间充质干细胞携带选择复制性腺病毒靶向肿瘤治疗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Mesenchymal Stem Cell Effectively Delivers Replication-Selective Adenovirus to Breast Cancer
  • 作者:夏曦
  • 论文级别:博士
  • 学科专业名称:妇产科学
  • 学位年度:2010
  • 导师:马丁
  • 学科代码:100211
  • 学位授予单位:华中科技大学
  • 论文提交日期:2010-05-01
摘要
研究背景和目的以腺病毒介导的基因治疗在肿瘤疾病治疗中取得了较大进展。既往,国内外学者通过对病毒结构的改造,如Fiber区,E1A区pRb结合位点,E1B区p53结合位点以及外原性增加特异性启动子等,使其获得了一定的选择感染性,选择复制性或者选择表达性。其目的在于仅杀伤肿瘤细胞,而对正常细胞无毒性作用。尽管如此,选择复制性腺病毒的应用和发展仍存在的一定局限性,主要表现在:(1)其在体内全身分布存在“器官隔绝”效应的“肝嗜性”;(2)宿主对其产生中和抗体而导致其被快速免疫清除。这些障碍导致了腺病毒的应用途径仅停留在局部注射阶段。静脉注射或其它全身给药方式导致绝大部分腺病毒要么被机体免疫系统清除,要么被滞留于肝脏。到达病灶局部的病毒量几乎微乎其微。治愈肿瘤性疾病不仅依赖于原位病灶的清除,更依赖于宿主全身无法通过局部给药方式清除的转移性病灶。
     间充质干细胞(MSC)的研究已成为近年来一个热点。其在造血干细胞移植,移植物抗宿主免疫排斥反应(GVHD),组织损伤与修复,炎症反应,心肌梗死,神经细胞再生中发挥了重要作用。更为重要的是,其与肿瘤关系密切。肿瘤病灶由肿瘤实质与间质组成。有学者报道,其可归巢于肿瘤局部,作为肿瘤间质的前体细胞,参与肿瘤的组成。本研究旨在探索和研究间充质干细胞装载选择复制性腺病毒靶向归巢于肿瘤局部并发挥杀伤效应治疗肿瘤性疾病的思路和方式。为肿瘤性疾病病毒介导的基因治疗提供新的方向。
     方法
     1间充质干细胞平台的建立以及其携带与释放病毒的能力(1)密度梯度离心法联合贴壁剔除法自健康成人骨髓中分离获得间充质干细胞并行体外传代培养;(2)流式细胞技术及免疫荧光激光共聚焦显微镜鉴定其分子表面标记物表达情况;(3)应用条件培养基诱导细胞分化,阿辛蓝、茜素红及油红染色验证多向分化潜能;(4)流式细胞仪检测病毒转染能力,透射电镜观测细胞内病毒颗粒;(5)结晶紫染色检测病毒释放的时间依赖性与剂量依赖性关系;(6)50%组织培养感染剂量法(TCID50)检测释放病毒的滴度;(7)实时定量PCR检测病毒复制能力;(8)G显带技术分析转染选择复制性腺病毒后的MSCs染色体核型。
     2体外验证MSC携带选择复制性腺病毒后对肿瘤细胞及正常细胞的杀伤能力(1)相差显微镜观察携带有选择复制性腺病毒的MSC对肿瘤细胞(MDA-MB-231, MDA-MB-435)及正常血管内皮细胞(HUVEC)产生细胞病变反应能力(CPE效应):(2)原位杂交验证病毒在细胞中复制情况;(3)流式细胞仪检测MSC携带病毒引起的细胞凋亡分析;(4)免疫蛋白印迹技术(Western blot方法)检测靶细胞中Stat3及其下游通路信号分子的变化情况。
     3体内验证间充质干细胞归巢能力(1)苏木素伊红染色验证裸鼠原位乳腺癌模型;(2)体外验证超顺磁性三氧化二铁颗粒(SPIO)对间充质干细胞标记浓度及效率(3)冰冻切片普鲁士蓝染色验证间充质干细胞体内归巢能力;(4)流式细胞仪检测细胞示踪剂(Cell tracker Red)对间充质干细胞的标记浓度及效率;(5)激光共聚焦显微镜观测携带选择复制性腺病毒后的间充质干细胞的归巢能力。
     4体内验证间充质干细胞携带选择复制性腺病毒对肿瘤的靶向杀伤效应(1)定期测量各治疗组瘤体长径和短径,计算其瘤体大小;(2)免疫组织化学检测各组肿瘤组织Ki67及Cleaved Caspase3表达情况;(3)免疫蛋白印迹技术(Western blot方法)检测Stat3分子及下游分子的变化情况;(4)随访各治疗组老鼠生存预后情况。
     结果
     1.成功分离并培养人骨髓来源间充质干细胞;其阳性表面标记物CD44、CD90及CD105均有高于95%以上的表达,其阴性表面标记物CD34、CD45及CD19表达均低于5%;分离获得的间充质干细胞具有成骨、成脂以及成软骨等多向分化潜能;在高于500MOI滴度下,间充质干细胞具有高于90%以上的病毒转染效率;选择复制性腺病毒可在间充质干细胞中进行有效指数倍数扩增,并在96小时后完全释放。
     2.经过间充质干细胞复制后释放出来病毒可在肿瘤细胞中复制,对肿瘤细胞产生明显细胞病变效应(CPE效应),并产生的一定诱导凋亡作用,且其凋亡率显著高于直接用相同初始病毒剂量产生的杀伤作用;这种杀伤作用与间充质干细胞和肿瘤细胞共培养的比例成正相关;与对照组相比,间充质干细胞携带病毒组对肿瘤细胞中Stat3、p-stat3及下游Survivin、Bcl-xl、C-myc分子均有明显下调作用。
     3.间充质干细胞具有显著归巢于肿瘤组织的能力,24小时后主要分布于肿瘤组织边缘,72小时后主要分布于肿瘤实体内部。携带选择复制性腺病毒Adv-stat3(-)后的间充质干细胞仍具归巢能力,24小时,间充质干细胞主要分布于血流丰富的器官如肝、脾、肺。24小时后,肝、脾、肺组织中的间充质干细胞逐渐减少,而肿瘤组织中间充质干细胞数量明显增多。
     4.与单独腺病毒组、MSC组及PBS组相比,间充质干细胞携带选择复制性腺病毒Adv-stat3(-)可通过在肿瘤局部抑制Ki67表达,增强Cleaved Caspase3,从而抑制肿瘤生长,诱导肿瘤细胞凋亡,明显提高小鼠生存时间。
     结论间充质干细胞不仅可携带选择复制性腺病毒靶向肿瘤局部,并作为其复制扩增场所,抑制肿瘤细胞增殖,诱导肿瘤细胞凋亡。
Adenovirus-based gene therapy represented a promising treatment alternative for patients with malignant tumors. However, the treatment was temporarily abandoned due to toxicity of wild type adenovirus itself. With the discovery of recombinant DNA technology, it became possible to genetically engineer viruses, including E1A pRb binding region, E1B p53 binding region and fiber region to enhance its selective antitumoral potency. Even though, the replication-selective adenovirus was still hampered by the following reasons: first, intravenous and intraperitoneal injection results in considerable uptake of adenoviral vectors and gene expression in the liver; Second, rapid clearance of viruses by neutralizing antibody and complement occurred when systematically injected, all of which lead to minimal doses of adenovirus arriving at tumor mass or even metastasis.
     Mesenchymal stem cell (MSC) is an attractive novel candidate in the present study which participates in nearly all of human diseases including hemopoietic stem cell (HSC) transplantation, acute graft-versus-host disease, tissue injury and recovery, inflammation and myocardial infarction. Recently, it was reported that MSC had the tropism of homing to tumor site and could selectively proliferate to tumors and contribute to the formation of tumor-associated stroma. In this study, we aimed to examine the feasibility of using human mesenchymal stem cells (MSC) to deliver a replication-competent oncolytic adenovirus (Adv-stat3 antisense) in a model of breast cancer.
     We showed that MSC were efficiently infected with adenovirus type 5 at the concentration of above 500MOI. In addition, replication-selective adenovirus adv-stat3(-) could replicate more steadily than wild type adenovirus in the carrier cells of MSC and eventually release from it after 96 hours. MSC loaded with adv-stat3(-) caused significant tumor cell killing when cocultured with breast cancer cell lines of MDA-MB-231 and MDA-MB-435. Our study verifies the preferential tumor homing of MSC in an animal model of breast orthotopic tumor. In the first 24 hours after tail-vein injection, MSC was mainly distributed in liver, lung, spleen and the margin of tumor. After 48 hours, MSC could be mostly detected in the tumor parenchyma, especially nearly vasculature. The existence of MSC in liver, lung and spleen were found to decrease to a relative low level after 72 hours, while the amount of MSC in tumor parenchyma reached to a maximal level. In vivo study showed MSC-based delivery of the Adv-stat3(-) dramatically inhibited tumor growth compared with direct viral group, MSC group and PBS group. Follow-up observation demonstrated that injection of MSC loading with Adv-stat3(-) could increase survival rate of tumor-bearing mice compared to control groups. Taken together, these data indicates that MSC can serve as not only a cell carrier but also as a proliferating site for replicative-adenoviruses and suggests that the natural homing property of specific cell type can be used for targeted delivery of virus.
引文
1. Kirn D, Martuza RL, Zwiebel J. Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med.7,781-7(2001).
    2. Vasey, P., Shulman, L., Gore, M., Kirn, D.& Kaye, S. Phase I trial of intraperitoneal Onyx-015 adenovirus in patients with recurrent ovarian carcinoma. Proceedings of the American Society of Clinical Oncology 19,1512 (2000).
    3. Reid, T. et al. Hepatic artery infusion of Onyx-015, a replication-selective adenovirus, in combination with 5-FU/leucovorin for gastrointestinal carcinoma metastatic to the liver:A Phase Ⅰ/Ⅱ clinical trial. Proceedings of the American Society of Clinical Oncology.19,953 (2000).
    4. Hecht, R. et al. A Phase Ⅰ/Ⅱ trial of intratumoral endoscopic injection of Onyx-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Proceedings of the American Society of Clinical Oncology.19,1039 (2000).
    5. Khuri, F. et al. A controlled trial of Onyx-015, an E1B gene-deleted adenovirus, in combination with chemotherapy in patients with recurrent head and neck cancer. Nature Med.6,879-885 (2000).
    6. Johnson, M., Huyn, S., Burton, J., Sato, M.& Wu, L. Differential biodistribution of adenoviral vector in vivo as monitored by bioluminescence imaging and quantitative polymerase chain reaction. Hum. Gene Ther.17,1262-1269 (2006).
    7. Tao, N. et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol. Ther.3,28-35 (2001).
    8. Kirn, D. Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer:What have we learned? Gene Ther.8,89-98 (2001).
    9. Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F.& Keiliss-Borok, I. V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17,331-340(1974).
    10. R F Pereira, K W Halford, M D O'Hara, D B Leeper, B P Sokolov, M D Pollard, O Bagasra, and D J Prockop. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. PNAS 92, 114857-4861(1995).
    11. Horwitz, E. et al. Clarification of the nomenclature for MSC:The International Society for Cellular Therapy position statement. Cytotherapy 7,393-395 (2005).
    12. S. Ausim Azizi David Stokes, Brian J. Augelli, Carla DiGirolamo, and Darwin J. Prockop. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. PNAS 95,3908-3913(1998).
    13. J Chen, Y Li, L Wang, M Lu, X Zhang et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. Journal of the Neurological Sciences.189,49-57(2001).
    14. G Ferrari, G Cusella-De Angelis, M Coletta et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science.279,1528-1530(1998).
    15. S Makino, K Fukuda, S Miyoshi et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest.103,697-705 (1999).
    16. Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C.& Guinan, E. C. Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation. Transplantation 75,389-397 (2003).
    17. Bartholomew, A., C. Sturgeon, M. Siatskas, K. Ferrer, K. McIntosh, S. Patil et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol.30,42-48 (2002).
    18. Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci.938,231-233(2001).
    19. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol.31:890-896(2003).
    20. Koc ON, Day J,Nieder M, Gerson SL, Lazarus HM, KrivitW. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30,215-222(2002).
    21. Y. Li, MD, J. Chen, MD, X. G. Chen, MD PhD, L. Wang, MD, S. C. Gautam, PhD, Y. X. Xu, MD, M. Katakowski, BS, L. J. Zhang, MD, M. Lu, PhD, N. Janakiraman, MD and M. Chopp, PhD. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59,514-523 (2002).
    22. Florian Togel, Zhuma Hu, Kathleen Weiss, Jorge Isaac, Claudia Lange, and Christof Westenfelder. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am. J. Physiol. Renal Physiol.289, F31-F42 (2005).
    23. Edwin M. Horwitz, Darwin J. Prockop, Lorraine A. Fitzpatrick, Winston W. K. Koo, Patricia L. Gordon, Michael Neel, Michael Sussman, Paul Orchard, Jeffrey C. Marx, Reed E. Pyeritz & Malcolm K. Brenner. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Med.5,309-313 (1999).
    24. Pravin J. Mishra, Prasun J. Mishra, John W. Glod, and Debabrata Banerjee. Mesenchymal Stem Cells:Flip Side of the Coin. Cancer Research 69,1255-1258 (2009).
    25. R Ramasamy, E W-F Lam, I Soeiro, V Tisato, D Bonnet & F Dazzi. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells:impact on in vivo tumor growth. Leukemia 21,304-310 (2007).
    26. Patricia Ame-Thomas, Helene Maby-El Hajjami, Celine Monvoisin, Rachel Jean, Delphine Monnier, Sylvie Caulet-Maugendre, Thierry Guillaudeux, Thierry Lamy, Thierry Fest, and Karin Tarte. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth:role of stromal cells in follicular lymphoma pathogenesis. Blood 109,693-702 (2007).
    27. Farida Djouad, Pascale Plence, Claire Bony, Philippe Tropel, Florence Apparailly, Jacques Sany, Daniele Noel, and Christian Jorgensen. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102, 3837-3844 (2003).
    28. Antoine E. Karnoub, Ajeeta B. Dash, Annie P. Vo, Andrew Sullivan, Mary W. Brooks, George W. Bell, Andrea L. Richardson, Kornelia Polyak, Ross Tubo & Robert A. Weinberg. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449,557-563 (2007).
    29. Aarif Y. Khakoo, Shibani Pati, Stasia A. Anderson, William Reid, Mohamed F. Elshal, Ilsa I. Rovira, Ahn T. Nguyen, Daniela Malide, Christian A. Combs, Gentzon Hall, Jianhu Zhang, Mark Raffeld, Terry B. Rogers, William Stetler-Stevenson, Joseph A. Frank, Marvin Reitz, and Toren Finkel. Human mesenchymal stem cells exert potent
    antitumorigenic effects in a model of Kaposi's sarcoma. J. Exp. Med.203,1235-1247 (2006).
    30. Natalie C. Direkze, Kairbaan Hodivala-Dilke, Rosemary Jeffery, Toby Hunt, Richard Poulsom, Dahmane Oukrif, Malcolm R. Alison and Nicholas A. Wright. Bone marrow contribution to tumor associated myofibroblasts and fibroblasts. Cancer Res 64, 8492-8495 (2004).
    31. Pravin J. Mishra, Prasun J. Mishra, Rita Humeniuk, Daniel J. Medina, Gabriela Alexe, Jill P. Mesirov, Sridhar Ganesan, John W. Glod and Debabrata Banerjee. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68,4331-9 (2008).
    32. Ishii G.,Sangai T.,Oda T.,Aoyagi Y.,Hasebe T.,Kanomata N.,Endoh Y.,Ochiai A. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309,232-240(2003).
    33. Dvorak HF. Tumors:wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315,1650-1659(1986).
    34. B. Hall, M. Andreeff and F. Marini. The Participation of Mesenchymal Stem Cells in Tumor Stroma Formation and Their Application as Targeted-Gene Delivery Vehicles. Handbook of Experimental Pharmacology 180,263-283(2007).
    35. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62,3603-3608 (2002).
    36. Matus Studeny, Frank C. Marini, Jennifer L. Dembinski, Claudia Zompetta,Maria Cabreira-Hansen, Benjamin Nebiyou Bekele, Richard E. Champlin,Michael Andreeff. Mesenchymal stem cells:potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl Cancer Inst 96,1593-1603 (2004).
    37. LS Sasportas, R Kasmieh, H Wakimoto et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. PNAS,106, 4822-4827(2009)
    38. H Yu, R Jove. The STATs of cancer-new molecular targets come of age. Nature Reviews Cancer.4,97-105 (2004).
    39. T Wang, G Niu, M Kortylewski, L Burdelya, K Shain et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nature Medicine.10, 48-54 (2004).
    40. M Kortylewski, M Kujawski, T Wang, S Wei, S Zhang et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Medicine.11,1314-1321 (2005).
    1. Bianchi G, Muraglia A, Daga A, Corte G, Cancedda R, Quartp R. Microenvironment and stem properties of bone marrow-derived mesenchymal cells. Wound Repair Regen 9,460-466(2001).
    2. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 284,143-147(1999).
    3. Gronthos S, Zannettino AC, Hay SJ, et al. Molecular and cellular characterisation of highly purified strbmal stemcells derived fromhuman bone marrow. J Cell Sci 116:1827-1835(2003).
    4. ReyesM, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615-2625(2001).
    5. JM Houghton, C Stoicov, S Nomura, AB Rogers et al. Gastric cancer originating from bone marrow-derived cells. Science.306,1568-1570 (2004).
    6. Meirelles, L. da S., Chagastelles, P. C. & Nardi, N. B. Mesenchymal stem cells reside in virtually all postnatal organs and tissues. J. Cell Sci. 119,2204-2213 (2006).
    7. S Gronthos, ACW Zannettino, SJ Hay, S Shi et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow.Journal of Cell Science 116,1827-1835 (2003).
    8. WJC Rombouts, RE Ploemacher. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17, 160-170(2003).
    9. Abeel A Mangi, Nicolas Noiseux, Deling Kong, Huamei He, Mojgan Rezvani, Joanne S Ingwall & Victor J Dzau. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine 9,1195-1201(2003).
    10. Antonio Uccelli, Lorenzo Moretta & Vito Pistoia. Mesenchymal stem cells in health and disease. Nature Reviews Immunology 8, 726-736 (2008).
    11. Adam M. Sonabend, Ilya V. Ulasov, Matthew A. Tyler, Angel A. Rivera, James M. Mathis, Maciej S. Lesniak, M.D. Mesenchymal Stem Cells Effectively Deliver an Oncolytic Adenovirus to Intracranial Glioma. Stem Cells 26,831 - 841(2008).
    12. Svetlana Komarova, Yosuke Kawakami, Mariam A, Stoff-Khalili, David T, Curie and Larisa Pereboeva. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5,755-766(2006).
    13. Han Z, Hong Z, Chen C, Gao Q, Luo D, Fang Y, Cao Y, Zhu T, Jiang X, Ma Q, Li W, Han L, Wang D, Xu G, Wang S, Meng L, Zhou J, Ma D. A novel oncolytic adenovirus selectively silences the expression of tumor-associated STAT3 and exhibits potent antitumoral activity. Carcinogenesis, 30,2014-22(2009).
    1. P Bianco, PG Robey, PJ Simmons. Mesenchymal Stem Cells:Revisiting History, Concepts, and Assays. Cell Stem Cell,2,313-319(2008).
    2. B. Hall, M. Andreeff and F. Marini. The Participation of Mesenchymal Stem Cells in Tumor Stroma Formation and Their Application as Targeted-Gene Delivery Vehicles. Handbook of Experimental Pharmacology 180,263-283(2007).
    3. Adam M. Sonabend, Ilya V. Ulasov, Matthew A. Tyler, Angel A. Rivera, James M. Mathis, Maciej S. Lesniak, M.D. Mesenchymal Stem Cells Effectively Deliver an Oncolytic Adenovirus to Intracranial Glioma. STEM CELLS 26,831-841(2008)
    4. LS Sasportas, R Kasmieh, H Wakimoto et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. PNAS,106, 4822-4827(2009).
    5. Aarif Y. Khakoo, Shibani Pati, Stasia A. Anderson, William Reid, Mohamed F. Elshal, Ilsa I. Rovira, Ahn T. Nguyen, Daniela Malide, Christian A. Combs, Gentzon Hall, Jianhu Zhang, Mark Raffeld, Terry B. Rogers, William Stetler-Stevenson, Joseph A. Frank, Marvin Reitz, and Toren Finkel. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. JEM 203,51235-1247 (2006).
    6. Hong Xin, Masahiko Kanehira, Hiroyuki Mizuguchi, Takao Hayakawa, Toshiaki Kikuchi, Toshihiro Nukiwa, Yasuo Saijo. Targeted Delivery of CX3CL1 to Multiple Lung Tumors by Mesenchymal Stem Cells. Stem Cells 25,1618-1626 (2007).
    7. Allers C, SierraltaWD, Neubauer S, Rivera F,Minguell JJ, Conget PA. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation,78,503-508 (2004).
    8. Almeida-Porada G, Porada C, Zanjani ED. Plasticity of human stem cells in the fetal sheep model of human stem cell transplantation. Int J Hematol 79,1-6(2004).
    9. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100,8407-8411 (2003).
    10. Erices AA, Allers CI, Conget PA, Rojas CV, Minguell JJ. Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant 12,555-561(2003).
    11. Deans RJ, Moseley AB. Mesenchymal stem cells:biology and potential clinical uses.Exp Hematol 28,875-884 (2000).
    12. Lange C, Togel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR, Westenfelder C. Administered mesenchymal stemcells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68,1613-1617(2005).
    13. Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, Brigham KL. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 33,145-152(2005).
    14. Phinney DG, Isakova I. Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr Pharm Des 11:1255-1265 (2005).
    15. Yasushi Sato, Hironobu Araki, Junji Kato, Kiminori Nakamura, Yutaka Kawano, Masayoshi Kobune, Tsutomu Sato, Koji Miyanishi, Tetsuji Takayama, Minoru Takahashi, Rishu Takimoto, Satoshi Iyama, Takuya Matsunaga, Seiji Ohtani, Akihiro Matsuura, Hirofumi Hamada, and Yoshiro Niitsu. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 106,756-763 (2005).
    16. Guilherme V. Silva, MD; Silvio Litovsky, MD; Joao A.R. Assad, MD; Andre L.S. Sousa, MD; Bradley J. Martin, PhD; Deborah Vela, MD; Stephanie C. Coulter, MD; Jing Lin, MD; Judy Ober, DVM; William K. Vaughn, PhD; Rodrigo V.C. Branco, MD; Edie M. Oliveira, MD; Rumin He, PhD; Yong-Jian Geng, MD, PhD; James T. Willerson, MD; Emerson C. Perin, MD, PhD. Mesenchymal stem cells differentiate
    into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111,150-156 (2005).
    17. Dvorak HF. Tumors:wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315,1650-1659(1986).
    18. Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des.15,1949-55(2009).
    19. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer.9, 239-52(2009).
    20. Maltby S, Khazaie K, McNagny KM. Mast cells in tumor growth:angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta.1796,19-26(2009).
    21. Darwin J. Prockop. Marrow stromal cells as stemcells for nonhematopoietic tissues. Science 276,71-74(1997).
    22. Akira.Nakamizo, Frank Marini, Toshiyuki Amano, Asadullah Khan, Matus Studeny, Joy Gumin, Julianne Chen, Stephen Hentschel, Giacomo Vecil, Jennifer Dembinski, Michael Andreeff and Frederick F. Lang. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65,3307-3318(2005).
    23. AU Patrick, TARN Joshua, FUKUMURA Dai, JAIN Rakesh K. Bone marrow derived mesenchymal stem cells facilitate engineering oflong-lasting functional vasculature. Blood.111,4551-4558(2008).
    24. Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe T, Kanomata N, Endoh Y, Okumura C, Okuhara Y, Magae J, Emura M, Ochiya T, Ochiai A. Bone-marrow-derivedmyofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309,232-240 (2003).
    25. Svetlana Komarova, Yosuke Kawakami, Mariam A. Stoff-Khalili, David T. Curiel and Larisa Pereboeva. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol. Cancer Ther.,5,755-766(2006).
    26. Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A, Rocconi RP, Numnum TM, Everts M, Chow LT, Douglas JT, Siegal GP, Zhu ZB, Bender HG, Dall P, Stoff A, Pereboeva L, Curiel DT. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat. 105,157-67(2007).
    27. Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal Stem Cell delivery of TRAIL can eliminate Metastatic Cancer. Cancer Res.69,4134-42(2009).
    28. Fikru Belema-Bedada, Shizuka Uchida, Alessandra Martire, Sawa Kostin and Thomas Braun. Efficient Homing of Multipotent Adult Mesenchymal Stem Cells Depends on FROUNT-Mediated Clustering of CCR2. Cell Stem Cell,2,566-575 (2008).
    29. Hata, Nobuhiro MD; Shinojima, Naoki MD; Gumin, Joy BS; Yong, Raymund MD; Marini, Frank PhD; Andreeff, Michael MD, PhD; Lang, Frederick F. MD. Platelet-Derived Growth Factor BB Mediates the Tropism of Human Mesenchymal Stem Cells for Malignant Gliomas. Neurosurgery.66,144-56 (2010).
    30. Ann De Becker, Paul Van Hummelen, Marleen Bakkus, Isabelle Vande Broek, Joke De Wever,Marc De Waele, Ivan Van Riet. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica,92, 441-449 (2007).
    31. Soren Schenk, Niladri Mal, Amanda Finan, Ming Zhang, Matt Kiedrowski, Zoran Popovic, Patrick M. McCarthy, Marc S. Penn, M.D., Ph.D. Monocyte Chemotactic Protein-3 Is a Myocardial Mesenchymal Stem Cell Homing Factor. STEM CELLS,25, 245-251 (2007).
    32. Judy R van Beijnum, Ruud P Dings, Edith van der Linden, Bernadette M M Zwaans, Frans C S Ramaekers, Kevin H Mayo, Arjan W Griffioen. Gene expression of tumor angiogenesis dissected;specific targeting of colon cancer angiogenic. Blood 108, 2339-2348 (2006).
    33. Kyoko Hida, Yasuhiro Hida, Dhara N. Aminl, Alan F. Flint, Dipak Panigrahy, Cynthia C. Morton and Michael Klagsbrun. Tumor-Associated Endothelial Cells with Cytogenetic Abnormalities. Cancer Research 64,8249-8255 (2004).
    34. Belinda S. Parker, Pedram Argani, Brian P. Cook, Han Liangfeng, Scott D. Chartrand, Mindy Zhang, Saurabh Saha, Alberto Bardelli, Yide Jiang, Thia B. St. Martin, Mariana Nacht, Beverly A. Teicher, Katherine W. Klinger, Saraswati Sukumar and Stephen L. Madden. Alterations in Vascular Gene Expression in Invasive Breast Carcinoma. Cancer Research 64,7857-7866 (2004).
    1. Hua Yu & Richard Jove. THE STATS OF CANCER-NEW MOLECULAR TARGETS COME OF AGE. Nature Reviews Cancer 4,97-105(2004).
    2. Frank, D. A. STAT signaling in cancer:insights into pathogenesis and treatment strategies. Cancer Treat. Res.115,267-291 (2003).
    3. Catlett-Falcone, R., Dalton, W. S.& Jove, R. STAT proteins as novel targets for cancer therapy. Curr. Opin. Oncol.11,490-496 (1999).
    4. Turkson, J.& Jove, R. STAT proteins:novel molecular targets for cancer drug discovery. Oncogene 19,6613-6626 (2000).
    5. Roy Garcia, Tammy L Bowman, Guilian Niu, Hua Yu, Sue Minton, Carlos A Muro-Cacho, Charles E Cox, Robert Falcone, Rita Fairclough, Sarah Parsons, Andy Laudano, Aviv Gazit, Alexander Levitzki, Alan Kraker and Richard Jove. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20,2499-2513 (2001).
    6. Tanya Gritsko, Ann Williams, James Turkson, Satoshi Kaneko, Tammy Bowman, Mei Huang, Sangkil Nam, Ibrahim Eweis, Nils Diaz, Daniel Sullivan, Sean Yoder, Steve Enkemann, Steven Eschrich, Ji-Hyun Lee, Craig A. Beam, Jin Cheng, Susan Minton, Carlos A. Muro-Cacho and Richard Jove. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin. Cancer Res.12,11-19 (2006).
    7. Ling X, Arlinghaus RB. Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res,65, 2532-6 (2005).
    8. Sun, Z., Yao, Z., Liu, S., Tang, H.& Yan, X. An oligonucleotide decoy for Stat3 activates the immune response of macrophages to breast cancer. Immunobiology 211, 199-209(2006).
    9. John Chester, Anja Ruchatz, Michael Gough, Marka Crittenden, Heung Chong, Francois Loic-Cosset, Rosa Maria Diaz, Kevin Harrington, Luis Alvarez-Vallina & Richard Vile. Tumor antigen-specific induction of transcriptionally targeted retroviral vectors from chimeric immune receptor-modified T cells. Nature Biotechnology 20, 256-263 (2002).
    10. Jian Qiao, Timothy Kottke, Candice Willmon, Feorillo Galivo, Phonphimon Wongthida, Rosa Maria Diaz, Jill Thompson, Pamela Ryno, Glen N Barber, John Chester, Peter Selby, Kevin Harrington, Alan Melcher & Richard G Vile. Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy. Nature Medicine 14,37-44 (2008).
    11. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62,3603-3608 (2002).
    12. Matus Studeny, Frank C. Marini, Jennifer L. Dembinski, Claudia Zompetta,Maria Cabreira-Hansen, Benjamin Nebiyou Bekele, Richard E. Champlin,Michael Andreeff. Mesenchymal stem cells:potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl Cancer Inst 96,1593-1603 (2004).
    13. LS Sasportas, R Kasmieh, H Wakimoto et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. PNAS,106, 4822-4827(2009).
    14. Tianhong Wang, Guilian Niu, Marcin Kortylewski, Lyudmila Burdelya, Kenneth Shain, Shumin Zhang, Raka Bhattacharya, Dmitry Gabrilovich, Richard Heller, Domenico Coppola, William Dalton, Richard Jove, Drew Pardoll & Hua Yu. Regulation of the innate and adaptive immune responses by Stat3 signaling in tumor cells. Nature Med. 10,48-54(2004).
    15. Guilian Niu, Richard Heller, Robyn Catlett-Falcone, Domenico Coppola, Mark Jaroszeski, William Dalton, Richard Jove and Hua Yu. Gene therapy with dominant-negative STAT3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res.59,5059-5063 (1999).
    16. Guilian Niu, Kenneth H. Shain, Mei Huang, Rajani Ravi, Atul Bedi, William S. Dalton, Richard Jove and Hua Yu. Overexpression of a dominant-negative signal transducer and activator of transcription 3 variant in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest. Cancer Res.61,3276-3280 (2001).
    1. Friedenstein A J, Goeskaja J F, et al. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol,1976,4 (5):267-274.
    2. Bianco P, Robey P G, Simmons P J. Mesenchymal Stem Cells:Revisiting History, Concepts, and Assays. Cell Stem Cell 2, April 2008 313-319.
    3. Caplan AI. Mesenchymal Stem Cells. J Orthop Res,1991,9 (5):641-650
    4. Wexler SA, Donaldson C, et al. Adult bone marrow is a rich source of human mesenchymal'stem'cells but umbilical cord and mobilized adult blood are not. Br J Haematol,2003,121 (2):368-374
    5.裴雪涛.干细胞实验指南.北京:科学出版社,2006
    6. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-317.
    7. Maniatopoulos C. Bone formation in vitro by stromal cell obtained from bone marrow of young adult rats, Cell Tissue Res,1988,254 (2) 317-330
    8. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science.1997; 276:71-74.
    9. Pittenger MF, et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science,1999; 284:143-147
    10. Dennis JE, Charbord P. Origin and Differentiation of Human and Murine Stroma. Stem Cells 2002; 20:205-214
    11. Xu W, Qian H et al. A novel tumor cell line cloned frommutated human embryonic bone marrow Mesenchymal stem cells. Oconl Rep 2004,12 (3); 501-508
    12. Serakinci N, Guldberg P, et al. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 2004,23:5095-5098
    13. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science 2004,306:1568-1571
    14. Tocci A, Forte L, Mesenchymal Stem Cell:use and perspectives. Hematol J,2003, 4 (2):92-96
    15. Uccelli A, Moretta A, et al. Mesenchymal stem cells in health and disease. Nature Review Immu.2008, Sep VOL 8:726-736
    16. De Ugarte DA, Morizono K, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003;174:101-109
    17. Gronthos S, Franklin DM, et al. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001; 189:54-63.
    18.朱光荣等.人骨髓间质干细胞表达多种造血细胞因子.中国实验血液学杂志,2003,11(2):115-119
    19.苏立.骨髓间质干细胞的生物学特征.医学综述,2004,10(5)306-309
    20.郑毅雄等.骨髓间质干细胞趋化因子受体的表达及其趋化性迁移研究进展. 国际生物医学工程杂志,2007,30(1):46-50
    21. Belema-Bedada F, Uchida S, et al. Efficient Homing of Multipotent Adult Mesenchymal Stem Cells Depends on FROUNT-Mediated Clustering of CCR2. Cell Stem Cell 2008 June 2:566-575
    22. Lazarus HM, et al. Ex vivo expansion and subsequ ent infusion of human bone marrow derived stromal progenitor cells (mesenchymal stem cells):implication for therapeutic use. Bone Marrow Transplant,1995; 16:557-564
    23. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft versus host disease with third party haploidentical mesenchymal stem cells. Lancet,2004; 363 (9419):1439-1411
    24. Djouad F, Plence P, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102:3837-3844.
    25. Glennie, S. Soeiro,I. Dyson, P J. et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105,2821-2827 (2005).
    26. Benvenuto, F. et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 2007,25,1753-1760
    27. Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107:367-372.
    28. Sato K, Ozaki K, Oh I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood,2007,109:228-234
    29. Meisel R, Zibert A, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 2004,103:4619-4621
    30.30. Ren G, Zhang L, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell,2008,2(2): 141-150
    31. Huiming S, et al. A critical role of IFNy in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research (2008) 18:846-857.
    32. Sotiropoulou PA, Perez SA, Gritzap is AD,et al. Interactions bet ween human mesenchymal stem cells and natural killer cells. Stem Cells,2006,24 (1):74-85.
    33. Spaggiari G M, Capobianco A, et al. Mesenchymal stem cell-natural killer cell interactions:Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit I L-2-induced NK-cell proliferation. Blood,2006,107 (4) 1484-1490.
    34. Djouad F, Charbonnier LM, Bouffi C, et. Mesenchymal stem cells inhibit the differentiation of dendritic cells throush an IL-6-dependent mechanism. Stem Cells, 2007,28(8):2025-2032.
    35. Ramasamy R, Fazekas ova H, Lam EW, et al. Mesenchymal stem cells inhibit dendritic cell differentation and functi on by preventing entry into the cell cycle. Transplantation, 2007,83(1):71-76.
    36. J iang XX, Zhang Y, et al. Human mesenchymal stem cells inhibit differentiati on and function of monocyte-derived dendritic cells. Blood,2005,105 (10):4120-4126.
    37. Jennifer L, et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-{gamma}. Blood,2006,107: 4817-4824
    38. Dvorak HF. Tumors:wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315 (26):1650-9
    39. Clevers H. et al. At the Crossroads of Inflammation and Cancer. Cell,2004. 118:671-674.
    40. Grivennikov SI, et al. Immunity, Inflammation, and Cancer. Cell,2010,140:883-899,
    41. Flossmann E, et al. E□ect of aspirin on long-term risk of colorectal cancer:consistent evidence from randomised and observational studies. Lancet 2007; 369:1603-13
    42. Grau MV, et al. Nonsteroidal Anti-inflammatory Drug Use After 3 Years of Aspirin Use and Colorectal Adenoma Risk:Observational Follow-up of a Randomized Study. J Natl Cancer Inst 2009;101:267-276
    43. Grivennikov S, et al. IL-6 and Stat3 Are Required for Survival of Intestinal Epithelial Cells and Development of Colitis-Associated Cancer. Cancer Cell,2009,15, 103-113.
    44. Spaeth E, Klopp A et al. Inflammation and tumor microenvironments:defining the migratory itinerary of mesenchymal stem cells. Gene Ther.2008 May;15(10):730-8
    45. Dwyer QM, et al. Monocyte Chemotactic Protein-1 Secreted by Primary Breast Stimulates Migration of Mesenchymal Stem Cells. Clin Cancer Res 2007;13(17) 5020-5027
    46. Klopp AH, et al. Tumor Irradiation Increases the Recruitment of Circulating Mesenchymal Stem Cells into the Tumor Microenvironment. Cancer Res 2007; 67:(24): 11687-11695
    47. Zielske SP, et al. Radiation increases invasion of gene-modified mesenchymal stem cells into tumors. Int J Radiat Oncol Biol Phys.2009 Nov 1; 75(3):843-53.
    48. Kidd S, et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells. 2009 Oct; 27(10):2614-23.
    49. Ringden O, Le Blanc K. Allogeneic hematopoietic stem cell transplantation:state of the art and new perspectives. Apmis 2005; 113:813-830
    50. Majumdar MK, Thiede MA, et al. Human marrow-derivedmesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 2000;9:841-848.
    51. Liu CH, Hwang SM. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 2005;32:270-279.
    52. De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 2003;89:267-270.
    53. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999; 181:67-73.
    54. Au P, Tam J, et al. Bone marrow□ derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood,2008 111:4551-4558.
    55. Honczarenko M, Le Y, et al. Human bone marrow stromal cells express a distinctset of biologically functional chemokine receptors. Stem Cells 2006; 24:1030-1041.
    56. Kinnaird T, Stabile E, et al. Marrow-derived stromal cells express genes encoding abroad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004;94:678-685.
    57. Zacharek A, Chen J, et al. Angiopoietinl/Tie2 and VEGF/Flkl induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab 2007;27:1684-1691.
    58. Crisan M, Yap S, et al. A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell Stem Cell 2008 3,301-313
    59. Conrad C, et al. Multipotent Mesenchymal Stem Cells Acquire a Lymphendothelial Phenotype and Enhance Lymphatic Regeneration In Vivo. Circulation 2009; 119; 281-289
    60. Caplan AI, Bruder S P. Mesenchymal stem cells:building blocks for molecular medicine in the 21st century. TRENDS in Molecular Medicine,2001, Vol.7 No.6 259-264
    61. Sensebe L, Krampera M, et al. Mesenchymal stem cells for clinical application. Vox Sanguinis (2010)98,93-107
    62. Fu XB, Li HH. Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell Tissue Res (2009) 335:317-321
    63. Larghero L, et al. Mesenchymal stem cells and immunomodulation:Toward new immunosuppressive strategies for the treatment of autoimmune diseases? La Revue de medecine interne 30 (2009) 287-299
    64. Ning H, Yang F, et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients:outcome of a pilot clinical study. Leukemia.2008 Mar;22(3):593-9.
    65. Reya T, et al. Stem cells, cancer, and cancer stem cells. Nature,2001, Vol 414 105-111
    66. Rubio D, Garcia S, et al. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS ONE 2008; 3:e1398
    67. Wang Y, Huso DL, et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 2005;7:509-519
    68. Miura M, Miura Y, et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 2006; 24:1095-1103.
    69. Li H, Fan X, et al. Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells:a model of age-related tumorigenesis in mice. Cancer Res2007; 67:10889-10898
    70. Tolar J, Nauta AJ et al Sarcoma derived from culture Mesenchymal stem cells. Stem Cells,2007,25:371-379
    71. Bernardo ME, Zaffaroni N, et al:Human Bone Marrow-derived Mesenchymal Stem cells Do Not Undergo Transformation After Long-term in vitro Culture and Do Not Exhibit Telomere Maintenance Mechanisms. Cancer Res.2007; 67:9142-9149
    72. Hung SC, Yang DM, et al. Immortalization without neoplastic transformation of human mesenchymal stem cells by transduction with HPV16 E6/E7 genes. Int J Cancer 2004;110:313-319
    73. Burns JS, Abdallah BM, et al. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res 2005;65:3126-3135.
    74. Riggi N, Cironi L, et al. Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 2005;65:11459-11468.
    75. Tirode F, Laud-Duval K, Prieur A, et al. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007; 11:421-429.
    76. Arnulf B, Lecourt S, Soulier J, et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 2007;21:158-163
    77. Corre J, Mahtouk K, Attal M, et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007;21:1079-1088
    78. Devine SM, Cobbs C, Jennings M, et al. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 101: 2999-3001.
    79. Nakamura K, Ito Y, Kawano Y, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004; 11:1155-1164.
    80. Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65:3307-3318.
    81. Khakoo AY, Pati S, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 2006; 203:1235-1247.
    82. Ritter E, Perry A, et al. Breast Cancer Cell-Derived Fibroblast Growth Factor 2 and Vascular Endothelial Growth Factor Are Chemoattractants for Bone Marrow Stromal Stem Cell. Ann Surg,2008,247 (2) 310-314
    83. Kucerova L, Altanerova V, et al. Adipose Tissue-Derived Human Mesenchymal Stem Cells Mediated Prodrug Cancer Gene Therapy. Cancer Res 2007;67:6304-6313.
    84. Komarova S, Kawakami Y, et al. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 2006;5:755-766.
    85. GaoH, PriebeW,Glod J, BanerjeeD. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells 2009.27:857-865
    86. Patocs A, Zhang L, Xu Y, et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 2007; 357:2543-51
    87. Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008; 14:518-27.
    88. Direkze NC, Hodivala-Dilke K, Jeffery R, et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 2004;64:8492-5.
    89. Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008;68:4331-9.
    90. Maestroni GJ, Hertens E, Galli P. Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 1999; 55:663-667.
    91. Ohlsson LB, Varas L, et al. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 2003; 75:248-255.
    92. Ling Qiao, Zhili Xu, Tiejun Zhao. Suppression of tumorigenesis by human
    mesenchymal stem cells in a hepatoma model. Cell Research (2008) 18:500-507.
    93. Zhu W, Xu W, Jiang R, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2006; 80:267-274.
    94. Gunn WG, Conley A, Deininger L, et al. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6:a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006; 24:986-991.
    95. Fierro FA, Sierralta WD, Epunan et al. Marrow-derived mesenchymal stem cells:role in epithelial tumor cell determination. Clin Exp Metastasis 2004; 21:313-319.
    96. Sasser AK, Sullivan NJ, et al. Interleukin-6 is a potent growth factor for ER-{alpha}-positive human breast cancer. Faseb J.200721,3763-3770
    97. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449:557-563.
    98. Ramasamy R, Lam EW, Soeiro I, et al. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells:impact on in vivo tumor growth. Leukemia 2007; 21: 304-310.
    99. Djouad F, Bony C, Apparailly F, et al. Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation 2006; 82:1060-1066.
    100. H Hombauer, JJ Minguell. Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells. British Journal of Cancer (2000) 82(7), 1290-1296
    101. F. T. Martin R. M. Dwyer J. Kelly S. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment:stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 2010 January
    102. Corcoran KE, Trzaska KA, et al. Mesenchymal Stem Cells in Early Entry of Breast Cancer into Bone Marrow. PLoS ONE (2008) 3(6).
    103. Sohara Y, Shimada H, et al. Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Res 2005;65:1129-1135.
    104. Sun B, Zhang S, Ni C,et al. Correlation between melanoma angiogenesis and the mesenchymal stem cells and endothelial progenitor cells derived from bone marrow. Stem Cells Dev.2005 Jun;14(3):292-8.
    105. Bagley RG, Weber W, et al. Human mesenchymal stem cells from bone marrow express tumor endothelial and stromal markers. Int J Oncol.2009Mar; 34(3):619-27.
    106. BM Beckermann, G Kallifatidis, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer (2008) 99,622-631.
    107. Studeny M, Marini FC, Champlin RE, et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62:3603-3608.
    108. Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells:potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst,2004; 96:1593-1603.
    109. Chen XC, Wang R, et al. Prophylaxis against carcinogenesis in three kinds of unestablished tumor models via IL12-gene-engineered MSCs. Carcinogenesis 2006;27:2434-2441.
    110. Elzaouk L, Moelling K, Pavlovic J. Anti-tumor activity of mesenchymal stem cells producing IL-12in a mouse melanoma model. Exp Dermatol,2006; 15:865-874.
    111. Xin H, Kanehira M, et al. Targeted delivery of CX3CL1 to multiple lung tumor by messenchymal stem cell. Stem Cells,2007,25 (7) 1618-1626.
    112. Kanehira M, Xin H, Hoshino K, et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther. 2007,14, (11):894-903.
    113. Stoff-Khalili MA, Rivera AA, Mathis JM, et al. Mesenchymal stem cells as a vehicle
    for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat.2007
    114. Michael R. Loebinger, Ayad Eddaoudi, Derek Davies, et al Mesenchymal Stem Cell delivery of TRAIL can eliminate Metastatic Cancer. Cancer Res.2009 May 15; 69(10): 4134-4142.
    115. Laura S. Sasportas, Randa Kasmieh, Hiroaki Wakimoto, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. PNAS 2009 March 24, vol.106 no.12 4822-4827.
    1. Permuth-Wey J, Sellers TA. Epidemiology of ovarian cancer. Methods Mol Biol 2009; 472:413-437.
    2. Chien JR, Aletti G, Bell DA, Keeney GL, Shridhar V, Hartmann LC. Molecular pathogenesis and therapeutic targets in epithelial ovarian cancer. J Cell Biochem 2007; 102: 1117-1129.
    3. Cheng JO, Jiang X. Fraser M, Li M. Dan HC. Sun M, Tsang BK. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer:possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist Updat 2002; 5:31-46.
    4. A.K. Godwin, A. Meister, P.J. O'Dwyer, C.S. Huang, T.C. Hamilton, M.E. Anderson. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 1992; 89:3070-3074.
    5. S.L. Kelley, A. Basu, B.A. Teicher, M.P. Hacker, D.H. Hamer, J.S. Lazo. Overexpression of metallothionein confers resistance to anticancer drugs. Science 1998; 241:1813-1815.
    6. R.J. Parker, A. Eastman, F. Bostick-Bruton, E. Reed. Acquired cisplatin resistance in human ovarian cancer cells is associated with enhanced repair of cisplatin-DNA lesions and reduced drug accumulation. J Clin Invest 1991; 87:772-777.
    7. Hajra KM, Tan L, Liu JR. Defective apoptosis underlies chemoresistance in ovarian cancer. Adv Exp Med Biol 2008; 622:197-208.
    8. M. Fraser, B.M. Leung, X. Yan, H.C. Dan, J.Q. Cheng, B.K. Tsang. p53 is a determinant of X-linked inhibitor of apoptosis protein/Akt-mediated chemoresistance in human ovarian cancer cells. Cancer Res 2003; 63:7081-7088.
    9. Chan DW, Liu VW, Tsao GS, Yao KM, Furukawa T, Chan KK, Ngan HY. Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 2008; 29:1742-1750.
    10. Fraser M, Bai T, Tsang BK. Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer 2008; 122:534-546.
    11. Xing H, Weng D, Chen G, Tao W, Zhu T, Yang X, Meng L, Wang S, Lu Y, Ma D. Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Letter 2008;
    261:1108-1119.
    12. Wu H, Cao Y, Weng D, Xing H, Song X, Zhou J, Xu G, Lu Y, Wang S, Ma D. Effect of tumor suppressor gene PTEN on the resistance to cisplatin in human ovarian cancer cell lines and related mechanisms. Cancer Letter 2008; 271:260-271.
    13. Dong X, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR, Mumper RJ. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Research 2009; 69:3918-3926
    14. Xiao L, Gao R, Lu S, Lu MS, Liang ML, Ren LR, Wang ZH. Reversal effect of MDR1 and MDR3 gene silencing on resistance of A2780/taxol cells to paclitaxel. Zhong hua Fu Chan Ke Za Zhi 2007:42:412-416.
    15. J.W. Harper, G.R. Adami, N. Wei, K. Keyomarsi, S.J. Elledge. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75:805-816.
    16. Yang Z-Y, Perkins ND, Ohno T, Nabel EG, Nabel GJ. The p21 cyclin-dependent kinase inhibitor suppresses tumorigenicity in vivo. Nat Med 1995; 1:1052-1056.
    17. T. Komiya, Y. Hosono, T. Hirashima, N. Masuda, T. Yasumitsu, K. Nakagawa, M. Kikui, A. Ohno, M. Fukuoka, I. Kawase. p21 expression as a predictor for favorable prognosis in squamous cell carcinoma of the lung. Clin Cancer Res 1997; 3:1831-1835.
    18. T.K. Zirbes, S.E. Baldus, S.P. Moenig, S. Nolden, D. Kunze, S.T. Shafizadeh, P.M. Schneider, J. Thiele, A.H. Hoelscher, H.P. Dienes. Prognostic impact of p21/wafl/cipl in colorectal cancer. Int J Cancer 2000; 89:14-18.
    19. X. Lu, T. Toki, I. Konishi, T. Nikaido, S. Fujii. Expression of p21WAF1/CIP1 in adenocarcinoma of the uterine cervix:a possible immunohistochemical marker of a favorable prognosis. Cancer 1998; 82:2409-2417.
    20. N. Kapranos, G.P. Stathopoulos, L. Manolopoulos, E. Kokka, C. Papadimitriou, A. Bibas, J. Yiotakis, G.Adamopoulos. p53, p21 and p27 protein expression in head and neck cancer and their prognostic value. Anticancer Res 2001; 21:521-528.
    21. G. Ferrandina, A. Stoler, A. Fagotti, F. Fanfani, R. Sacco, A. De Pasqua, S. Mancuso, G. Scambia. p21WAF1/CIP1 protein expression in primary ovarian cancer. Int J Oncol 2000; 17:1231-1235.
    22. T.H. Cheung, K.W. Lo, M.M. Yu, S.F. Yim, C.S. Poon, T.K. Chung, Y.F. Wong. Aberrant expression of p21(WAF1/CIP1) and p27(KIP1) in cervical carcinoma Cancer Lett 2001; 172:93-98.
    23. D.S. Bae, S.B. Cho, Y.J. Kim, J.D. Whang, S.Y. Song, C.S. Park, D.S. Kim, J.H. Lee. Aberrant expression of cyclin D1 is associated with poor prognosis in early stage cervical cancer of the uterus. Gynecol Oncol 2001; 81:341-347.
    24. C. Ceccarelli, D. Santini, P. Chieco, C. Lanciotti, M. Taffurelli, G. Paladini, D. Marrano. Quantitative p21(waf-1)/p53 immunohistochemical analysis defines groups of primary invasive breast carcinomas with different prognostic indicators. Int J Cancer 2001; 95:128-134.
    25. M. Sarbia, H.E. Gabbert. Modern pathology:prognostic parameters in squamous cell carcinoma of the esophagus. Recent Results Cancer Res 2000; 155:15-27.
    26. Arnaud Besson, Richard K, Assoian and James M. Roberts. Regulation of the cytoskeleton:an oncogenic function for CDK inhibitors. Nat Rev Canaer 2005; 4:948-954.
    27. Rakesh Kumar and Mien-Chie Hung. Signaling Intricacies Take Center Stage in Cancer Cells. Cancer Res 2005; 65:2511-2555.
    28. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cipl/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 2001; 3:245-252.
    29. Vivanco I, Sawyers CL. The Phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer 2002; 2:489-501.
    30. Roninson IB. Oncogenic functions of tumor suppressor p21 (Wafl/Cipl/Sdil): association with cell senescence and tumor-promoting activities of stromal fibroblasts. Cancer Lett 2002:179:1-14.
    31. Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, Zhou BP, Hung MC. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 2004:10:3815-3824.
    32. Zoe E Winters, Russell D Leek, Mike J Bradburn, Chris J Norbury, Adrian L Harris. Cytoplasmic p21Cip1/WAF1 expression is correlated with HER-2/neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Research 2003; 5:R242-R249.
    33. Weng D, Song X, Xing H, Ma X, Xia X, Weng Y, Zhou J, Xu G, Meng L, Zhu T, Wang S, Ma D. Implication of the Akt2/survivin pathway as a critical target in paclitaxel treatment in human ovarian cancer cells. Cancer Letter 2009; 273:257-265.
    34. Zhang J, Attar E, Cohen K, Crumpacker C, Scadden D. Silencing p21 (Wafl/Cipl/Sdil) expression increases gene transduction efficiency in primitive human hematopoietic cells. Gene Ther 2005:12:1444-1452.
    35. Rustin GJ, Quinn M, Thigpen T, du Bois A, Pujade-Lauraine E, Jakobsen A, Eisenhauer E, Sagae S, Greven K, Vergote I, Cervantes A, Vermorken J. New guidelines to evaluate the response to treatment in solid tumors (ovarian cancer). J Natl Cancer Inst 2004; 96:487-488.
    36. Hamilton TC, Lai G-M, Rothenberg ML, Fojo AT, Young RC, Ozols RF. Mechanisms of resistance to cisplatin and alkylating agents. Cancer Treat Res 1989; 48:151-169.
    37. Asselin E, Mills GB, Tsang BK. XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res 2001:61:1862-8.
    38. Manning BD, Cantley LC. AKT/PKB signaling:navigating downstream. Cell 2007; 129:1261-1274.
    39. D.A. Altomare, H.Q. Wang, K.L. Skele, A. De Rienzo, A.J. Klein-Szanto, A.K. Godwin, J.R. Testa. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene 2004; 23:5853-5857.
    40. Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, Coppola D, Nicosia SV, Cheng JQ. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 2000; 19:2324-2430.
    41. Heron-Milhavet L, Franckhauser C. Rana V, Berthenet C, Fisher D, Hemmings BA, Fernandez A, Lamb NJ. Only Aktl is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding. Mol Cell Biol 2006; 26:8267-8280.
    1. Wu YY, Liang MR, Li LY, Zeng SY. Analysis of 4223 hospitalized patients with cervical cancer during 1990-2007. Zhonghua Fu Chan Ke Za Zhi,2008; 43:433-6 Article in Chinese.
    2. Frumovitz M, Sun CC, Schmeler KM, Deavers MT, Dos Reis R, Levenback CF, Ramirez PT. Parametrial involvement in radical hysterectomy specimens for women with early-stage cervical cancer. Obstet Gynecol,2009; 114:93-9.
    3. Horn LC. Fischer U. Raptis G. Bilek K. Hentschel B. Tumor size is of proenostic value in surgically treated FIGO stage II cervical cancer. Gynecol Oncol,2007; 107:310-5.
    4. Chittithaworn S, Hanprasertpong J, Tungsinmunkong K, Geater A. Association between prognostic factors and disease-free survival of cervical cancer stage IB1 patients undergoing radical hysterectomy. Asian Pac J Cancer Prev,2007; 8:530-4. (depth of stromal invasion)
    5. Herr D, Konig J, Heilmann V, Koretz K, Kreienberg R, Kurzeder C. Prognostic impact of satellite-lymphovascular space involvement in early-stage cervical cancer. Ann Surg Oncol,2009; 16:128-32.
    6. Aoki Y., Sasaki M., Watanabe M., Sato T., Tsuneki I., Aida H., Tanaka K. High-risk group in node-positive patients with stage IB, IIA, and IIB cervical carcinoma after radical hysterectomy and post-operative pelvic irradiation. Gynecologic Oncology, 2000; 77:305-309.
    7. Nakanishi T., Ishikawa H., Suzuki Y., Inoue T., Nakamura S., Kuzuya K. A comparison of prognoses of pathologic stage IB adenocarcinoma and squamous cell carcinoma of the uterine cervix. Gynecologic Oncology,2000; 79:289-293.
    8. Atahan IL, Yildiz F, Ozyar E, Pehlivan B, Genc M, Kose MF, Tulunay G, Ayhan A, Yuce K, Guler N, Kucukali T. Radiotherapy in the adjuvant setting of cervical carcinoma: treatment, results, and Drognostic factors. Int J Gvnecol Cancer.2007:17:813-20.
    9. Atlan D., Touboul E., Deniaud-Alexandre E., Lefranc J.P., Antoine J.M., Jannet D., Lhuillier P., Uzan M., Huart J., Genestie C., Antoine M., Jamali M., Ganansia V., Milliez J., Uzan S., Blondon J. Operable stages IB and Ⅱ cervical carcinomas:a retrospective study comparing preoperative uterovaginal brachytherapy and postoperative radiotherapy. International Journal of Radiation Oncology,2002; 54: 780-793.
    10. Cheng X, Cai S, Li Z, Tang M, Xue M, Zang R. The prognosis of women with stage IB1-IIB node-positive cervical carcinoma after radical surgery. World J Surg Oncology, 2004; 2:47-54.
    11. Lahousen M, Haas J, Pickel H, Hackl A, Kurz C, Ogris H, Stummvoll W, Winter R. Chemotherapy versus radiotherapy versus observation for high-risk cervical carcinoma after radical hysterectomy:A randomized, prospective, multicenter trial. Gynecol Oncol, 1999; 73:196-201.
    12. Shimada M, Kigawa J, Takahashi M, Minagawa Y, Okada M, Kanamori Y, Itamochi H, Oishi T, Iba T, Terakawa N. Stromal invasion of the cervix can be excluded from the criteria for using adjuvant radiotherapy following radical surgery for patients with cervical cancer. Gynecol Oncol,2004; 93:628-31.
    13. Curtin JP, Hoskins WJ, Venkatraman ES, Almadrones L, Podratz KC, Long H, Teneriello M, Averette HA, Sevin BU. Adjuvant chemotherapy versus chemotherapy plus pelvic irradiation for high-risk cervical cancer patients after radical hysterectomy and pelvic lymphadenectomy (RH-PLND):a randomized phase Ⅲ trial. Gynecol Oncol, 1996; 61:3-10.
    14. Kodama J, Seki N, Nakamura K, Hongo A, Hiramatsu Y. Prognostic factors in pathologic parametrium-positive patients with stage IB-IIB cervical cancer treated by radical surgery and adjuvant therapy. Gynecol Oncol,2007; 105:757-61.
    15. Kodama J, Seki N, Ojima Y, Nakamura K, Hongo A, Hiramatsu Y. Prognostic factors in node-positive patients with stage IB-IIB cervical cancer treated by radical hysterectomy and pelvic lymphadenectomy. Int J Gynaecol Obstet.2006; 93:130-5.
    16. Liu MT, Hsu JC, Liu WS, Wang AY, Huang WT, Chang TH, Pi CP, Huang CY, Huang CC, Chou PH, Chen TH. Prognostic factors affecting the outcome of early cervical cancer treated with radical hysterectomy and post-operative adjuvant therapy. Eur J Cancer Care,2008; 17:174-181.
    17. Ho CM. Chien TY, Huang SH, Wu CJ, Shih BY, Chang SC. Multivariate analysis of the prognostic factors and outcomes in early cervical cancer patients undergoing radical hysterectomy. Gynecol Oncol,2004; 93:458-64.
    18. Uno T,, Ito H., Itami J., Yasuda S., Isobe K., Hara R., Sato T., Minoura S., Shigematsu N.& Kubo A. Postoperative radiation therapy for stage IB-IIB carcinoma of the cervix with poor prognostic factors. Anticancer Research,2000; 20:2235-2240.
    19. Suprasert P, Srisomboon J, Kasamatsu T. Radical hysterectomy for stage IIB cervical cancer:a review. Int J Gynecol Oncol,2005; 15:995-1001.
    20. Sedlis A., Bundy B.N., Rotman M.Z., Lentz S.S., Muderspach L.I. and Zaino R.J. A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy:a Gynecologic Oncology Group Study. Gynecologic Oncology, 1999;73:177-183.
    21. Nobuhiro Takeshima, Kenji Umayahara, Kiyoshi Fujiwara, Yasuo Hirai, Ken Takizawa, Katsuhiko Hasumi. Treatment results of adjuvant chemotherapy after radical hysterectomy for intermediate-and high-risk stage IB-IIA cervical cancer. Gynecologic Oncology,2006; 103,618-622.
    22. Lee KB, Lee JM, Ki KD, et al. Comparison of adjuvant chemotherapy and radiation in patients with intermediate risk factors after radical surgery in FIGO stage IB-IIA cervical cancer. Int J Gynecol Cancer,2008; 18:1027-31.
    23. Peters Ⅲ WA, Liu PY, Barrett Jr RJ, et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol,2000; 18:1606-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700