Eotaxin在皮肤过敏性疾病中的表达调控及苦参方提取物与eotaxin siRNA的经皮治疗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮肤过敏性疾病是高发的变态反应型疾病,是当皮肤暴露于外界过敏原时,由全身免疫系统参与而症状产生于局部的病理过程。除了在普通人群中常见外,对于在边防、海岛等恶劣环境下进行工作与生活的部队官兵,特别如遇战事、灾害等严峻情况,影响尤为严重。因此,深入探讨皮肤变态反应性疾病的病理过程与机制,发现新的药物作用靶点和新的治疗药物,具有重要的科学价值与军事意义。
     变态反应型疾病发病的确切机制目前仍不十分清楚,但炎症细胞的募集是最终导致过敏性炎症发生和发展原因。嗜酸粒细胞(eosinophils, Eos)是过敏性疾病中重要的效应细胞,其浸润于过敏部位,释放毒性蛋白,造成组织损伤,导致炎症发生。造成Eos局部浸润的最重要的趋化因子是嗜酸粒细胞趋化因子(eotaxin/CCL11),因此eotaxin的表达与调控是过敏性疾病的重要环节和药物治疗靶点。
     Eotaxin参与了皮肤过敏性疾病(如特异性皮炎、接触性皮炎、药物过敏性皮肤疾病等)的进程已得到证实。而人体皮肤由表皮、真皮和皮下组织构成,eotaxin在过敏皮肤中的确切表达部位及表达的动态过程目前还没有证实。本研究中,我们以小鼠接触性皮炎(ACD)模型为基础,探讨了eotaxin在过敏环境下皮肤中的表达部位及动态特征。同时对皮肤过敏反应的免疫学特征进行了观察,我们对CD4+和CDS+T淋巴细胞的浸润的程度和时程进行了比较。此外,为了阐明eotaxin表达的调控机制,我们以构成表皮层的角质形成细胞(KC)株HaCaT细胞和构成真皮层的真皮成纤维细胞(FBs)为基础,使用TNF-a和IL-4刺激两种细胞,观察eotaxin分泌量的改变,并检测与两种因子相关的转录因子NF-κB和STAT6的激活情况,探讨eotaxin表达的转录机制。
     皮肤过敏性疾病的治疗是本课题关注的重要内容。相对于化学药物治疗,传统药物更显示出开发成本低、疗效好、副作用少、重视免疫平衡等优点。苦参方为一治疗过敏性皮肤病的传统中医药方剂,其提取物的主要成份为苦参碱(Mat)、氧化苦参碱(Omt)、槐果碱(Sop)、氧化槐果碱(Osp)以及荆芥挥发油(SVO)。我们考察了苦参方提取物(KS)凝胶剂对小鼠接触性皮炎的治疗效果,同时检测其对eotaxin的抑制作用,并于细胞水平对其提取物抑制TNF-a和IL-4诱导的eotaxin表达的信号转导机制进行进一步阐述。
     基因治疗是目前疾病治疗的一个研究热点,我们尝试性地对皮肤过敏性疾病的经皮基因治疗进行了探索。微乳是经皮给药的一个良好剂型,将经稳定性修饰的eotaxin特异性siRNA制成W/O型微乳剂型,经皮给药,观察其对小鼠接触性皮炎治疗效果及对eotaxin的在皮肤组织中表达的抑制作用。
     第一部分:Eotaxin在皮肤过敏性疾病中的表达调控
     (一) Eotaxin在小鼠接触性皮炎(ACD)中的表达规律研究
     1.小鼠接触性皮炎模型的建立:以BALB/c小鼠为模型动物,用DNFB涂抹鼠耳,于第1、2天致敏和强化致敏,第5天激发,可造成鼠耳皮肤过敏反应;小鼠耳肿胀度呈现一动态过程,肿胀高峰出现在24h-48h,肿胀度可达0.26±0.04mm,炎症待续5天左右,皮肤组织病理检测结果、血液炎症细胞计数证实了这一结论。其中Eos计数检测中,激发前小鼠血Eos为0.19±0.042×107/L,激发后于1h-2h开始升高(1.94±0.12×107/L),至24h达到最高(6.63±1.12×107/L),72h开始减弱至5d恢复正常。此外,采用流式细胞术检测血中CD4+和CD8+T细胞数量比,免疫组织化学方法检测组织中CD4+T细胞和CD8+T细胞的量,发现在过敏进程中,血液和组织中的CD4+和CD8+T细胞数量都有不同幅度的增长。
     2.采用原位杂交实验技术检测小鼠过敏皮肤中eotaxin mRNA表达情况,观察到其主要产生于真皮层,少量产生于表皮层,同时血管内皮和软骨组织也有表达,由此证明真皮成纤维细胞是eotaxin在过敏状态下的主要来源。
     3.分别采用real-time PCR、免疫组织化学和western-blotting检测法检测eotaxin在组织中表达的动态规律,及用ELISA检测血清中eotaxin的浓度。发现激发后2h在组织中已经开始有eotaxin的表达,到6h-12h表达量到最大并持续到24h,之后有所下降,到72h,基本恢复到最初状态。
     (二) Eotaxin在皮肤细胞中产生的调控机制研究
     1.采用不同浓度的TNF-α(1 ng/mL、10 ng/mL、100 ng/mL)和IL-4(2ng/mL、10 ng/mL,50ng/mL)分别与HaCaT细胞株和真皮成纤维细胞(FBs)共同孵育12h,用real-time PCR和ELISA方法检测eotaxin mRNA和蛋白表达的情况,发现TNF-α和IL-4均能上调eotaxin的表达,并呈剂量依赖性。而且无论是基础表达还是在两种细胞因子刺激下,FBs分泌eotaxin的能力远远高于HaCaT细胞。当同时使用TNF-α100 ng/mL和IL-4 10 ng/mL时,发现TNF-α和IL-4对两种细胞中eotaxin mRNA和蛋白的上调均有协同作用。
     2.分别或同时用100 ng/mL TNF-a和10 ng/mL IL-4与两种细胞共同孵育,用real-time PCR和流式细胞术观察eotaxin mRNA和蛋白在72h内动态表达的动力学过程,发现FBs比HaCaT细胞较早地表达eotaxin,也较快达到高峰,同时衰减也较快,而HaCaT细胞表达eotaxin则较为缓慢和平稳,可持续较长时间。
     3.通过EMSA和western-blotting分别检测转录因子NF-κB核转位和STAT6磷酸化的情况。在两种皮肤细胞中,TNF-α和IL-4可以分别激活NF-κB和STAT6发生核转位,而NF-κB特异性拮抗剂PDTC和转录因子STAT6特异的siRNA可以抑制TNF-α和IL-4引起的eotaxin上调,从而证实两种细胞受TNF-α和IL-4刺激后,均可通过NF-κB和STAT6转录导致eotaxin的表达。
     本部分研究证实了eotaxin在小鼠接触性皮炎模型皮肤组织中表达有明显上调,并确定了表达的具体部位及动态过程。同时在离体细胞的研究中也证实和在体情况相似的表达特征,真皮成纤维细胞表达eotaxin的能力要高于表皮角质形成细胞。并且TNF-α和IL-4可以通过NF-κB和STAT6调节eotaxin的表达。
     第二部分:苦参方提取物小鼠接触性皮炎的治疗作用及对eotaxin抑制作用研究
     (一)苦参方提取物(KS)治疗小鼠ACD的疗效及机制研究
     1.苦参方治疗小鼠ACD疗效观察:采用检测小鼠耳厚度的方法观察药物治疗效果。致敏前耳厚度:0.37±0.03 mm;致敏24h:0.66±0.05 mm;1%苦参方凝胶干预组:0.47±0.04 mm;5%苦参方凝胶干预组:0.49±0.06 mm;西替利嗪干预组:0.50±0.04 mm;地塞米松干预组:0.41±0.04 mm。证实苦参方凝胶组可以显著改善小鼠耳肿胀度(P<0.01)。同时通过HE染色的病理切片观察,也充分证明了药物对炎症细胞浸润的改善作用。
     2.采用流式细胞术和免疫组化分别对血液和组织中CD4+和CD8+的T淋巴细胞进行了检测,考察苦参方对机体免疫状态的调节作用。证明苦参方可以调节机体的免疫状态,可降低CD4+和CD8+T细胞的组织浸润和在血液中的募集。
     3.小鼠全血Eos计数检测。苦参方凝胶组可以显著降低过敏导致的小鼠Eos升高(P<0.01),小鼠致敏前Eos计数:0.19±0.04×107/L;致敏24 h:6.63±1.12×107,/L;1%苦参方凝胶干预组:4.78±0.66×107/L;5%苦参方凝胶干预组:2.24±0.58×107/L;西替利嗪组:5.22±0.73×107/L;地塞米松组:0.96±0.22×107/L
     4. Real-time PCR、western-blotting、免疫组化法检测eotaxin组织表达情况。结果表明苦参方凝胶剂可抑制eotaxin的表达,证明eotaxin可能为苦参方的作用靶点之一。
     (二)KS抑制皮肤细胞中eotaxin表达机制研究
     1.MTT法检测苦参提取物(KS)、荆芥挥发油(SVO)、Mat、Omt、Sop、Osp、盐酸西替利嗪(Cet)、地塞米松磷酸钠(Dex)对HaCaT细胞和FBs生存率的影响,证明KS和SVO≤500μg/mL, Mat、Omt、Sop、Osp≤1000μM、Cet≤200μM, Dex≤100μM时,对细胞生存率无显著影响(≥90%),亦无刺激分裂和增殖作用。
     2.通过real-time PCR、ELISA检测KS、SVO、Mat、Omt、Sop、Osp对TNF-α和IL-4诱导HaCaT细胞和FBs产生的eotaxin的抑制作用,同时使用Cet、Dex进行干预,作为对照实验。发现KS、SVO、Mat、Omt、Sop、Osp对eotaxin均有不同程度的抑制作用,抑制程度的顺序为KS> Mat> Omt≈Sop> Osp≈SVO。
     3.通过EMSA和western-blotting分别检测在两种皮肤细胞中,Mat、Omt、Sop、Osp、SVO对TNF-a和IL-4诱导NF-κB和STAT6活化的抑制作用,证实Mat、Omt、Sop、Osp均可对NF-κB和STAT6的活化发生不同程度的抑制作用,但SVO只能够部位抑制NF-κB的核转位,而对STAT6磷酸化没有明显影响。
     本部分研究证实了苦参方提取物对小鼠接触性皮炎具有较好的治疗效果,对小鼠过敏皮肤中eotaxin的表达及Eos的募集有明显抑制作用,并可调节机体的免疫状态。并且证明苦参方提取物及其中主要有效成分可通过NF-κB和STAT6两条信号转导通路抑制TNF-a和IL-4引起的eotaxin上调。
     第三部分:Eotaxin特异siRNA微乳治疗小鼠接触性皮炎初步研究
     1. Eotaxin特异siRNA设计与筛选。设计三对小鼠eotaxin基因特异的siRNA,使用转染试剂将siRNA转染至小鼠成纤维细胞株NIH3T3,采用real-time PCR检测TNF-a诱导下eotaxin被抑制的情况,得出eotaxin siRNA UTR为敲除效果最好的siRNA.采用ELISA检测法证实siRNA抑制eotaxin分泌的效果。
     2. Eotaxin siRNA微乳(ESM)的制备。eotaxin siRNA经稳定性修饰(甲氧修饰:糖的2'-OH变成2'-Ome)成stable eotaxin siRNA。处方:10% stable eotaxin siRNA(40.μg/mL或200μg/mL)水溶液,16% plurol oleique cc 497,16% labrasol,58% labrafac cc。考察了微乳的粒径、zeta电位、粘度等性状,并借助冷冻蚀刻电镜观察了微乳存在的状态、使用激光共聚焦显微镜证明了经荧光修饰的ESM (FAM-ESM)的包封效果。稳定性考察证实,微乳本身可以存放于4℃、-20℃三个月不会发生性状改变。且贮存于4℃, siRNA活性可以保持3个月,贮存于-20℃可以保持4个月。
     3.ESM透皮动力学考察。利用小动物整体成像系统观察裸鼠FAM-ESM透过皮肤和皮下扩散的动态过程。ESM透皮吸收1h-2h可达平衡,并可在皮内维持5h左右。与水溶液皮下注射组相比,微乳组的siRNA在皮内可停留更长的时间。
     4.ESM药效学观察。将ESM于小鼠ACD模型激发前24h涂于鼠耳,每日3次给药,可以明显改善过敏状态下的小鼠耳肿胀程度(正常小鼠耳厚度:0.37±0.03mm,过敏小鼠(激发后24h):0.66±0.05 mm,低剂量治疗组:0.44±0.04 mm,P<0.01;高剂量治疗组:0.46±0.06 mm,P<0.01),并无明显不良反应发生。且其对血液和组织中CD4+和CD8+T细胞的影响较小。
     5.ESM对eotaxin的抑制作用考察。ESM可以显著抑制过敏状态下eotaxin的上调,但对外周血Eos影响不大,且对炎症细胞的组织浸润影响较小。而提前48h给药比提前药24h给药,在炎症过程中对eotaxin有更好的敲除效果。
     本部分研究制备了eotaxin特异siRNA微乳,证实了其透皮和治疗效果,ESM对小鼠接触性皮炎具有一定的治疗效果,可以显著抑制小鼠过敏皮肤中eotaxin的分泌。
     通过本课题的研究,进一步证实了eotaxin在过敏性皮肤疾病病理过程中的重要意义,揭示了eotaxin在过敏性皮肤疾病中的表达规律及调控机制。证明了中药方剂苦参方治疗过敏性皮肤疾病的治疗效果和作用机制。初步探讨了以RNAi为基础的治疗皮肤疾病的新的基因治疗方式。
Allergic skin diseases occur when the body's immune system over-reacts to some environmental substances known as allergens, which could produce additive effects as itchy skin lesions. As a prevalent health problem, allergic skin diseases also happen to soldiers and become threaten for them in the severe environment, especially when warfare or disaster happens. Therefore, to investigate the immunologic and pathologic mechanisms of allergic skin diseases might have implications for potential targets of future therapeutic interventions, which take on significant meaning for both research and military.
     Although the pathogenesis of allergic diseases is not fully understood at present, the inflammatory cells infiltrate in the allergy sites is the reason that eventually lead to the occurrence and development of allergic inflammation. Eosinophils are important mediators of allergic responses and are associated with disease severity. Following activation by an immune stimulus, eosinophils in blood migrate to inflammatory sites in tissues in response to chemokines and degranulate to release an array of cytotoxic granule cationic proteins that are capable of inducing tissue damage and dysfunction. However, eotaxin is the most important chemokine for eosinophils recruitment, and its expression and regulation are meaningful for allergic diseases. Therefore, eotaxin could be a new drug therapy target.
     It is reported that eotaxin expressed in the allergic skin diseases, such as atopic dermatitis, contact dermatitis and drug allergic skin diseases. Human skin are composed of epidermis, dermis and subcutaneous tissue, however, the exact site where eotaxin express and how this progress performed in the allergic skin diseases have not been proved. The present study was to determine the location where eotaxin expressing in the allergic skin and its kinetics features by mouse contact dermatitis model, and demonstrate the immunological characteristics in the skin allergic responses including comparing the migration degree and kinetics between CD4+ and CD8+ T lymphocytes. We used interleukin (IL)-4 or tumor necrosis factor-alpha (TNF-α) to stimulate human keratinocytes (HaCaT) and dermal fibroblasts (FBs) to detect eotaxin production changes, and investigate eotaxin expression mechanism by detecting transcription factor nuclear factor-κappaB (NF-κB) as well as transducer and activator of transcription6 (STAT6) which are respectively TNF-αand IL-4 related transcription factor.
     Sophorae Flavescentis Radix decoction was used for the treatment of pruritus and eczema since ancient China, and its major components from extraction are matrine (Mat), oxymatrine (Omt), sophocarpine (Sop), oxysophocarpine (Osp) and schizonepeta tenuifolia volatile oils (SVO). We detected the therapeutic efficacy of mouse contact dermatitis by Kushen recipe (KS) micro-emulsion and investigated the signal transduction mechanism of KS inhibition for TNF-αand IL-4 induced eotaxin expression.
     We also adopted RNA interference (RNAi) which already revolutionized experimental biology by specifically knocking down molecular targets. Since micro-emulsion is ideal for percutaneous drug delivery, we made stability modified eotaxin specific siRNA into W/O micro-emulsion formulation, and evaluated the therapy efficacy on mouse contact dermatitis model.
     Part I:Regulation on eotaxin expression in allergic skin disease
     A. Eotaxin expression in mouse contact dermatitis
     1. Mouse contact dermatitis model establishment. BALB/c mice were adopted in the contact hypersensitivity mouse model. On day 1 and 2 mice were sensitized by applying 1-fluoro-2,4-dinitrobenzene (DNFB) to each side of ears. At day 5 mice were challenged by applying DNFB again, leading to allergic responses on the mice ears. After the treatment, the inflammation lasted for about 5 days, ear swelling assessed by measuring ear thickness, displayed a maximal value of 0.26±0.04 mm, between 24h to 48h, that result is coincident with the tissue pathological testing and inflammatory cell count results. Eosinophils were counted in the whole mice blood. It was found that after challenge 2 hours, eosinophils increased from 0.19±0.042×107/L to 1.94±0.12×107/L, the peak (6.63×1.12×107/L) appeared at 24 h, after that at 72 h it started to reduce and return to the initial at the 5 day. Furthermore we detected the ratio of CD4+to CD8+T lymphocytes from blood and tissue by flow cytometry and immunohistochemistry respectively. It was found that during the hypersensitivity CD4+and CD8+T lymphocytes in blood or tissue have similar increase tendency.
     2. Eotaxin mRNA expression detection in the mice hypersensitive skin by situ hybridization. It was found that majority located at dermis and little amount at epidermis, blood vessel endothelium and cartilaginous tissue. Therefore, when cutaneous allery occurs, dermal fibroblasts are the main source of eotaxin.
     3. Eotaxin expression investigation by real-time PCR, immunohistochemistry, western blot and ELISA. The dynamic expression from mRNA to protein showed that eotaxin secretion started from the first 2 hours, and reached the peak between 6 to 12h and last until 24h, then reduced to initial between 48 to 72h.
     B. Regulation on eotaxin expression in skin cells
     1. HaCaT cells and dermal fibroblasts (FBs) were stimulated with different concentrations of TNF-α(1 ng/mL、10 ng/mL、100 ng/mL) and IL-4 (2 ng/mL、10 ng/mL、50 ng/mL) for 12 h. Real-time PCR and ELISA results demonstrated that both TNF-αand IL-4 could increase eotaxin expression in dose-dependence manner. FBs produced more eotaxin before and after stimulation. And It showed synergy effect treated with TNF-α(100 ng/mL) and IL-4 (10 ng/mL) both in HaCaT cells and fibroblasts.
     2. Dynamic progress of eotaxin expression during 72 hours after treated with 100 ng/mL TNF-αand 10 ng/mL IL-4 detected by real-time PCR and flow cytometry. The results showed that fibroblasts synthesis eotaxin and reached the peak prior to HaCaT cells, while HaCaT lasted longer.
     3. To determine nuclear translocation of NF-κB and STAT6 phosphorylation, EMSA and western blot were used respectively. It was found that TNF-αcould induce NF-κB to conduct nuclear translocation, while IL-4 lead STAT6. Meanwhile, PDTC, a specific antagonist for NF-κB, could inhibit the TNF-α-induced eotaxin upregulation, as well as STAT6 siRNA for IL-4. Therefore, it was demonstrated that after application of TNF-αand IL-4, more eotaxin expressed due to the activation of NF-κB and STAT6 respectively.
     In this part of study, it was proved that eotaxin expression was up-regulated in the mice contact dermatitis, and determined the exact expression site and its dynamic progress, which was in agreement with the cellular experiments results. Fibroblasts produced more eotaxin than HaCaT cells. TNF-αand IL-4 regulated eotaxin through NF-κB and STAT6 respectively.
     Part II:Therapeutic effect and inhibition effect on eotaxin secretion in mouse ACD treated with Kushen Recipe extract
     A. Mechanism of Kushen Recipe extract in mouse ACD therapy
     1. Therapeutic efficacy was assessed by measuring ear thickness 24 hours after sensitization. The results showed that KS could lighten mice ear swelling (P<0.01), ear thickness before sensitization was 0.37±0.03 mm while 24 hours after sensitization was 0.66±0.05 mm. Ear thickness of 1% KS-treated group was 0.47±0.04 mm,5%KS-treated group was 0.49±0.06 mm, Cet-treated group was 0.50±0.04 mm, Dex-treated group was 0.41±0.04 mm. The inflammatory cells infiltration assessed by HE stain confirmed these results.
     2. CD4+ and CD8+ T lymphocytes in tissue were measured by immunohistochemistry and in blood by flow cytometry to evaluate KS effect on immunity regulation. The results showed that KS could regulate CD4+ and CD8+ T lymphocytes ratio to normal condition when allergy take place.
     3. Eosinophils count in mice whole blood. Before treatment the eosinophils amount was 0.19±0.04x107/L,24 hours after sensitization it was 6.63±1.12x107/L, 1%KS-treated group was 4.78±0.66×107/L,5%KS-treated group was 2.24±0.58×107/L, Cet-treated group was 5.22±0.73×107/L, and Dex-treated group was 0.96±0.22×107/L. Therefore, KS could moderate allergy-induced eosinophils recruitment in mice (P<0.01)
     4. Real-time PCR, western-blotting and immunohistochemistry results indicated that eotaxin expression in tissue as well as in blood serum by ELISA was suppressed by KS, therefore, eotaxin is one of KS functional targets.
     B. Mechanism of eotaxin expression inhibited by Kushen Recipe extract in skin cells
     1. KS, SVO, Mat, Omt, Sop, Osp, Cet, Dex effect for HaCaT and fibroblasts viability was investigated by MTT. The results indicated that the toxicity threshold of KS and SVO was 500μg/mL, Mat, Omt, Sop and Osp was 1000μM, Cet was 200μM and Dex was 100μM.
     2. Evaluation of the inhibition effect for TNF-α/IL-4-induced eotaxin expression in HaCaT and fibroblasts of KS, SVO, Mat, Omt, Sop and Osp by real-time PCR and ELISA. Cet and Dex were applied as positive control. It was found that inhibition effect of all the treated group ordered descendingly was KS>Mat>Omt≈Sop>Osp≈SVO.
     3. EMSA and western-blotting were used to determine the inhibition of TNF-α/ IL-4-induced NF-κB and STAT6 nuclear translocation by Mat, Omt, Sop, Osp and SVO respectively. It was demonstrated that all had effect on NF-κB and STAT6 except SVO which had no effect on STAT6.
     The present study found that Kushen Recipe extract had therapeutic effect on mice contact dermatitis, and confirmed its inhibition of eotaxin expression and eosinophils recruitment in hypersensitive skin, also its regulation of immune response. It was demonstrated that Kushen Recipe extract as well as its major effective ingredient could suppress TNF-α/IL-4-induced eotaxin expression by NF-κB and STAT6 signal transduction pathways.
     PartⅢ:Therapeutic action of eotaxin siRNA micro-emulsion on mouse ACD
     1. Eotaxin siRNA design and optimizing. We designed three pairs of mice eotaxin siRNA. They were delivered into mice fibroblasts cell line-NIH3T3 by transfection reagent. Then we used real-time PCR to detect eotaxin mRNA expression with or without TNF-αinduction, and ELISA to confirm the knockdown effect. It was indicated that UTR had the best knockdown efficiency.
     2. Eotaxin siRNA micro-emulsion (ESM) preparation. Methoxy-modification, substitute 2'-OH ribosyl for 2'-O-methyl ribosyl, was applied to stabilize eotaxin siRNA with equal interference efficiency and safeness. ESM contained 10% stable eotaxin siRNA dissolved in water,18% plurol oleique cc 497,18% labrasol and 54% labrafac cc. Properties of ESM including grain diameter, zata potential and viscosity were evaluated. By freeze-etching electron microscopy, the status of micro-emulsion was confirmed, also encapsulation effects of fluorescent modified ESM (FAM-ESM) were demonstrated by laser scanning confocal microscope. The stability assessment indicated that micro-emulsion could conserve for 3 months at 4℃or-20℃. For siRNA, it could preserve for 3 months at 4℃, or 5 months at-20℃.
     3. ESM delivery kinetics measurement. Dynamic FAM-ESM transdermal and diffusion progress in nude mice were recorded by small animal imaging system. It was found that it took 1-2 hour for ESM transdermal delivery and reaching the equilibrium concentration, and ESM could maintain in skin for 5 h. Compared to hypodermic injection, siRNA in mirco-emulsion could conserve longer in skin.
     4. ESM therapeutic action. After applied ESM on mice ears 24 hours before challenge,3 times a day, ears thickness were measured. The results showed that the ear thickness of blank-control group was 0.44±0.04 mm, non-treated group was 0.66±0.05 mm, ESM-treated group was 0.46±0.06 mm, P<0.01. Therefore, ESM could ease mice ear swelling in hypersensitivity without adverse effect. But it rarely influenced peripheral blood eosinophils, inflammatory cells infiltration and CD4+/CD8+T lympocytes ratio in blood and tissue.
     5. Inhibition effect of ESM on eotaxin. ESM could suppress the eotaxin upregulation in allergy. What's more, ESM was more effective in inhibiting eotaxin expression when administrated at 48 h before challenge than 24 h.
     This partial study demonstrated the therapeutic effect of ESM on mice contact dermatitis, also its suppression on eotaxin expression.
     This study revealed eotaxin expression and regulation mechanism in the allergic skin diseases, confirmed the therapeutic effect and mechanism of Kushen Recipe for cutaneous hypersensitivity. We demonstrated the potential of siRNA encapsulated into micro-emulsion in the treatment of allergic skin diseases by transdermal delivery.
引文
[1]Ray MC, Tharp MD, Sullivan TJ, et al. Contact hypersensitivity reactions to dinitrofluorobenzene mediated by monoclonal IgE anti-DNP antibodies[J]. J Immunol,1983;131:1096-102.
    [2]Katayama I, Tanei R, Yokozeki H, et al. Induction of eczematous skin reaction in experimentally induced hyperplastic skin of BALB/c mice by monoclonal anti-DNP IgE antibody:possible implications for skin lesion formation in atopic dermatitis[J]. Int Arch Allergy Appl Immunol,1990;93:148-54.
    [3]Tahara E, Satoh T, Watanabe C, et al.A third-phase cutaneous (very late phase) response after eicitation with dinitrofluorobenzene in passively or actively sensitized mice [J]. Allergol Int,1999; 48:265-273.
    [4]Satoh T, Tahara E, Yamada T, et al. Differential effect of antiallergic drugs on IgE-mediated cutaneous reaction in passively sensitized mice [J]. Pharmacology,2000; 60:97-104.
    [5]刘继勇,胡晋红,朱全刚,等.盐酸西替利嗪对IgE诱导的皮肤三相过敏反应P物质表达的影响.药学学报,2005;40:649-53.
    [6]Nagai H, Sakurai T, Inagaki N, et al. An immunopharmacological study of the biphasic allergic skin reaction in mice[J]. Biol Pharm Bull,1995; 18:239-45.
    [7]Kimata M, Inagaki N, Nagai H. Effects of Luteolin and Other Flavonoids on IgE-Mediated Allergic Reactions[J]. Planta Med,2000;66:25-29
    [8]Yamaguchi S, Tomomatsu N, Kagoshima M, et al.Effect of Y-24180, an antagonist at platelet-activating factor (PAF) receptors, on IgE-mediated cutaneous reactions in mice[J]. Inflamm. res,1998; 47:06-511
    [9]Kim H, Lee E, Lee S, et al. Effect of Rehmannia glutinosa on immediate type allergic reaction[J]. Int J Immunopharmacol,1998; 20:231-240.
    [10]Katayama I, Igawa K, Minatohara K, et al. Topical glucocorticoid augments IgE-mediated passive cutaneous anaphylaxis in Balb/C mice and mast cell deficient WBB6F1 v/v mice[J]. Clin Exp Allergy,1997; 27:1477-1483.
    [11]Nagai H, Abe T, Yamaguchi I, et al. Role of mast cells in the onset of IgEmediated late-phase cutaneous response in mice[J]. J Allergy Clin Immunol,2000;106:91-98.
    [12]Kimata M, Abe T, Yamaguchi I, et al. Prednisolone Inhibits an IgE-Mediated Late-Phase Allergic Cutaneous Reaction by Interfering with the Activation of Mast Cells in Mice[J], Pharmacology, 2001; 62:17-22.
    [13]Togawa M, Kiniwa M, Nagai H, et al. The roles of IL-4, IL-5 and mast cells in the accumulation of eosinophils duringallergic cutaneous late phase reaction in mice[J]. Life Sci,2001;69:699-705.
    [14]Katayama I, Otoyama K, Yokozeki H, et al. Effect of mast cell modulators on IgE-mediated murine biphasic cutaneous reactions[J]. Int Arch Allergy Immunol,1996; 109:390-7.
    [15]Nakamura N, Ochi T, Sawada M, et al. Role of T cells in IgE-dependent triphasic cutaneous reaction caused by dinitrofluorobenzene in the mouse ear:Participation of CD8+T cells[J]. Allergology International,2003;52:31-36.
    [16]Musoh K, Nakamura N, Ueda Y, et al. Possible Role of Nitric Oxide in IgE-Mediated Allergic CutaneousReaction in Mice[J]. Int Arch Allergy Immunol,1998;15:91-96.
    [17]Sakurai T, Inagaki N, Nagai H. The effect of anti-tumor necrosis factor (TNF)-alpha monoclonal antibody on allergic cutaneous late phase reaction in mice[J]. Life Sci,1994;54:PL291-5.
    [18]Nagai H, Sakurai T, Abe T, et al. TNF-alpha participates in an IgE-mediated cutaneous reaction in mast cell deficient, WBB6F1-W/Wv mice[J]. Inflamm Res,19%;45:136-40.
    [19]Inagaki N, Tsunematsu M, Sakurai T, et al. Effect of Prednisolone on IgE-Dependent Biphasic Cutaneous Reaction in BALB/c Mice[J]. Gen Pharmacol,1991;2%:93-97.
    [20]Nagai H, Ueda Y, Tanaka H, et al. Effect of Overproduction of Interleukin 5 in Dinitrofluorobenzene-Induced Allergic Cutaneous Response in Mice[J]. J Pharmacol Exp Ther, 1999; 288:43-50.
    [21]Yokozeki H, Wu MH, Sumi K, et al. In vivo transfection of a cis element'decoy'against signal transducers and activators of transcription 6(STAT6)-binding site ameliorates IgE-mediated late-phase reaction in an atopic dermatitis mouse model [J]. Gene Ther,2004;11:1753-1762.
    [22]Nagai H, Takeda H, Yamaguchi S, et al. The Effect of a Thromboxane A2 Receptor Antagonist BAY-u-3405 on Experimental Allergic Reactions[J]. Prostaglandins,1995;50:75-87.
    [23]Katayama 1, Minatohara K, Yokozeki H, et al.Topical vitamin D3 downregulates IgE-mediated murine biphasic cutaneous reactions[J]. Int Arch Allergy Immunol,,1996;111:71-6.
    [24]Nishimuta K, Ito Y. Effects of metronidazole and tinidazole ointments on models for inflammatory dermatitis in mice[J]. Arch Dermatol Res,2003; 294:544-551.
    [25]Inagaki N, Sakurai T, Abe T, et al. Characterization of Antihistamines using Biphasic Cutaneous Reaction in BALB/c mice [J]. Life Sci,1998;63:145-150.
    [26]Watanabe C, Hase K, Oku T, et al. Effect of spikelets of Miscanthus sinensis on IgE-mediated biphasic cutaneous reaction in mice[J]. Planta Med,1998;64:12-7.
    [27]Watanabe C, Satoh T, Tahara E, et al. Inhibitory mechanisms of glycoprotein fraction derived from Miscanthus sinensis for the immediate phase response of an IgE-mediated cutaneous reaction [J]. Biol Pharm Bull,1999;22:26-30.
    [28]Tahara E, Satoh T, Toriizuka K, et al. Effect of Shimotsu-to (a Kampo medicine, Si-Wu-Tang) and its constituents on triphasic skin reaction in passively sensitized mice[J]. J Ethnopharmacol,1999;68:219-228.
    [29]Tatsumi T, Yamada T, Nagai H, et al. A Kampo Formulation:Byakko-ka-ninjin-to (Bai-Hu-Jia-Ren-Sheng-Tang) Inhibits IgE-Mediated Triphasic Skin Reaction in Mice:The Role of Its Constituents in Expression of the Efficacy [J]. Biol Pharm Bull,2001;24:284-290.
    [30]Yamamoto Y, Majima T, Saiki I, et al. Pharmaceutical evaluation of Glycyrrhiza uralensis roots cultivated in eastern Nei-Meng-Gu of China[J]. Biol Pharm Bull,2003; 26:1144-9.
    [31]Inagaki N, Shibata T, Itoh T, et al. Inhibition of IgE-dependent Mouse Triphasic Cutaneous Reaction by a Boiling Water Fraction Separated from Mycelium of Phellinus linteus[J]. Evid Based Complement Alternat Med,2005;2:369-374.
    [1]陈慰峰主编.医学免疫学.第三版.北京:人民卫生出版社,2003;197-201.
    [2]Ono SJ. Molecular genetics of allergic diseases. Annu. Rev. Immunol.2000; 18:347-66.
    [3]尹佳.2005年7月8日是首个过敏性疾病日.中华医学杂志.2005;85(25):1769.
    [4]Laughter D, Istvan JA, Tofte SJ, Hanifin JM. The prevalence of atopic dermatitis in Oregon schoolchildren. J Am Acad Dermatol.2000 Oct; 43(4):649-55.
    [5]张挹芳,陈惠娟,过敏调控-对过敏性疾病诊治的理性思考.医学与哲学.2004;25(2):16-7.
    [6]刘瑞玲.过敏性疾病的诊断与治疗.中国临床医生.2003;1(9):4-5.
    [7]周光炎主编.免疫学原理.第一版.上海:上海科学技术出版社,2007,229-44.
    [8]Van Oosterhout AJM, Bloksma N. Regulatory T-lymphocytes in asthma. Eur Resp J.2005 Nov;26(5):918-32.
    [9]Hallgren J, Pejler G. Biology of mast cell tryptase. An inflammatory mediator. FEBS J.2006 May;273(9):1871-95.
    [10]Rivera J. Molecular adapters in FcεRI signaling and the allergic response. Curr Opin Immunol. 2002 Dec;14(6):688-93.
    [11]Romagnani S. Regulatory T cells:which role in the pathogenesis and treatment of allergic disorder? Allergy.2006 Jan;61(1):3-14.
    [12]Janeway CA, Traver P, Walport M, et al.. Immunobiology. New York:Garland Sci Publ,2005.
    [13]Rothenberg, ME. Eosinophilia. N Engl J Med.1998 May 28;338(22):1592-600.
    [14]Silberstein DS. Eosinophil function in health and disease. Crit Rev Oncol Hematol.1995 Apr; 19(l):47-77.
    [15]Corrigan CJ, Kay AB. T cells and eosinophils in the pathogenesis of asthma. Immunol Today.1992 Dec; 13(12):501-7.
    [16]Walsh ER, Sahu N, Kearley J, Benjamin E, Kang BH, Humbles A, August A. Strain-specific requirement for eosinophils in the recruitment of T cells to the lung during the development of allergic asthma. J Exp Med.2008 Jun 9; 205(6):1285-92.
    [17]Conroy DM, Williams TJ. Eotaxin and the attraction of eosinophils to the asthmatic lung. Respir Res.2001;2(3):150-6. Epub 2001 Mar 29.
    [18]Denburg JA, Messner H, Lim B, Jamal N, Telizyn S, Bienenstock J. Clonal origin of human basophil/mast cells from circulating multipotent hemopoietic progenitors. Blood.1985 Aug;66(2):312-8.
    [19]Denburg JA, Telizyn S, Messner H, Lim B, Jamal N, Ackerman SJ, Gleich GJ, Bienenstock J. Heterogeneity of human peripheral blood eosinophil-type colonies:evidence for a common basophil-eosinophil progenitor. Blood.1985, (66):312-8.
    [20]Leiferman, KM, Gleich, GJ. In Atopic dermatitis:from pathogenesis to treatment; Leung DYM., Ed.; Springer-Verlag:Heidelberg,1996,145-72.
    [21]Sticherling M, Kiipper M, Koltrowitz F, Bornscheuer E, Kulke R, Klinger M, Wilhelm D, Kameyoshi Y, Christophers E, Schroder JM. Detection of the chemokine RANTES in cytokine-stimulated human dermal fibroblasts. J Invest Dermatol.1995 Oct; 105(4):585-91.
    [22]Stellato C, Beck LA.2000. Expression of eosinophil-specific chemokines by human epithelial cells. Chem Immunol.2000;76:156-76.
    [23]Petering H, Hochstetter R, Kimmig D, Smolarski R, Kapp A, Elsner J. Detection of MCP-4 in dermal fibroblasts and its activation of the respiratory burst in human eosinophils. J Immunol.1998 Jan 15; 160(2):555-8.
    [24]Garcia-Zepeda EA, Combadiere C, Rothenberg ME, Sarafi MN, Lavigne F, Hamid Q, Murphy PM, Luster AD. Human monocyte chemoattractant protein (MCP)-4 is a novel CC chemokine with activities on monocytes, eosinophils, and basophils induced in allergic and nonallergic inflammation that signals through the CC chemokine receptors (CCR)-2 and-3. J Immunol.1996 Dec 15;157(12):5613-26.
    [25]Kita H, Gleich GJ. Chemokines active on eosinophils:potential roles in allergic inflammation. J Exp Med.1996 Jun 1;183(6):2421-6.
    [26]Resnick MB, Weller PF. Mechanisms of eosinophil recruitment. Am J Respir Cell Mol Biol.1993 Apr;8(4):349-55.
    [27]Simson L, Foster PS. Chemokine and cytokine cooperativity:eosinophil migration in the asthmatic response. Immunol Cell Biol.2000 Aug;78(4):415-22.
    [28]Foster PS, Mould AW, Yang M, Mackenzie J, Mattes J, Hogan SP, Mahalingam S, Mckenzie AN, Rothenberg ME, Young IG, Matthaei KI, Webb DC. Elemental signals regulating eosinophil accumulation in the lung. Immunol Rev.2001 Feb; 179:173-81.
    [29]Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med. 1995 Oct1;182(4):1169-74..
    [30]M attoli S, Stacey MA, Sun G, Bellini A, Marini M. Eotaxin expression and eosinophilic inflammation in asthma. Biochem Biophys Res Commun.1997 Jul 18; 236(2):299-301.
    [31]Zeibecoglou K, Ying S, Meng Q, Kay AB, Robinson DS, Papageorgiou N. Expression of eotaxin in induced sputum of atopic and nonatopic asthmatics. Allergy.2000 Nov;55(11):1042-8.
    [32]. Ponath PD, Qin S, Ringler DJ, Clark-Lewis I, Wang J, Kassam N, Smith H, Shi X, Gonzalo JA, Newman W, Gutierrez-Ramos JC, Mackay CR. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J Clin Invest.1996 Feb 1; 97(3):604-12.
    [33]Garcia-Zepeda EA, Rothenberg ME, Ownbey RT, Celestin J, Leder P, Luster AD. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med.1996 Apr; 2(4):449-56.
    [34]Jose PJ, Griffiths-Johnson DA, Collins PD, Walsh DT, Moqbel R, Totty NF, Truong O, Hsuan JJ, Williams TJ. Eotaxin:a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med.1994 Mar 1; 179(3):881-7.
    [35]Rothenberg ME. Eotaxin. An essential mediator of eosinophil trafficking into mucosal tissues. Am J Respir Cell Mol Biol.1999 Sep;21(3):291-5.
    [36]Palframan RT, Collins PD, Williams TJ, Rankin SM. Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood.1998 Apr 1;91(7):2240-8.
    [37]Xu J, Jiang F, Nayeri F, Zetterstrom O. Apoptotic eosinophils in sputum from asthmatic patients correlate negatively with levels of IL-5 and eotaxin. Respir Med.2007 Jul; 101 (7):1447-54. Epub 2007 Mar 26.
    [38]Farahi N, Cowburn AS, Upton PD, Deighton J, Sobolewski A, Gherardi E, Morrell NW, Chilvers ER. Eotaxin-1/CC Chemokine Ligand 11:A Novel Eosinophil Survival Factor Secreted by Human Pulmonary Artery Endothelial Cells. J Immunol.2007 Jul 15; 179(2):1264-73.
    [39]Yamada H, Hirai K, Miyamasu M, Iikura M, Misaki Y, Shoji S, Takaishi T, Kasahara T, Morita Y, Ito K. Eotaxin is a potent chemotaxin for human basophils. Biochem Biophys Res Commun.1997 Feb13;231(2):365-8.
    [40]Uguccioni M, Mackay CR, Ochensberger B, Loetscher P, Rhis S, LaRosa GJ, Rao P, Ponath PD, Baggiolini M, Dahinden CA. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest.1997 Sep 1; 100(5):1137-43.
    [41]Quackenbush EJ, Wershil BK, Aguirre V, Gutierrez-Ramos JC. Eotaxin modulates myelopoiesis and mast cell development from embryonic hematopoietic progenitors. Blood.1998 Sep 15;92(6):1887-97.
    [42]Schroder JM, Mochizuki M. The role of chemokines in cutaneous allergic inflammation. Biol Chem.1999 Jul-Aug;380(7-8):889-96.
    [43]Simon D, Braathen LR, Simon HU. Eosinophils and atopic dermatitis. Allergy.2004 Jun;59(6):561-70.
    [44]Griffiths-Johnson DA, Collins PD, Rossi AG, Jose PJ, Williams TJ. The chemokine, eotaxin, activates guinea-pig eosinophils in vitro and causes their accumulation into the lung in vivo. Biochem Biophys Res Commun.1993 Dec 30; 197(3):1167-72.
    [45]Jose PJ, Griffiths-Johnson DA, Collins PD, Walsh DT, Moqbel R, Totty NF, Truong O, Hsuan JJ, Williams TJ. Eotaxin:a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med 1994 Mar 1; 179(3):881-7.
    [46]Garcia-Zepeda EA, Rothenberg ME, Weremowicz S, Sarafi MN, Morton CC, Luster AD, Genomic organization, complete sequence, and chromosomal location of the gene for human eotaxin (SCYA11), an eosinophil-specific CC chemokine. Genomics.1997 May 1; 41(3):471-6.
    [47]Hein H, Schluter C, Kulke R, Christophers E, Schroder JM, Bartels J. Genomic organisation, sequence, and transcriptional regulation of the human eotaxin gene. Biochem Biophys Res Commun. 1997 Aug 28;237(3):537-42.
    [48]Lamkhioued B, Renzi PM, Abi-Younes S, Garcia-Zepada EA, Allakhverdi Z, Ghaffar O, Rothenberg MD, Luster AD, Hamid Q. Increased expression of eotaxin in bronchoalveolar lavage and airways of asthmatics contributes to the chemotaxis of eosinophils to the site of inflammation. J Immunol.1997 Nov 1;159(9):4593-601.
    [49]Nakamura H, Haley KJ, Nakamura T, Luster AD, Lilly CM. Differential regulation of eotaxin expression by TNF-alpha and PMA in human monocytic U-937 cells. Am J Physiol.1998 Sep;275(3 Pt 1):L601-10.
    [50]Kitaura M, Nakajima T, Imai T, Harada S, Combadiere C, Tiffany HL, Murphy PM, Yoshie O. Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. J Biol Chem.1996 Mar 29; 271(13):7725-30.
    [51]Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA, Rothenberg ME, Drazen JM, Luster AD. Expression of eotaxin by human lung epithelial cells: induction by cytokines and inhibition by glucocorticoids. J Clin Invest.1997 Apr 1; 99(7):1767-73.
    [52]Ying S, Robinson DS, Meng Q, Rottman J, Kennedy R, Ringler DJ, Mackay CR, Daugherty BL, Springer MS, Durham SR, Williams TJ, Kay AB. Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur J Immunol.1997 Dec;27(12):3507-16.
    [53]Katayama H, Yokoyama A, Kohno N, Sakai K, Hiwada K, Yamada H, Hirai K:Production of eosinophilic chemokines by normal pleural mesothelial cells. Am J Respir Cell Mol Biol.2002 Apr; 26(4):398-403.
    [54]Mochizuki M, Bartels J, Mallet AI, Christophers E, Schroder JM. IL-4 induces eotaxin:a possible mechanism of selective eosinophil recruitment in helminth infection and atopy. J Immunol.1998 Jan 1;160(1):60-8.
    [55]Bartels J, Schluter C, Richter E, Noso N, Kulke R, Christophers E, Schroder JM. Human dermal fibroblasts express eotaxin:molecular cloning, mRNA expression, and identification of eotaxin sequence variants. Biochem Biophys Res Commun.1996 Aug 23; 225(3):1045-51.
    [56]Miyamasu M, Misaki Y, Yamaguchi M, Yamamoto K, Morita Y, Matsushima K, Nakajima T, Hirai K. Regulation of human eotaxin generation by Thl-/Th2-derived cytokines. Int Arch Allergy Immunol.2000 May; 122 Suppl 1:54-8.
    [57]Sato E, Nelson DK, Koyama S, Hoyt JC, Robbins RA. Inflammatory cytokines modulate eotaxin release by human lung fibroblast cell line. Exp Lung Res.2001 Mar; 27(2):173-83.
    [58]Terada N, Hamano N, Nomura T, Numata T, Hirai K, Nakajima T, Yamada H, Yoshie O, Ikeda-Ito T, Konno A. Interleukin-13 and tumour necrosis factor-alpha synergistically induce eotaxin production in human nasal fibroblasts. Clin Exp Allergy.2000 Mar; 30(3):348-55.
    [59]Minshall EM, Cameron L, Lavigne F, Leung DY, Hamilos D, Garcia-Zepada EA, Rothenberg M, Luster AD, Hamid Q. Eotaxin mRNA and protein expression in chronic sinusitis and allergen-induced nasal responses in seasonal allergic rhinitis. Am J Respir Cell Mol Biol.1997 Dec; 17(6):683-90.
    [60]Ying S, Robinson DS, Meng Q, Barata LT, McEuen AR, Buckley MG, Walls AF, Askenase PW, Kay AB. C-C chemokines in allergen-induced late-phase cutaneous responses in atopic subjects: association of eotaxin with early 6-hour eosinophils, and of eotaxin-2 and monocyte chemoattractant protein-4 with the later 24-hour tissue eosinophilia, and relationship to basophils and other C-C chemokines (monocyte chemoattractant protein-3 and RANTES). J Immunol.1999 Oct 1; 63(7):3976-84.
    [61]Hein H, Schluter C, Kulke R, Christophers E, Schroder JM, Bartels J. Genomic organization, sequence, and transcriptional regulation of the human eotaxin gene. Biochem Biophys Res Commun. 1997 Aug28;237(3):537-42.
    [62]Jean-Baptiste S, O'Toole EA, Chen M, Guitart J, Paller A, Chan LS. Expression of eotaxin, an eosinophil-selective chemokine, parallels eosinophil accumulation in the vesiculobullous stage of incontinentia pigmenti. Clin Exp Immunol.2002 Mar; 127(3):470-8.
    [63]Kumagai N, Fukuda K, Ishimura Y, Nishida T. Synergistic induction of eotaxin expression in human keratocytes by TNF-alpha and IL-4 or IL-13. Invest Ophthalmol Vis Sci.2000 May; 41(6):1448-53.
    [64]Amerio P, Frezzolini A, Feliciani C, Verdolini R, Teofoli P, De Pita O, Puddu P. Eotaxins and CCR3 receptor in inflammatory and allergic skin diseases:therapeutical implications. Curr Drug Targets Inflamm Allergy.2003 Mar; 2(1):81-94.
    [65]Fan GK, Wang H, Takenaka H. Eosinophil infiltration and activation in nasal polyposis. Acta Otolaryngol.2007 May; 127(5):521-6.
    [66]Conroy DM, Humbles AA, Rankin SM, Palframan RT, Collins PD, Griffiths-Johnson DA, Jose PJ, Williams TJ. The role of the eosinophil-selective chemokine, eotaxin, in allergic and non-allergic airways inflammation. Mem Inst Oswaldo Cruz.1997; 92 Suppl 2:183-91.
    [67]Ahrens R, Waddell A, Seidu L, Blanchard C, Carey R, Forbes E, Lampinen M, Wilson T, Cohen E, Stringer K, Ballard E, Munitz A, Xu H, Lee N, Lee JJ, Rothenberg ME, Denson L, Hogan SP. Intestinal macrophage/epithelial cell-derived CCL11/eotaxin-1 mediates eosinophil recruitment and function in pediatric ulcerative colitis. J Immunol.2008 Nov 15;181(10):7390-9
    [68]Fan GK, Wang H, Takenaka H. Eosinophil infiltration and activation in nasal polyposis. Acta Otolaryngol.2007 May;127(5):521-6.
    [69]Engelhart K, El Hindi T, Biesalski HK, Pfitzner I. In vitro reproduction of clinical hallmarks of eczematous dermatitis in organotypic skin models. Arch Dermatol Res.2005 Jul; 297(1):1-9. Epub 2005Jun11.
    [70]Wakugawa M, Nakamura K, Hino H, Toyama K, Hattori N, Okochi H, Yamada H, Hirai K, Tamaki K, Furue M. Elevated levels of eotaxin and interleukin-5 in blister fluid of bullous pemphigoid:correlation with tissue eosinophilia. Br J Dermatol.2000 Jul; 143(1):112-6.
    [71]Gaga M, Frew AJ, Varney VA, Kay AB. Eosinophil activation and T lymphocyte infiltration in allergen-induced late phase skin reactions and classical delayed-type hypersensitivity. J Immunol. 1991 Aug 1;147(3):816-22
    [72]Berkman N, Ohnona S, Chung FK, Breuer R. Eotaxin-3 but not eotaxin gene expression is upregulated in asthmatics 24 hours after allergen challenge. Am J Respir Cell Mol Biol.2001 Jun; 24(6):682-7.
    [73]Brown JR, Kleimberg J, Marini M, Sun G, Bellini A, Mattoli S. Kinetics of eotaxin expression and its relationship to eosinophil accumulation and activation in bronchial biopsies and bronchoalveolar lavage (BAL) of asthmatic patients after allergen inhalation. Clin Exp Immunol.1998 Nov; 114(2):137-46.
    [74]Papadopoulos NG, Papi A, Meyer J, Stanciu LA, Salvi S, Holgate ST, Johnston SL. Rhinovirus infection up-regulates eotaxin and eotaxin-2 expression in bronchial epithelial cells. Clin Exp Allergy.2001 Jul; 31(7):1060-6.
    [75]Humbles AA, Conroy DM, Marleau S, Rankin SM, Palframan RT, Proudfoot AE, Wells TN, Li D, Jeffery PK, Griffiths-Johnson DA, Williams TJ, Jose PJ. Kinetics of eotaxin generation and its relationship to eosinophil accumulation in allergic airways disease:analysis in a guinea pig model in vivo. J Exp Med.1997 Aug 18;186(4):601-12.
    [76]Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med.1997 Feb 17; 185(4):785-90.
    [77]Yang Y, Loy J, Ryseck RP, Carrasco D, Bravo R. Antigen-induced eosinophilic lung inflammation develops in mice deficient in chemokine eotaxin. Blood.1998 Nov 15; 92(10):3912-23.
    [78]Kumar RK, Thomas PS, Seetoo DQ, Herbert C, McKenzie AN, Foster PS, Lloyd AR. Eotaxin expression by epithelial cells and plasma cells in chronic asthma. Lab Invest.2002 Apr; 82(4):495-504.
    [79]Ben-Yehuda C, Bader R, Puxeddu I, Levi-Schaffer F, Breuer R, Berkman N. Airway eosinophil accumulation and eotaxin-2/CCL24 expression following allergen challenge in BALB/c mice. Exp Lung Res.2008 Oct; 34(8):467-79.
    [80]Steffen M, Abboud M, Potter GK, Yung YP, Moore MA. Presence of tumour necrosis factor or a related factor in human basophil/mast cells. Immunology.1989 Mar; 66(3):445-50.
    [81]Vecchiarelli A, Siracusa A, Cenci E, Puliti M, Abbritti G. Effect of corticosteroid treatment on interleukin-1 and tumour necrosis factor secretion by monocytes from subjects with asthma. Clin Exp Allergy.1992 Mar; 22(3):365-70.
    [82]Howard M, Farrar J, Hilfiker M, Johnson B, Takatsu K, Hamaoka T, Paul WE. Identification of a T cell-derived b cell growth factor distinct from interleukin 2. J Exp Med.1982 Mar 1; 155(3):914-23.
    [83]Brown MA, Pierce JH, Watson CJ, Falco J, lhle JN, Paul WE. B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell.1987 Aug 28; 50(5):809-18.
    [84]Seder RA, Paul WE, Ben-Sasson SZ, LeGros GS, Kagey-Sobotka A, Finkelman FD, Pierce JH, Plaut M. Production of interleukin-4 and other cytokines following stimulation of mast cell lines and in vivo mast cells/basophils. Int Arch Allergy Appl Immunol.1991; 94(1-4):137-40.
    [85]Stellato C, Matsukura S, Fal A, White J, Beck LA, Proud D, Schleimer RP. Differential regulation of epithelial-derived C-C chemokine expression by IL-4 and the glucocorticoid budesonide. J Immunol.1999 Nov 15;163(10):5624-32.
    [86]Matsukura S, Stellato C, Plitt JR, Bickel C, Miura K, Georas SN, Casolaro V, Schleimer RP. Activation of eotaxin gene transcription by NF-kappa B and STAT6 in human airway epithelial cells. J Immunol.1999 Dec 15;163(12):6876-83.
    [87]Matsukura S, Stellato C, Gaurus SN, Casolaro V, Plitt JR, Miura K, et al. Interleukin-13 upregulates eotaxin expression in airway epithelial cells by a STAT6-dependent mechanism. Am J Respir Cell Mol Biol 2001; 24:755-61.
    [88]Baldwin AS Jr. The NF-kappa B and I kappa B proteins:new discoveries and insights. Annu Rev Immunol.1996; 14:649-83.
    [89]Hou J, Schindler U, Henzel WJ, Ho TC, Brasseur M, McKnight SL. An interleukin-4-induced transcription factor:IL-4 Stat. Science.1994 Sep 16; 265(5179):1701-6.
    [90]Mikita T, Campbell D, Wu P, Williamson K, Schindler U. Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol Cell Biol.1996 Oct; 16(10):5811-20.
    [91]Bochner BS, Undem BJ, Lichtenstein LM. Immunological aspects of allergic asthma. Annu Rev Immunol.1994; 12:295-335.
    [92]Akimoto T, Numata F, Tamura M, Takata Y, Higashida N, Takashi T, Takeda K, Akira S. Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J Exp Med.1998 May 4; 187(9):1537-42.
    [93]Kuperman D, Schofield B, Wills-Karp M, Grusby MJ. Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med.1998 Mar 16; 187(6):939-48.
    [94]Obata T, Nambu F, Kitagawa T, Terashima H, Toda M, Okegawa T, Kawasaki A. ONO-1078:An antagonist of leukotrience. Adv Prostaglandin Thromboxane Leukot Res.1987;17A:540-3.
    [95]Takehara S, Mikashima H, Muramoto Y, Terasawa M, Setoguchi M, Tahara T. Pharmacological actions of Y-24180, a new specific antagonist of platelet activating factor (PAF). Prostaglandins. 1990 Dec;40(6):571-83.
    [96]陈宏,李萍,毛舒和.抗IgE抗体治疗过敏性疾病新进展.中国医学研究与临床,2003,1(9):56-9.
    [97]付捷,王子坤,韩丽梅.中医诊治过敏性疾病的特点及优势.中华综合临床医学杂志.2003,5(3):71.
    [98]刘梅,刘雪英,程建峰.苦参碱的药理研究进展中国中药杂志.2003,28(9);80]-4.
    [99]曾南,沈映君,刘旭光,等.荆芥挥发油抗炎作用研究.中药药理与临床.1998,14(6);24-6.
    [100]林文,张俊平,胡振林,等.苦参碱对细胞脂多糖诱导大鼠枯否细胞释放肿瘤坏死因子及白细胞介素-6的影响.药学学报,1997,32(2):93-6.
    [101]李正蓉.苦参素药理与临床研究进展.华西药学杂志2003,18(6);435-7.
    [102]裴仁九,肖玲,樊小平.苦参碱对小鼠免疫功能的影响.海峡药学,1998,0(2):7-9.
    [103]吴玉兰,丁安伟,冯有龙.荆芥及其相关药材挥发油的成分研究.中草药,2000,31(12):894-97.
    [104]Kay AB, Phipps S, Robinson DS. A role for eosinophils in airway remodelling in asthma. Trends Immunol.2004 Sep;25(9):477-82.
    [105]Dunnhill MS,. Pulmonary fibrosis. Histopathology.1990 Apr; 16(4):321-9.
    [106]Peterson MW, Monick M, Hunninghake GW. Prognostic role of eosinophil in pulmonary fibrosis. Chest.1987Jul;92(1):51-6.
    [107]Noguchi H, Kephart GM, Colby TV, Gleich GJ Tissue eosinophilia and eosinophil degranulation in syndromes associated with fibrosis. Am J Pathol.1992 Feb;140(2):521-8.
    [108]Robinson DS, Kay AB, Wardlaw AJ. Eosinophils. Clin Allergy Immunol.2002; 16:43-75.
    [109]Dykxhoorn DM, Novina CD, Sharp P. Killing the messenger:Short RNAs that silence gene expression. Nat Rev Mol Cell Biol.2003 Jun;4(6):457-67.
    [110]Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature.2001 May 24;411(6836):494-8.
    [111]Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev.2001 Jan 15; 15(2):188-200
    [112]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998 Feb 19;391(6669):806-11.
    [113]Hannon GJ. RNA interferences. Nature.2002 Jul 11;418(6894):244-51.
    [114]McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. 2002 Oct;3(10):737-47.
    [115]Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi:Double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell.2000 Mar 31;101(1):25-33.
    [116]Liu G, Wong-Staal F, Li QX. Development of new RNAi therapeutics. Histol Histopathol.2007 Feb;22(2):211-7.
    [117]Ding C, Li J, Zhang X. Bertilimumab Cambridge Antibody Technology Group. Curr Opin Investig Drugs.2004 Nov;5(11):1213-8.
    [118]Hall AH, Wan J, Shaughnessy EE, Ramsay Shaw B, Alexander KA. RNA interference using boranophosphate siRNAs:structure-activity relationships. Nucleic Acids Res.2004 Nov 15;32(20):5991-6000.
    [119]Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA. In vivo activity of nuclease-resistant siRNAs. RNA.2004 May; 10(5):766-71.
    [120]Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. Czubayko F. and Aigner A. (2005). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther.2005 Mar;12(5):461-6.
    [121]Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature.2004 Nov 11;432(7014):173-8.
    [122]Peltola S, Saarinen-Savolainen P, Kiesvaara J, Suhonen TM, Urtti A. Microemulsions for topical delivery of estradiol. Int J Pharm.2003 Mar 26;254(2):99-107.
    [123]Rhee YS, Choi JG, Park ES, Chi SC. Transdermal delivery of ketoprofen using microemulsions. Int J Pharm.2001 Oct9;228(1-2):161-70.
    [124]寇欣.微乳给药系统的研究进展.天津药学,2005,17(6):52-5.
    [125]吴晓辉,刘玉玲等.微乳作为经皮给药载体的研究进展.中国药学杂志,2006,41(22):681.
    [126]Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci.2006 Nov 16;123-126:369-85. Epub 2006 Jul 14.
    [127]Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med.1996 Jan1;183(1):195-201.
    [128]Alam, R, Stafford S, Kamper G. The p38 MAP kinase and myosin light chain kinase (MLCK) critically regulate eosinophil chemotaxis in response to eotaxin. J. Allergy Clin. Immunol.1999, 103(1, Pt.2):S56.
    [129]Zimmermann N, Conkright JJ, Rothenberg ME. CC chemokine receptor-3 undergoes prolonged ligand-induced internalization. J Biol Chem.1999 Apr 30;274(18):12611-8.
    [130]Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988 Mar; 106(3):761-71.
    [131]Schroder JM, Sticherling M, Henneicke HH, Preissner WC, Christophers E. IL-1 alpha or tumor necrosis factor-alpha stimulate release of three NAP-1/IL-8-related neutrophil chemotactic proteins in human dermal fibroblasts. J Immunol.1990 Mar 15; 144(6):2223-32.
    [132]Rippmann JF, Schnapp A, Weith A, Hobbie S. Gene silencing with STAT6 specific siRNAs blocks eotaxin release in IL-4/TNFalpha stimulated human epithelial cells. FEBS Lett.2005 Jan 3; 579(1):173-8.
    [133]. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.2001 Dec;25(4):402-8.
    [134]Okabe T, Matsushima K. Regulation of ALP activity by TNF-alpha on human dental pulp. J Endod.2006 Jun;32(6):516-20. Epub 2006 Apr 4.
    [135]Gorbachev AV, Fairchild RL. Regulatory role of CD4+ T cells during the development of contact hypersensitivity responses. Immunol Res.2001;24(1):69-77.
    [136]Gorbachev AV, Fairchild RL. CD4+ T cells regulate CD8+ T cell-mediated cutaneous immune responses by restricting effector T cell development through a Fas ligand-dependent mechanism. J Immunol.2004 Feb 15;172(4):2286-95.
    [137]Krasteva M, Kehren J, Horand F, Akiba H, Choquet G, Ducluzeau MT, Tedone R, Garrigue JL, Kaiserlian D, Nicolas JF. Dual role of dendritic cells in the induction and down-regulation of antigen-specific cutaneous inflammation.1998 Feb 1;160(3):1181-90.
    [138]Nagai H, Ueda Y, Tanaka H, Hirano Y, Nakamura N, Inagaki N, Takatsu K, Kawada K. Effect of overproduction of interleukin 5 on dinitrofluorobenzene-induced allergic cutaneous response in mice. J Pharmacol Exp Ther.1999 Jan;288(1):43-50.
    [139]Moorhead JW. Soluble factors in tolerance and contact sensitivity to 2,4-dinitrofluorobenzene in mice. I. Suppression of contact sensitivity by soluble suppressor factor released in vitro by lymph node cell populations containing specific suppressor cells. J Immunol.1977 Jul; 119(1):315-21.
    [140]Bour H, Peyron E, Gaucherand M, Garrigue JL, Desvignes C, Kaiserlian D, Revillard JP, Nicolas JF. Major histocompatibility complex class I-restricted CD8+ T cells and class llrestricted CD4+ T cells, respectively, mediate and regulate contact sensitivity to dinitrofluorobenzene. Eur J Immunol. 1995 Nov;25(11):3006-10.
    [141]Nagai H, Ueda Y, Tanaka H, Hirano Y, Nakamura N, Inagaki N, Takatsu K, Kawada K. Effect of overproduction of interleukin 5 on dinitrofluorobenzene-induced allergic cutaneous response in mice. J Pharmacol Exp Ther.1999 Jan;288(l):43-50.
    [142]Katayama I, Tanei R, Yokozeki H, Nishioka K, Dohi Y. Induction of eczematous skin reaction in experimentally induced hyperplastic skin of BALB/c mice by monoclonal anti-DNP IgE antibody: possible implications for skin lesion formation in atopic dermatitis. Int Arch Allergy Appl Immunol. 1990;93(2-3):148-54.
    [143]Jean-Baptiste S, O'Toole EA, Chen M, Guitart J, Paller A, Chan LS. Expression of eotaxin, an eosinophil-selective chemokine, parallels eosinophil accumulation in the vesiculobullous stage of incontinentia pigmenti. Clin Exp Immunol.2002 Mar;127(3):470-8.
    [144]Pivarcsi A, Homey B. Chemokine networks in atopic dermatitis:traffic signals of disease. Curr Allergy Asthma Rep.2005 Jul;5(4):284-90.
    [145]Werfel T. TThe role of leukocytes, keratinocytes, and allergen-specific IgE in the development of atopic dermatitis. J Invest Dermatol.2009 Aug; 129(8):1878-91. Epub 2009 Apr 9.
    [146]Bieber T. The pro-and anti-inflammatory properties of human antigen-presenting cells expressing the high affinity receptor for IgE (Fc epsilon RI). Immunobiology.2007;212(6):499-503. Epub 2007 Apr 16.
    [147]Werfel T. The role of leukocytes, keratinocytes, and allergen-specific IgE in the development of atopic dermatitis. Journal of Investigative J Invest Dermatol.2009 Aug; 129(8):1878-91. Epub 2009 Apr 9.
    [148]Marras TK, Wallace RJ Jr, Koth LL, Stulbarg MS, Cowl CT, Daley CL. Hypersensitivity Pneumonitis Reaction to Mycobacterium avium in Household Water. Chest.2005 Feb;127(2):664-71.
    [149]Costabel U. CD4/CD8 ratios in bronchoalveolar lavage fluid:of value for diagnosing sarcoidosis? Eur Respir J.1997 Dec; 10(12):2699-700.
    [150]Pichler WJ, Yawalkar N, Britschgi M, Depta J, Strasser I, Schmid S, Kuechler P, Naisbitt D. Cellular and molecular pathophysiology of cutaneous drug reactions. Am J Clin Dermatol. 2002;3(4):229-38.
    [151]Teitelbaum JE, Fox VL, Twarog FJ, Nurko S, Antonioli D, Gleich G, Badizadegan K, Furuta GT. Eosinophilic esophagitis in children:immunopathological analysis and response to fluticasone propionate. Gastroenterology.2002 May;122(5):1216-25.
    [152]Lucendo AJ, Navarro M, Comas C, Pascual JM, Burgos E, Santamaria L, Larrauri J. Immunophenotypic characterisation and quantification of the epithelial inflammatory infiltrate in eosinophilic esophagitis through stereology:An analysis of the disease's cellular mechanisms and the esophagus'immunological capacity. Am J Surg Pathol.2007 Apr;31(4):598-606.
    [153]Lucendo AJ, De Rezende L, Comas C, Caballero T, Bellon T. Treatment with topical steroids downregulates IL-5, eotaxin-1/CCL11, and eotaxin-3/CCL26 gene expression in eosinophilic esophagitis. Am J Gastroenterol.2008 Sep;103(9):2184-93.
    [154]S Srikiatkhachom A, Braciale TJ. Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection. J Exp Med.1997 Aug 4;186(3):421-32.
    [155]Hussell T, Baldwin CJ, O'Garra A, Openshaw PJ. CD8+ T cells control Th2-driven pathology during pulmonary respiratory syncytial virus infection. Eur J Immunol.1997 Dec;27(12):3341-9.
    [156]Hussell T, Openshaw PJ. Intracellular IFN-gamma expression in natural killer cells precedes lung CD8+ T cell recruitment during respiratory syncytial virus infection. J Gen Virol.1998 Nov;79 (Pt 11):2593-601.
    [157]Johnson TR, Rothenberg ME, Graham BS. Pulmonary eosinophilia requires interleukin-5, eotaxin-1, and CD4+ T cells in mice immunized with respiratory syncytial virus G glycoprotein. J Leukoc Biol.2008 Sep;84(3):748-59. Epub 2008 Jun 2.
    [158]Radinger M, Bossios A, Alm AS, Jeurink P, Lu Y, Malmhall C, Sjostrand M, Lotvall J. Regulation of allergen-induced bone marrow eosinophilopoiesis:role of CD4+ and CD8+ T cells. Allergy.2007 Dec;62(12):1410-8.
    [159]Vocanson M, Hennino A, Rozieres A, Poyet G, Nicolas JF. Effector and regulatory mechanisms in allergic contact dermatitis. Allergy.2009 Dec;64(12):1699-714. Epub 2009 Oct 12.
    [160]Srivastava KD, Qu C, Zhang T, Goldfarb J, Sampson HA, Li XM. Food Allergy Herbal Formula-2 silences peanut-induced anaphylaxis for a prolonged posttreatment period via IFN-gamma-producing CD8+T cells. J Allergy Clin Immunol.2009 Feb;123(2):443-51.
    [161]Rozieres A, Hennino A, Rodet K, et al. Delayed allergy to penicillin is initiated by skin infiltrating CD8+ Tcells. J Invest Dermatol 2007; 127:S1-96.
    [162]Ellyard JI, Simson L, Bezos A, Johnston K, Freeman C, Parish CR. Eotaxin selectively binds heparin. An interaction that protects eotaxin from proteolysis and potentiates chemotactic activity in vivo. J Biol Chem.2007 May 18; 282(20):15238-47. Epub 2007 Mar 23.
    [163]Petering H, Kluthe C, Dulkys Y, Kiehl P, Ponath PD, Kapp A, Elsner J. Characterization of the CC chemokine receptor 3 on human keratinocytes. J Invest Dermatol.2001 Apr; 116(4):549-55.
    [164]Salcedo R, Young HA, Ponce ML, Ward JM, Kleinman HK, Murphy WJ, Oppenheim JJ. Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol.2001 Jun 15; 166(12):7571-8.
    [165]Bos JD, Zonneveld I, Das PK, Krieg SR, van der Loos CM, Kapsenberg ML. The skin immune system (SIS):distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol.1987 May; 88(5):569-73.
    [166]Kumagai N, Fukuda K, Fujitsu Y, Nishida T. Expression of functional ICAM-1 on cultured human keratocytes induced by tumor necrosis factor-alpha. Jpn J Ophthalmol.2003 Mar-Apr;47(2):134-41.
    [167]Yu B, Koga T, Urabe K, Moroi Y, Maeda S, Yanagihara Y, Furue M. Differential regulation of thymus-and activation-regulated chemokine induced by IL-4, IL-13, TNF-alpha and IFN-gamma in human keratinocyte and fibroblast. J Dermatol Sci.2002 Oct;30(1):29-36.
    [168]Rozieres A, Vocanson M, Said BB, Nosbaum A, Nicolas JF. Role of T cells in nonimmediate allergic drug reactions. Curr Opin Allergy Clin Immunol.2009 Aug;9(4):305-10.
    [169]Bos JD, et al. The skin immune system (sis):its cellular constituents and their interactions. Immunol Today.1986, (7):235.
    [170]张学军,刘维达,何春涤.现代皮肤病学基础.第一版.北京:人民卫生出版社,2001.
    [171]Luger TA. Neuromediators--a crucial component of the skin immune system. J Dermatol Sci. 2002 Nov;30(2):87-93.
    [172]O'Sullivan RL, Lipper G, Lerner EA. TThe neuro-immuno-cutaneous-endocrine network: relationship of mind and skin. Arch Dermatol.1998 Nov;134(11):1431-5..
    [173]Steinhoff M, Stander S, Seeliger S, Ansel JC, Schmelz M, Luger T. Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol.2003 Nov;139(11):1479-88.
    [174]Dhabhar FS. Stress, leukocyte trafficking, and the augmentation of skin immune function. Ann N Y Acad Sci.2003 May;992:205-17.
    [175]Ansel JC, Kaynard AH, Armstrong CA, Olerud J, Bunnett N, Payan D. Skin-nervous system interactions. J Invest Dermatol.1996 Jan; 106(1):198-204.
    [176]Scholzen T, Armstrong CA, Bunnett NW, Luger TA, Olerud JE, Ansel JC. Neuropeptides in the skin:interactions between the neuroendocrine and the skin immune systems. Exp Dermatol.1998 Apr-Jun;7(2-3):81-96.
    [177]彭程,胡晋红,朱全刚,刘继勇,覃卓,高丽红,王晶.苦参方有效部位成份分析及配伍机制研究.中草药,2008,39(11):32-6.
    [178]江苏新医学院.中药大词典.上海:上海科学技术出版社.2000,1283-85;1553-55.
    [179]王浴生,邓文龙,薛春生.中药药理与应用[M].第2版.北京:人民卫生出版社.1993.
    [180]赵军艳,郑艳敏,赵红艳,姚树坤.苦参碱和氧化苦参碱对肝癌细胞增殖凋亡及JAK-STAT信号通路的影响.中药药理与临床.2008,24(4):18-20.
    [181]李鹏,司维柯,王源,姚婕.苦参碱与氧化苦参碱抑制HepG2细胞增殖的对比研究.中国生化药物杂志.2004,25(5):
    [182]王源,司维柯,李鹏,姚婕.苦参碱及氧化苦参碱抑制A549细胞增殖及诱导细胞凋亡的比较研究.第三军医大学学报.2004,26(9):778-80.
    [183]彭程,胡晋红,朱全刚,刘继勇,覃卓,王晶.正交实验优选苦参方中苦参有效成分的提取工艺.药学服务与研究.2007,4(2):124-7.
    [184]彭程,胡晋红,朱全刚,刘继勇,覃卓,宋红杰,王晶.醇提-大孔树脂纯化法提取苦参方有效部位工艺研究.中成药.2008,30(7):989-93.
    [185]彭程,胡晋红,朱全刚,刘继勇,覃卓,王晶.苦参方凝胶剂离体透皮研究.中国中药杂志.2007,2(17):27-31.
    [186]张凤玲,唐永,张景梅.苦参碱、氧化苦参碱的药理作用及其制剂的研究进展.河南中医学院学报.2004,19(112):84-6.
    [187]张静涛,王伟,段振华.苦参碱类生物碱的应用进.现代生物医学进展.2007,7(3):451-4.
    [188]金玉,张宏.苦参碱及氧化苦参碱的抗纤维化作用研究进展.中国中西医结合肾病杂志.2004,5(8):493-4.
    [189]余小虎,朱金水,俞华芳,朱励.氧化苦参碱抗大鼠肝纤维化及其免疫调控作用.中国临床 医学.2004,11(2):163-5.
    [190]李莉,张文学,张顺利.苦豆子生物碱的免疫调节作用及其作用机制研究进展.中草药.2007,38(4):(附7-8).
    [191]呙爱秀,黄兴国,雷黎明.苦参碱对免疫功能低下小鼠免疫功能的影响.中国现代药物应用.2008,2(11):7-9.
    [192]Nakamura H, Haley KJ, Nakamura T, Luster AD, Lilly CM. Differential regulation of eotaxin expression by TNF-alpha and PMA in human monocytic U-937 cells. Am J Physiol.1998'Sep;275(3 Pt 1):L601-10.
    [193]Sabatini F, Silvestri M, Sale R, Serpero L, Giuliani M, Scarso L, Favini P, Rossi GA. Concentration-dependent effects of mometasone furoate and dexamethasone on foetal lung fibroblast functions involved in airway inflammation and remodeling. Pulm Pharmacol Ther. 2003;16(5):287-97.
    [194]Shimizu T, Nishihira J, Watanabe H, Abe R, Ishibashi T, Shimizu H. Cetirizine, an H1-receptor antagonist, suppresses the expression of macrophage migration inhibitory factor:its potential anti-inflammatory action. Clin Exp Allergy.2004 Jan;34(1):103-9.
    [195]Lee SW, Lee HS, Nam JY, Kwon OE, Baek JA, Chang JS, Rho MC, Kim YK. Kurarinone isolated from Sophora flavescens Ait inhibited MCP-1-induced chemotaxis. J Ethnopharmacol.2005 Mar21;97(3):515-9.
    [196]Zheng H, Chen G, Shi L, Lou Z, Chen F, Hu J. Determination of oxymatrine and its metabolite matrine in rat blood and dermal microdialysates by high throughput liquid chromatography/tandem mass spectrometry. J Pharm Biomed Anal.2009 Feb 20;49(2):427-33. Epub 2008 Dec 3.
    [197]魏红,李中文,王倩,顾欣欣,王唯红,宋立清.苦参碱乳膏剂的动物药动学及生物利用度研究.中国药学杂志.2001,36(3):183-5.
    [198]Cheng MB, Wang JC, Li YH, Liu XY, Zhang X, Chen DW, Zhou SF, Zhang Q. Characterization of water-in-oil microemulsion for oral delivery of earthworm fibrinolytic enzyme. J Control Release. 2008 Jul 2;129(1):41-8. Epub 2008 Mar 27.
    [199]安红丽,欧阳五庆等.非离子型表而活性剂微乳的研制.西北农林科技大学学报(自然科学版).2007,35(3):65-9.
    [200]Watnasirichaikul S, Davies NM, Rades T, Tucker IG. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res.2000 Jun;17(6):684-9.
    [201]Rothenberg ME. Eotaxin. An essential mediator of eosinophil trafficking into mucosal tissues. Am J Respir Cell Mol Biol.1999 Sep;21(3):291-5.
    [202]Elsner J, Kapp A. Modulation of eosinophil effector functions:the potential role of monoclonal antibodies and chemokine receptor antagonists. Allergy Asthma Proc.2000 Nov-Dec;21(6):345-9.
    [203]Schroder JM, Noso N, Sticherling M, Christophers E. Role of eosinophil-chemotactic C-C chemokines in cutaneous inflammation. J Leukoc Biol.1996 Jan; 59(1):1-5.
    [204]Kim TY, Park HJ, Kim CW. Eosinophil cationic protein (ECP) level and its correlation with eosinophil number or IgE level of peripheral blood in patients with various skin diseases. J Dermatol Sci.1997 Aug; 15(2):89-94.
    [205]Wakugawa M, Nakamura K, Hino H, Toyama K, Hattori N, Okochi H, Yamada H, Hirai K, Tamaki K, Furue M. Elevated levels of eotaxin and interleukin-5 in blister fluid of bullous pemphigoid:correlation with tissue eosinophilia. Br J Dermatol.2000 Jul; 143(1):112-6.
    [206]Yawalkar N, Shrikhande M, Hari Y, Nievergelt H, Braathen LR, Pichler WJ. Evidence for a role for IL-5 and eotaxin in activating and recruiting eosinophils in drug-induced cutaneous eruptions. J Allergy Clin Immunol.2000 Dec; 106(6):1171-6
    [207]Amerio P, Verdolini R, Proietto G, Feliciani C, Toto P, Shivji G, Loconsole F, Cassano N, Amerio P, Vena G, Sauder DN. Role of Th2 cytokines, RANTES and eotaxin in AIDS-associated eosinophilic folliculitis. Acta Derm Venereol.2001 May; 81(2):92-5.
    [208]Marchini G, Ulfgren AK, Lore K, Stabi B, Berggren V, Lonne-Rahm S. Erythema toxicum neonatorum:an immunohistochemical analysis. Pediatr Dermatol.2001 May-Jun; 18(3):177-87.
    [209]Mendonca VA, Malaquias LC, Brito-Melo GE, Castelo-Branco A, Antunes CM, Ribeiro AL, Teixeira MM, Teixeira AL. Differentiation of patients with leprosy from non-infected individuals by the chemokine eotaxin/CCL11. Am J Trop Med Hyg.2007 Sep; 77(3):547-50.
    [210]Dykxhoorn DM, Lieberman J. Knocking down disease with siRNAs. Cell.2006 Jul 28;126(2):231-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700