity, insulin levels and other metabolic variables. Atherosclerosis 1997,133:235-244
    [51].周永,糜漫天,朱俊东,等.洛伐他汀对MCF-7细胞增殖分化功能及间隙连接细胞通讯的影响.癌症,2003,22(3):257-261.
    [52]. Banke, Balazs, Aleksander, et al. Mechanism of lovastatin-induced apoptosis in intesnalepithelial cells. Carcinogenesis,2002,23(3):521-528.
    [53]. Farina, Bublik, Alonso, et al. Lovastatin alters cytoskeleton organization and inhibits experimental metastasis of mammary carcinoma cells. Clin Exp Metastasis,2002, 19(6):551-559.
    [54]. Christophe, Marc, Marie, et al. Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer cell lines:an in vitro study. Carcinogenesis,2002,22(8): 1139-1148.
    [55]. Zukerbraum, Shapiro, Billiar, et al. RhoA influences the nuclear location of extracellular signal-regulated kinases to modulate p21Waf/Cipl expression. Circulation, 2003,108(7):876-881.
    [56]. Mahlon, Woodard, Evelyn, et al. Lovastatin is a potent inhibitor of meningioma cell proliferation:Evidence for inhibition of a mitogen associated protein kinase. Neuro Oncology Dordrecht,2002,56(2):133-141.
    [57]. Martinez, Ferruel, Suarez, et al. Dose-dependent effects of lovastatin on cell cycle progression:distinct requirement of cholesterol and non-sterol mevalonate derivatives. Biochim Biophys Acta,2001,1532(3):185-194.
    [58]. Klein, Thompson. Update on chemoprevention of prostate cancer. Curr Opin Urol, 2004,14:143-149.
    [59].Hsing, Tsao, Devesa, et al. International trends and patterns of prostate cancer incidence and mortality. Int Cancer,2000,85:60-67.
    [60]. Muir, Nectoux, Staszewski, et al. The epidemiology of prostate cancer: Geographical distribution and time-trends. Acta oncol,1991,30:133-140.
    [61]. Shimizu. Cancers of the prostate and breast among Japanese and white immigrants in Los angeles County. Br J Cancer,1991,63:963-66.
    [62]. Blair, Fraumeni. Geographic patterns of prostate cancer in the United States. J Natl Cancer Inst.1978,61:1379-1384.
    [63]. Rose, Boyar, Wynder, et al. International comparisons of mortality rates for cancer of the breast, ovary, prostate and colon, and per capita food consumption. Caneer1986, 58:2363-371.
    [64]. Wang. Decreased growth of established human prostate LNCaP tumors in nude mice fed a low fat diet. J Nat Cancer Inst,1995,87:1456-1462.
    [65]. Ngo, Cumow, Salmon, et al. Effect of isocaloric low-fat diet on human LAPC-4 prostate cancer xenografts in SCID mice and the IGF axis. Clin Cancer Res,2003,9: 2734-2743.
    [66]. Li, Appelbaum, Willman, et al. Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood,2003,101:3628-3634
    [67]. Dunean, EI-Sohemy, Areher, et al. Mevalonate Promotes the growth of tumors derived from human cancer cells in vivo and stimulates proliferation in vitro with enhanced cyclin-dependent kinase-2 activity. J Biol Chem,2004,279:33079-33084
    68. Haffher, Mykkanen, Valdez, et al. Relationship of sex hormones to lipids and lipo proteins in nondiabetic men. J Clin Endocrinol Metab,1993,77:1610-1615.
    [69]. Zmuda, Cauley, Kriska, et al. Longitudinal relation between endogenous testosterone and cardiovascular disease risk factors in middle-aged men. A 13-year follow-up of former Multiple risk Factor Intervention trial participants. Am J Epidemiol, 1997; 146:609-17.
    [70]. Malkin, Pugh, Jones, et al. The effect of testosterone replacement on endogenous in flammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab, 2004,89:3313-3318.
    [71]. Schleieh, Legros. Effects of androgen substitution on lipid profile in the adult and aging hypogonadal male. Eur J Endoerinol,2004,151:415-24.
    [72]. Smith, Finkelstein, MeGovern, et al. Changs in body composition during androgen deprivation Therapy for prostate cancer. J Clin Endocrinol Metab,2002,87:599-03.
    [73]. Bidolil, Talaminil, Bosetti, et al. Macronutrients, fatty acids, cholesterol and prostate cancer risk. Annals of Oncology,2005,16:152-157
    [74]. Agarwal,. Lovastatin augments sulindac-induced apoptosis in colon cancer cells and potentiates chemo preventive effects of sulindac. Gastroenterology.1999,117:838-847.
    [75]. Ghosh. Role of RhoA activation in the growth and morphology of murine prostate tumor cell line. Oncogene,1999,18:4120-4130
    [76]. Chan. Diet and prostate cancer risk in a cohort of Smokers, with a specific focus on calcium and phosphorus(Finland). Cancer Causes Contrl.2000,11:859-867.
    [77]. Marcelli, Preseott, Hall, et al. Caspase-7 is activated during lovastatin induced apoptosis of the prostate cancer cell line LNCaP. Cancer Res.1998,58:76-83.
    [78]. Coogan. Statin use and the risk of breast and prostate cancer. Epidemiology.2002, 13:262-267.
    [79]. Friis, Lu, Balk. Cancer risk among statin users:a population-based cohort study. Int J Cancer,2005,114:643-47.
    [80]. Graaf, MeClung. The risk of cancer in users of statins. J Clin Oncol,2004,22: 2388-394.
    [81]. Freeman, Solomon, Moyad, et al. Statins and the risk of cancer. Jama,2006, 295(23):2720-1
    [82]. Callejo, Culi, Guerrero。Patched, the receptor of Hedgehog, is a lipoprotein receptor. Nat Acad Sci USA.2008,105(3):912-917
    [83]. Guerrero, Chiang. A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol.2007,17:1-5.
    [84]. Cross, Scheel, Henriquez,et al. Sreine/threonine protein kinases and apoptosis. Exp Cell Res,2000,256(1):34-41.
    [85]. Palma, Ruiz, Altaba, et al. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development.2004,131:337-345.
    [86]. Magliano, Hebrok. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer.2003,3:903-911.
    [87]. Mann, Beachy. Novel lipid modifications of secreted protein signals. Annu Rev Biochem.2004,73:891-923.
    [88]. Peters, Wolf, Wagner, et al. The cholesterol membrane anchor of the Hedgehog protein confers stable membrane association to lipid-modified proteins. Proc Natl Acad Sci USA.2004,101:8531-8536.
    [89]. Jeong, McMahon. Cholesterol modification of Hedgehog family proteins. J Clin Invest,2002,110(5):591-596.
    [90]. Cohen. The Hedgehog signaling network. Am J Med Genet,2003,123A(1):5-28.
    [91]. Yamaguchi, Komori, Suda, et al. Regulation of osteoblast diferentiation mediated by bone morphog enetic proteins, hedge-hogs, and cbfal. Endo Rev,2000,21(4): 393-411.
    [92]. Kalderon. Transducing the Hedgehog signal. Cell,2000,103:371-374.
    [93]. Ruiz, Sanchez, Dahmane, et al. Gli and Hedgehog in cancer:tumours, embryos and stem ceils. Nat Rev Cancer.2002,2(5):361-372.
    [94]. Gli2 and gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet,2005,1(4):e53.
    [95]. Kubota, Yamauchi, Yamagami, et al. Steroidal regulation of Ihh and Gli1 expression in the rat uterus. Cell Tissue Res.2010 Mar 16. [Epub ahead of print]
    [96]. Lees, Zacharias, Tremelling, et al. Analysis of germline GLI1 variation implicates Hedgehog signalling in the regulation of intestinal inflammatory pathways. PLoS Med. 2008(9); 5(12):e239.
    [97]. Agren, Kogerman, Kleman, et al. Expression of the PTC1 tumor suppressor gene is regulated by alternative promoters and a single functional Gli-binding site. Gene,2004, 330:101-114.
    [98]. Mancuso, Pazzaglia, Tanori, et al. Basal cell carcinoma and its development: insights from radiation-induced tumors in Ptcl-deficient mice. Cancer Res,2004, 164(3):934-941.
    [99]. David, Sunil, Anirban, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature,2003,425(6960):846-851.
    [100]. Kimura, Stephen, Joyner, et al. Gli1 is important for medulloblastoma formation in Ptc1+/-mice. Oncogene,2005,24(25):4026-4036.
    [101]. Thayer, Magliano, Heiser, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature,2003,425(6960):851-856.
    [102]. Martin, Sato, Dhara, et al. Aberrant Methylation of the Human Hedgehog Interacting Protein (HHIP) Gene in Pancreatic Neoplasms. Cancer Biol Ther,2005,4(7): 728-733.
    [103]. Kubo, Nakamura, Tasaki, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res,200464(17):6071-6074.
    [104]. Sheng, Li, Zhang, et al. Activation of the Hedgehog pathway in advanced prostate cancer. Mol Cancer,2004,3(1):29.
    [105]. Pilar, Ana, Barbara, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Dev Bio,2004,101(34):12561-12566.
    [106]Beachy, Karhadkar, Berman. Tissue repair and stem cell renewal in carcinogenesis. Nature,2004,432 (7015):324
    [107]. Berman, Karhadkar, David, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature,2003,425(6960):846-851.
    [108]. Jordan. Cancer stem cell biology:From leukemia to solid tumors. Curt Opin Cell Biol,2004,16(6):708-712.
    [109]. Pikarsky, Porat, Stein, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature,2004,431 (7007):461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700