大鼠脊髓损伤后细胞自噬的表达及作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大鼠急性脊髓损伤动物模型的建立与评价
     目的:建立大鼠脊髓损伤钳夹模型,观察假手术组,单纯脊髓损伤组,3-MA注射组在脊髓损伤后病理组织学变化和区别。
     方法:构建大鼠胸椎T8钳夹模型,用BBB评分法评价脊髓损伤后后肢运动功能变化,HE染色法和尼氏染色法观察各组脊髓损伤后的组织学变化。
     结果:大鼠胸椎T8钳夹损伤后,损伤脊髓出现明显的出血,水肿,髓鞘变性,空泡等,单纯脊髓损伤组与3-MA组比较在术后死亡率及后肢运动功能BBB评分上无统计学差异(p>0.05)。两组术后组织学评分在脊髓损伤程度上有统计学差异(p<0.05)。
     结论:1、成功建立大鼠脊髓钳夹损伤模型
     2、3-MA组在脊髓损伤后的术后3D时病理变化程度大于正常损伤组。
     第二部分细胞自噬及其相关基因Beclin-1,MAP1-LC3B在大鼠脊髓损伤组织中的表达
     目的:观察大鼠脊髓损伤后损伤区细胞自噬是否存在,比较不同时间点细胞自噬的表达情况。
     方法:将大鼠随机分为两组,每组各五个时间点:8H,1D,3D,7D,21D。损伤组按照第一部分的方法制作脊髓损伤模型,对照组只打开椎板而不损伤脊髓,按照上述时间点处死后,用透射电镜观察细胞自噬,用RT-PCR检测自噬相关基因Beclin1,LC3B的mRNA表达情况,用免疫组织化学和Western blot法检测自噬相关蛋白Beclin1,LC3B的表达情况。
     结果:透射电镜发现脊髓损伤后的各个时间点,在损伤的脊髓组织的神经元细胞?和胶质细胞中均可以发现自噬体,脊髓损伤后8H开始,细胞自噬相关基因Beclin1,LC3B的mRNA表达即较对照组明显升高,并且随着时间持续升高,在伤后3D时达到高峰,一直到伤后21D均有表达,而自噬相关蛋白Beclin1,LC3B的表达和其mRNA表达同步。
     结论:脊髓损伤后损伤区的神经元细胞和胶质细胞均有自噬性细胞死亡的表达,自噬相关基因Beclin1和LC3B从损伤后8H开始即表达量升高,到3D时到达高峰,21D时仍然存在。自噬相关蛋白Beclin1和LC3B表达与基因表达同步,较对照组明显升高。
     第三部分自噬抑制剂3-MA对大鼠脊髓损伤后神经细胞自噬及凋亡的影响
     目的:研究自噬抑制剂3-MA对大鼠脊髓损伤后自噬相关蛋白Beclin1和LC3B表达的影响,同时评价3-MA对大鼠脊髓损伤后细胞凋亡的影响。
     方法:将大鼠随机分成三组:对照组,单纯脊髓损伤组,3-MA干预组,每组同样分为伤后8H、1D、3D、7D、21D 5个时间点,使用荧光定量RT-PCR方法检测各组各个时间点Beclin1和LC3B基因表达的变化,使用荧光免疫组织化学方法评价各组各时间点Beclin1和LC3B蛋白表达的变化,使用TUNEL法和脊髓组织的DNA-Ladder比较各组脊髓损伤后细胞凋亡的程度,使用Westren-blot法检测各组凋亡相关蛋白Bcl-2和Bax的表达变化。
     结果:在我们观测的的五个时间点上,3-MA组较单纯脊髓损伤组Beclin1和LC3B的mRNA表达有明显降低,差异有统计学意义(P<0.05)。3-MA组的Beclin1和LC3B的蛋白表达也较单纯损伤组明显降低,差异有统计学意义(P<0.05)。脊髓损伤后可检测到明显的细胞凋亡,3-MA组的TUNEL阳性细胞数明显大于单纯损伤组,组间差异有统计学意义(P<0.05)。3-MA组脊髓组织的DNA-Ladder也较单纯损伤组重。凋亡相关蛋白Bcl-2的表达量为3-MA组最低,单纯脊髓损伤组其次,而对照组最高,组间差异有统计学意义(P<0.05)。凋亡相关蛋白Bax的表达量为3-MA组最高,单纯脊髓损伤组次之,对照组最低,组间差异有统计学意义(P<0.05)。
     结论:细胞自噬抑制剂3-MA可以明显抑制大鼠脊髓损伤后自噬相关蛋白及基因Beclin1和LC3B的表达。同时3-MA可以通过抑制自噬加重脊髓损伤后细胞凋亡的程度,因此脊髓损伤后细胞自噬是一种细胞的自我保护机制,可以拮抗脊髓损伤后的细胞凋亡。
PartⅠEstablishment And Evaluation of Acute Spinal Cord Injury Model in Adult Rats
     Objective: To build an animal model of spinal cord injury by clamp force in adult rats, then to observe the changes and differences in locomotor scores and histopathological after spinal cord injury(SCI) in the three groups: Group Sham.Group SCI and Group 3-MA.
     Methods: Build a spinal cord injury model in dorsal transsection model (T8) by clamp force,The Basso-Beattie-Bresnahan (BBB) scores system is used to evaluate change of the locomotor scores after SCI, meantime, the HE(Hematoxylin and Eosin) staining and the Nissl staining are used to observer the histopathological change after the SCI.
     Results: There was significantly haemorrhage, edema, degeneration, vacuole and so on after spinal cord injury in rats with T8 dorsal transaction .The BBB scores of rats have no significant difference between Group SCI and Group 3-MA after SCI(p>0.05).The histopathological scores has significant difference between Group SCI and Group 3-MA after SCI (p<0.05)
     Conclusion: 1、Establish a spinal cord injury model in adult rats successfully .2.The histopathological changes of Group 3-MA is more than the Group SCI at the time point of 3 days after the operation。
     PartⅡThe Expression of autophagic genes: Beclin-1 and MAP1-LC3B in lesion tissues after spinal cord injury in rats
     Objective: TO investigate whether autophagy occurred in the spinal cord tissue after spinal cord injury(SCI).We also aimed to compare the expression value of autophagic correlative gene and Protein: Beclin1 & LC3B in different time point after SCI.
     Methods: Seperated the rats into two groups randomly :SCI group and control group. Each group had five time point. We built the SCI model using the way mentioned in the PartⅠ,while the rats in control group experience the same operation without injurying the spinal cord. At every time point, we used the transmission Electron Microscope to observe the ultrastructure of spinal cord tissue in order to find the autophagosome. The mRNA expression of Beclin1 and LC3B were also detected by the RT-PCR technique. The Immune-Histochemical(IHC) and Western-blot were used to measure the protein expression of Beclin1 and LC3B in every time point after SCI.
     Result: We found that the autophagosome could be seen in both the Neuron cell and the Glial cell at every time point after SCI. The mRNA expression value of Beclin and LC3B were raised since 8H Post-SCI and peaked at 3D post-SCI, and they could be detected until 21D after SCI. The protein’s expression curve of Beclin1 and LC3B were the same as the gene’s .
     Conclusion: The autophagic cell death could be detected in spinal cord injury region, both the neuron cell and glial cell experienced autophagic cell death. Compare to the contro group, the autophagic correlative gene and protein:Beclin1 and LC3B were found up-regulation from 8H to 21D after SCI, while peaked at 3D post-SCI.
     PartⅢ:The influence of 3-MA in autophagy and apoptosis after Spianl cord injury in rats.
     Objective:Aim to evaluate how the 3-MA ,which is a accredited autophagic inhibitor, effected the genic and proteinic expression of Beclin1 and LC3B. Meanwhile we wished to investigate the effect of cell apoptosis after spinal cord injury by the 3-MA.
     Methods: We separated the rats into three groups randomly, there were Group control, Group SCI, Group 3-MA. Each group had five time period, they are 8H.1D.3D.7D.21D after SCI. In this time point, We used the SYBR GREEN RT-PCR technique to measure the mRNA’s differences of Beclin1 and LC3B within the three groups. The proteinic differences of Beclin1 and LC3B within this three groups were evaluated by the Fluorescence immunohistochemistry. The level of apoptosis after SCI in the three groups were measured by the TUNEL. DNA ladder. The expression of Bcl-2 and Bax, which are closely interrelated with apoptosis, were tested by the Western-blot.
     Result: In the five time periods we observed, the genic expression of Beclin1 and LC3B were lower in the group 3-MA than in the group SCI, of course they are also higher than in the group Control. Also the differences between each two groups had significant difference(p<0.05). The proteinic expression of Beclin1 and LC3B in Group 3-MA were also lower than it in Group SCI, and they had significant difference(p<0.05). We found the apoptosis after SCI, and the TUNEL positive cell were much more in group 3-MA than it in Group SCI, the differences had statistical significance(p<0.05).The degree of DNA-Ladder were higher in Group 3-MA than in Group SCI. The proteinic expression of Bcl-2 is highest in group control, higher in group SCI and lowest in the group 3-MA. The difference in groups had significant difference(p<0.05). The proteinic expression of Bax is highest in group 3-MA, higher in SCI and lowest in group control. The difference in groups had significant difference(p<0.05).
     Conclusion: 3-MA as a accredited autophagic inhibitor, could both inhibited the ?genic and proteinic expression of Beclin1 and LC3B. Meanwhile ,the 3-MA could aggravate the apoptosis after SCI in rats by the way of inhibiting autophagy. So the autophagy could recognized as a mechanism of cellular self-protect, and autophagy played a antagonistic effect against apoptosis.
引文
1. Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology. J Neurotrauma 2004;21(10):1355-1370.
    2. Blight AR, Leroy EC, Jr., Heyes MP. Quinolinic acid accumulation in injured spinal cord: time course, distribution, and species differences between rat and guinea pig. J Neurotrauma 1997;14(2):89-98.
    3. Schwartz M, Hauben E. T cell-based therapeutic vaccination for spinal cord injury. Prog Brain Res 2002;137:401-406.
    4. Young W. Spinal cord contusion models. Prog Brain Res 2002;137:231-255.
    5. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 1997;3(1):73-76.
    6. Li GL, Brodin G, Farooque M, Funa K, Holtz A, Wang WL, Olsson Y. Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 1996;55(3):280-289.
    7. Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, Hsu CY, Choi DW. Neuronal and glial apoptosis after traumatic spinalcord injury. J Neurosci 1997;17(14):5395-5406.
    8. Yong C, Arnold PM, Zoubine MN, Citron BA, Watanabe I, Berman NE, Festoff BW. Apoptosis in cellular compartments of rat spinal cord after severe contusion injury. J Neurotrauma 1998;15(7):459-472.
    9. Hansen-Algenstaedt N, Algenstaedt P, Schaefer C, Hamann A, Wolfram L, Cingoz G, Kilic N, Schwarzloh B, Schroeder M, Joscheck C, Wiesner L, Ruther W, Ergun S. Neural driven angiogenesis by overexpression of nerve growth factor. Histochem Cell Biol 2006;125(6):637-649.
    10. Young W. Strategies for the development of new and better pharmacological treatments for acute spinal cord injury. Adv Neurol 1993;59:249-256.
    11. Barres BA, Jacobson MD, Schmid R, Sendtner M, Raff MC. Does oligodendrocyte survival depend on axons? Curr Biol 1993;3(8):489-497.
    12. Dusart I, Schwab ME. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 1994;6(5):712-724.
    13. Shuman SL, Bresnahan JC, Beattie MS. Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res 1997;50(5):798-808.
    14. Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 2001;103(1):203-218.
    15. Zain J, Huang YQ, Feng X, Nierodzik ML, Li JJ, Karpatkin S. Concentration-dependent dual effect of thrombin on impaired growth/apoptosis or mitogenesis in tumor cells. Blood 2000;95(10):3133-3138.
    16.崔志明,倪斌,蔡卫华,贾连顺,杨雷.兔慢性颈脊髓压迫减压术后凋亡基因bcl-2和bax的表达.中国临床康复2004; 8(32):7164-7165.
    17.傅强,侯铁胜,鲁凯伍,赵杰,李明,大鼠脊髓急性损伤后神经细胞凋亡及相关基因表达.中国脊柱脊髓杂志2001;11(02):92-94.
    18. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature 1997;389(6648):300-305.
    19. Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol 2004;36(12):2405-2419.
    20. Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell 2002;1(1):11-21.
    21. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004;306(5698):990-995.
    22. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan CY. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 2006;169(2):566-583.
    23. Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma 2005;22(7):750-762.
    24. Larsen KE, Sulzer D. Autophagy in neurons: a review. Histol Histopathol 2002;17(3):897-908.
    25. Matsui Y, Kyoi S, Takagi H, Hsu CP, Hariharan N, Ago T, Vatner SF, Sadoshima J. Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 2008;4(4):409-415.
    26. Suzuki C, Isaka Y, Takabatake Y, Tanaka H, Koike M, Shibata M, Uchiyama Y, Takahara S, Imai E. Participation of autophagy in renal ischemia/reperfusion injury. Biochem Biophys Res Commun 2008;368(1):100-106.
    27. Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, Pinkas-Kramarski R. Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 2007;3(6):561-568.
    28. Elmore SP, Qian T, Grissom SF, Lemasters JJ. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 2001;15(12):2286-2287.
    29. Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp CellRes 2001;268(2):139-149.
    30. Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci 1999;14(3):180-198.
    31. Bursch W, Ellinger A, Gerner C, Frohwein U, Schulte-Hermann R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 2000;926:1-12.
    32. Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006;126(1):121-134.
    33. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004;305(5688):1292-1295.
    34. Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, Yoder J, Aronin N, DiFiglia M. Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet 2003;12(24):3231-3244.
    35. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 2008;118(2):777-788.
    36. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006;441(7095):885-889.
    37.Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 2001; 276 (38):35243-35246.
    1.卢旻鹏,权正学,刘渤.实验动物脊髓的损伤模型.中国骨与关节损伤杂志2008;23(02):174-176
    2. Yezierski RP. Spinal cord injury: a model of central neuropathic pain. Neurosignals 2005;14(4):182-193.
    3. Falconer JC, Narayana PA, Bhattacharjee M, Liu SJ. Characterization of an experimental spinal cord injury model using waveform and morphometric analysis. Spine (Phila Pa 1976) 1996;21(1):104-112.
    4. Hiruma S, Otsuka K, Satou T, Hashimoto S. Simple and reproducible model of rat spinal cord injury induced by a controlled cortical impact device. Neurol Res 1999;21(3):313-323.
    5. Iwanami A, Yamane J, Katoh H, Nakamura M, Momoshima S, Ishii H, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H. Establishment of graded spinal cord injury model in a nonhuman primate: the common marmoset. J Neurosci Res 2005; 80(2):172-181.
    6. Yeo SJ, Hwang SN, Park SW, Kim YB, Min BK, Kwon JT, Suk JS. Development of a rat model of graded contusive spinal cord injury using a pneumatic impact device. J Korean Med Sci 2004;19(4):574-580.
    7. Tarlov IM, Klinger H, Vitale S. Spinal cord compression studies. I. Experimental techniques to produce acute and gradual compression. AMA Arch Neurol Psychiatry 1953;70(6):813-819.
    8.钱雷敏,张志坚,姜平.一种新颖的神经胶质细胞—嗅鞘细胞.解剖科学进展2006;12( 01):63-66.
    9. Rivlin AS, Tator CH. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 1978;10(1):38-43.
    10.Fehlings MG, Tator CH. The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol 1995;132(2):220-228.
    11.李刚,李新钢,吴承远,鲍修风,王东海,贾德泽.钳夹型大鼠脊髓损伤模型的建立及x线照射对损伤区组织结构恢复的影响.中国实验外科杂志2006;23(02):248.
    12.纪江峰,冯世庆.脊髓损伤动物模型研究进展.中华实验外科杂志2006;23(09):1151-1152.
    13. Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 1996;139(2):244-256.
    14. Seki T, Hida K, Tada M, Koyanagi I, Iwasaki Y. Graded contusion model of the mouse spinal cord using a pneumatic impact device. Neurosurgery 2002;50(5):1075-1081; discussion 1081-1072.
    15.张子印.影响制作脊髓损伤动物模型的因素及其改进措施.首都医学院学报1991;12(04):299-300.
    16. Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol 2004;36(12):2405-2419.
    17. Elmore SP, Qian T, Grissom SF, Lemasters JJ. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 2001;15(12):2286-2287.
    18. Bursch W, Ellinger A, Gerner C, Frohwein U, Schulte-Hermann R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 2000;926:1-12.
    19. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999;402(6762):672-676.
    1. Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996;273(5274):501-503.
    2. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004;306(5698):990-995.
    3. Adhami F, Schloemer A, Kuan CY. The roles of autophagy in cerebral ischemia. Autophagy 2007;3(1):42-44.
    4. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000;290(5497):1717-1721.
    5. Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, Kochanek PM, DixonCE, Jenkins LW, Graham SH, Watkins SC, Clark RS. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 2008;28(3):540-550.
    6. Larsen KE, Sulzer D. Autophagy in neurons: a review. Histol Histopathol 2002;17(3):897-908.
    7. Matsui Y, Kyoi S, Takagi H, Hsu CP, Hariharan N, Ago T, Vatner SF, Sadoshima J. Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 2008;4(4):409-415.
    8. Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma 2005;22(7):750-762.
    9. Mortimore GE, Poso AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 1987;7:539-564.
    10. Kim J, Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 2000;69:303-342.
    11. Lemasters JJ, Qian T, He L, Kim JS, Elmore SP, Cascio WE, Brenner DA. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 2002;4(5):769-781.
    12. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 2003;278(27):25009-25013.
    13. Walker DH, Popov VL, Crocquet-Valdes PA, Welsh CJ, Feng HM. Cytokine-induced, nitric oxide-dependent, intracellular antirickettsial activity of mouse endothelial cells. Lab Invest 1997;76(1):129-138.
    14. Talloczy Z, Jiang W, Virgin HWt, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci U S A 2002;99(1):190-195.
    15. Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol?2004;36(12):2491-2502.
    16. Friedman LS, Ostermeyer EA, Lynch ED, Szabo CI, Anderson LA, Dowd P, Lee MK, Rowell SE, Boyd J, King MC. The search for BRCA1. Cancer Res 1994;54(24):6374-6382.
    17. Edinger AL, Thompson CB. Defective autophagy leads to cancer. Cancer Cell 2003;4(6):422-424.
    18. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112 (12): 1809-1820.
    19. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000;19(21):5720-5728.
    20.Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 2004;36(12):2503-2518.
    21. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001;152(4):657-668.
    22. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004;15(3):1101-1111.
    23. Schworer CM, Shiffer KA, Mortimore GE. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem 1981;256(14):7652-7658.
    24. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan CY. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 2006;169(2):566-583.
    1.崔志明,倪斌,蔡卫华,贾连顺,杨雷.兔慢性颈脊髓压迫减压术后凋亡基因bcl-2和bax的表达.中国临床康复2004; 8(32):7164-7165.
    2. Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci U S A 2004;101(10):3438-3443.
    3. Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A, Ghidoni R, Codogno P. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 2004;279(18):18384-18391.
    4. Martin DN, Baehrecke EH. Caspases function in autophagic programmed cell death in Drosophila. Development 2004;131(2):275-284.
    5. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001;3(11):E255-263.
    6. Cardenas-Aguayo Mdel C, Santa-Olalla J, Baizabal JM, Salgado LM, Covarrubias L. Growth factor deprivation induces an alternative non-apoptotic death mechanism that is inhibited by Bcl2 in cells derived from neural precursor cells. J Hematother Stem Cell Res 2003;12(6):735-748.
    7. Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp Cell Res 2001;268(2):139-149.
    8. Perfettini JL, Kroemer G. Caspase activation is not death. Nat Immunol 2003;4(4):308-310.
    9. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004;6(12):1221-1228.
    10. Saeki K, Yuo A, Okuma E, Yazaki Y, Susin SA, Kroemer G, Takaku F. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ 2000;7(12):1263-1269.
    11. Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res 2006;66(6):2885-2888.
    12. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112 (12):1809-1820.
    13.Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 2001; 276 (38): 35243-35246.
    14. Shohat G, Spivak-Kroizman T, Eisenstein M, Kimchi A. The regulation of death-associated protein (DAP) kinase in apoptosis. Eur Cytokine Netw 2002; 13(4) :398-400.
    15. Tsuneoka M, Umata T, Kimura H, Koda Y, Nakajima M, Kosai K, Takahashi T, Takahashi Y, Yamamoto A. c-myc induces autophagy in rat 3Y1 fibroblast cells. Cell Struct Funct 2003;28(3):195-204.
    16. Kitanaka C, Kato K, Ijiri R, Sakurada K, Tomiyama A, Noguchi K, Nagashima Y, Nakagawara A, Momoi T, Toyoda Y, Kigasawa H, Nishi T, Shirouzu M, Yokoyama S, Tanaka Y, Kuchino Y. Increased Ras expression and caspase-independent neuroblastoma cell death: possible mechanism of spontaneous neuroblastoma regression. J Natl Cancer Inst 2002;94(5):358-368.
    17. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095):885-889.
    18. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006;441(7095):880-884.
    19. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 2008;118(6):2190-2199.
    20. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 2003;100(25):15077-15082.
    21. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 1998;72(11):8586-8596.
    1. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004;6(4):463-477.
    2. Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell 2002;1(1):11-21.
    3. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004;306(5698):990-995.
    4. Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int JBiochem Cell Biol 2004;36(12):2435-2444.
    5. Blommaart EF, Luiken JJ, Meijer AJ. Autophagic proteolysis: control and specificity. Histochem J 1997;29(5):365-385.
    6. Saeki K, Yuo A, Okuma E, Yazaki Y, Susin SA, Kroemer G, Takaku F. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ 2000;7(12):1263-1269.
    7. Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med 2003; 9(3-4):65-76.
    8. Klionsky DJ. Cell biology: regulated self-cannibalism. Nature 2004; 431 (7004): 31-32.
    9. Klionsky DJ, Cregg JM, Dunn WA, Jr., Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003;5(4):539-545.
    10. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature 2004;432(7020):1032-1036.
    11. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007;8(9):741-752.
    12. Lee SB, Kim S, Lee J, Park J, Lee G, Kim Y, Kim JM, Chung J. ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase. EMBO Rep 2007;8(4):360-365.
    13. Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci 2005;118(Pt 1):7-18.
    14. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000;19(21):5720-5728.
    15. Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 2008;4(7):851-865.
    16. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 2000;150(6):1507-1513.
    17. Klionsky DJ, Meijer AJ, Codogno P. Autophagy and p70S6 kinase. Autophagy 2005;1(1):59-60; discussion 60-51.
    18. Mordier S, Deval C, Bechet D, Tassa A, Ferrara M. Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem 2000;275(38):29900-29906.
    19. Thumm M, Kadowaki T. The loss of Drosophila APG4/AUT2 function modifies the phenotypes of cut and Notch signaling pathway mutants. Mol Genet Genomics 2001;266(4):657-663.
    20. Pattingre S, Bauvy C, Codogno P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 2003;278(19):16667-16674.
    21. Ogier-Denis E, Couvineau A, Maoret JJ, Houri JJ, Bauvy C, De Stefanis D, Isidoro C, Laburthe M, Codogno P. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem 1995;270(1):13-16.
    22. Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem 2000;275(50):39090-39095.
    23. Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 1962;12:198-202.
    24. Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 1992;119(2):301-311.
    25. Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 1995;66(1):3-14.
    26. Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001;114(Pt 20):3619-3629.
    27. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2004;36(12):2445-2462.
    28. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001;152(4):657-668.
    29. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004;15(3):1101-1111.
    30. Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 2005;1(1):23-36.
    31. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 1998;72(11):8586-8596.
    32. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999;402(6762):672-676.
    33. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 2003;100(25):15077-15082.
    34. Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/ lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 1982;79(6):1889-1892.
    35. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy inisolated rat hepatocytes. Eur J Biochem 1997;243(1-2):240-246.
    36. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003;301(5638):1387-1391.
    37.Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S, Hirano M. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000;406(6798):906-910.
    38. Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005;120(2):159-162.
    39. Kirkegaard K, Taylor MP, Jackson WT. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2004;2(4):301-314.
    40. Edinger AL, Thompson CB. Defective autophagy leads to cancer. Cancer Cell 2003;4(6):422-424.
    41. Chau YP, Lin SY, Chen JH, Tai MH. Endostatin induces autophagic cell death in EAhy926 human endothelial cells. Histol Histopathol 2003;18(3):715-726.
    42.Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 2001;61(2):439-444.
    43. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003;112(12):1809-1820.
    44. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004;305(5688):1292-1295.
    45. Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, Yoder J, Aronin N, DiFiglia M. Autophagy regulates the processing of amino terminal huntingtinfragments. Hum Mol Genet 2003;12(24):3231-3244.
    46. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 2008;118(2):777-788.
    47. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441 (7095):885-889.
    48. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 2008;118(6):2190-2199.
    49. Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol 2004;36(12):2405-2419.
    50. Dorstyn L, Colussi PA, Quinn LM, Richardson H, Kumar S. DRONC, an ecdysone-inducible Drosophila caspase. Proc Natl Acad Sci U S A 1999;96(8):4307-4312.
    51. Schmitz I, Kirchhoff S, Krammer PH. Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 2000;32(11-12):1123-1136.
    52. Adams JM. Ways of dying: multiple pathways to apoptosis. Genes Dev 2003;17(20):2481-2495.
    53. Elmore SP, Qian T, Grissom SF, Lemasters JJ. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 2001;15(12):2286-2287.
    54. Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp Cell Res 2001;268(2):139-149.
    55. Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol CellNeurosci 1999;14(3):180-198.
    56. Bursch W, Ellinger A, Gerner C, Frohwein U, Schulte-Hermann R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 2000;926:1-12.
    57. Furuya D, Tsuji N, Yagihashi A, Watanabe N. Beclin 1 augmented cis-diamminedichloroplatinum induced apoptosis via enhancing caspase-9 activity. Exp Cell Res 2005;307(1):26-40.
    58. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005;25(3):1025-1040.
    59. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 2004;304(5676):1500-1502.
    60. Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 2005;118(Pt 14):3091-3102.
    61. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 2000;406(6798):902-906.
    62. Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, Mizushima N, Oshumi Y, Jung YK. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 2005;280(21):20722-20729.
    63. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004;6(12):1221-1228.
    64. Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy?during lumen formation in vitro. Proc Natl Acad Sci U S A 2004;101(10):3438-3443.
    65. Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006;126(1):121-134.
    66.Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 2001; 276 (38):35243-35246.
    67. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005;122(6):927-939.
    68. Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B, Andrews DW. Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J 1996;15(16):4130-4141.
    69. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 2007;26(10):2527-2539.
    70. Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 2007;282(17):13123-13132.
    71. Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, Pinkas-Kramarski R. Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 2007;3(6):561-568.
    72. Feng W, Huang S, Wu H, Zhang M. Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol 2007;372(1):223-235.
    73. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jaattela M.Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 2007;25(2):193-205.
    74. Yu LY, Jokitalo E, Sun YF, Mehlen P, Lindholm D, Saarma M, Arumae U. GDNF-deprived sympathetic neurons die via a novel nonmitochondrial pathway. J Cell Biol 2003;163(5):987-997.
    75. Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N. A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 2002;35(5):921-933.
    76. Selimi F, Lohof AM, Heitz S, Lalouette A, Jarvis CI, Bailly Y, Mariani J. Lurcher GRID2-induced death and depolarization can be dissociated in cerebellar Purkinje cells. Neuron 2003;37(5):813-819.
    77. Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, Kalachikov S, Gilliam TC, Levine B. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 1999;59(1):59-65.
    78. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001;2(4):330-335.
    79. Faden AI. Experimental neurobiology of central nervous system trauma. Crit Rev Neurobiol 1993;7(3-4):175-186.
    80. Leker RR, Shohami E. Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res Brain Res Rev 2002; 39(1):55-73.
    81. Kanno H, Ozawa H, Sekiguchi A, Itoi E. Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis 2009;33(2):143-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700