缺氧通过HIF-1α诱导心肌细胞分泌TNF-α的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分缺氧通过HIF-1α诱导心肌细胞分泌细胞因子TNF-α
     目的:越来越多证据显示急性心肌梗死中过量肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)表达对心肌细胞不利。心肌缺血时,TNF-α主要来源于巨噬细胞。随着缺血状态的持续,心肌细胞开始分泌TNF-α.我们探讨缺氧是否通过缺氧诱导因子-1α(hypoxia inducible factor 1α, HIF-1α)诱导心肌细胞自分泌细胞因子TNF-α。
     方法和结果:分离新生大鼠乳鼠心肌细胞,分别给予氧浓度1%缺氧刺激5分钟,15分钟,30分钟,1小时,2小时,4小时,6小时,12小时,24小时。western blot检测细胞HIF-1α蛋白表达水平;免疫荧光检测HIF-1α蛋白表达以及入核情况;实时定量RT-PCR检测TNF-a mRNA表达水平;ELISA检测TNF-α蛋白表达分泌。结果显示TNF-αmRNA从1小时开始表达上调,与空白组相比增加至1.99±0.27倍(p<0.01),12小时及24小时达峰值,分别为4.06±0.84倍和4.09±0.81倍(p<0.01)。TNF-α蛋白分泌表达在6小时可检测到,12小时达峰值为48.12±11.52pg/ml(p<0.01)。缺氧对HIF-1αmRNA水平无影响,HIF-1α蛋白缺氧30分钟表达明显,1小时达峰值。免疫荧光染色提示缺氧15分钟HIF-1α蛋白开始表达且向核内聚积。核转染法进行心肌细胞HIF-1αRNA干扰,发现siRNA显著抑制HIF-1αmRNA水平的同时,抑制缺氧12小时后TNF-αmRNA水平上调(3.75±0.45 fold vs 1.38±0.76 fold,p<0.01)。HIF-1α抑制剂2-甲氧雌二醇(2-methoxyestradiol,2ME2)能有效抑制缺氧刺激后HIF-1α蛋白表达,也能抑制缺氧12小时后TNF-αmRNA水平上调(2.82±0.41 fold vs 1.31±0.37fold,p<0.01)以及蛋白分泌(48.12±11.52pg/ml vs 23.22±2.62,p<0.05)。
     结论:缺氧能诱导离体心肌细胞分泌细胞因子TNF-α, HIF-1α在缺氧诱导心肌细胞自分泌TNF-α过程中发挥重要调节作用。
     第二部分缺氧及模拟缺氧状态下HIF-1α对TNF-α直接启动作用的研究
     目的:探讨缺氧诱导因子-1α(hypoxia inducible factor 1α, HIF-1α)对于肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)是否有直接启动作用。
     方法和结果:培养HEK293细胞和HepG2细胞,给予氧浓度1%缺氧刺激及氯化钻模拟缺氧刺激后,western blot检测胞核HIF-1α蛋白表达水平,实时定量RT-PCR检测TNF-αmRNA表达水平。结果显示缺氧6小时及氯化钻刺激3小时可明显观察到HIF-1α蛋白在胞核内稳定表达,缺氧12h及氯化钴刺激12h后与空白组相比TNF-αmRNA水平明显上升。HIF-1α抑制剂2-甲氧雌二醇(2-methoxyestradiol,2ME2)能有效抑制氯化钻模拟缺氧刺激后HIF-1α在核内聚积,也能抑制氯化钴模拟缺氧刺激后TNF-αmRNA水平上调。分析TNF-α转录起始位点上游5000bp的启动子区域,发现七个可能缺氧反应元件(hypoxia response elements, HREs)。5'端续减法构建8个不同长度的报告基因质粒,瞬时转染入HEK293细胞和HepG2细胞,予氧浓度1%缺氧刺激24小时后双荧光素酶报告基因法检测启动子活性。结果显示TNF-α转录起始位点上游-1470bp处可能为缺氧诱导TNF-α启动子的功能位点。
     结论:我们发现TNF-α是一种缺氧诱导表达基因,它的转录调节可能通过HIF-1与位于TNF-α启动子-1470bp处HRE位点相互作用发挥效应。
PartⅠ
     Hypoxia induced autocrine of TNF-a by hypoxia-inducible factor-la in cardiomyocytes
     Aims:Growing evidence indicates that excessive tumor necrosis factor-a (TNF-a) expression are detrimental to cardiomyocytes in acute myocardial infarction. During myocardial ischemia, TNF-a is mainly released from macrophages, with persisent ischemia, TNF-a can originate from cardiomyocytes. We hypothesized the direct effects of hypoxia on TNF-a expression by hypoxia-inducible factor-la (HIF-la) in cardiomyocytes.
     Methods and results:Neonatal rat cardiomyocytes were exposed in a hypoxic incubator containing 1% oxygen for 5 minutes,15 minutes,30 minutes,1 hour,2 hours,4 hours,6 hours,12 hours and 24 hours. TNF-a mRNA increased slightly as early as 30 minutes (1.99±0.27 fold compared to control group,p<0.01), peaked at 12 hours (4.06±0.84 fold,p<0.01) and 24 hours (4.09±0.81 fold,p<0.01). TNF-a secretion became detectable as early as 6 hours and peaked at 12 hours (48.12±11.52 pg/ml) by ELISA. Hypoxia had no effect on HIF-la mRNA change (p>0.05) by real-time RT-PCR assay. Protein expression of HIF-1αwas detectable at 30 minutes and peaked at 1 hour by western blot. Immunofluorescent staining showed HIF-1αwas obviously observed as early as 15 minutes, meanwhile, it had the trends to translocate into cell nucleus. HIF-1αmRNA was downregulated effectively by siRNA through Nucleofection, meanwhile, TNF-αmRNA elevation after 12-hour hypoxia was obviously inhibited (3.75±0.45 fold vs 1.38±0.76 fold, p<0.01). Expression of HIF-la was inhibited effectively by 2-Methoxyestradiol (2ME2) after hypoxia, and 2ME2 also decreased TNF-αmRNA after 12-hour hypoxia (2.82±0.41 fold vs 1.31±0.37 fold,p<0.01) and TNF-a secretion (48.12±11.52pg/ml vs 23.22±2.62, p<0.05).
     Conclusions:Hypoxia induces autocrine of TNF-αby cardiomyocytes in vitro. HIF-1αplays an important role in hypoxia mediated TNF-αexpression and secretion in cardiomyocytes.
     PartⅡ
     Regulation of TNF-a promoter by hypoxia inducible factor-la under hypoxia or CoCl2 mimicked hypoxia
     Aims:We investigated the direct effects of hypoxia on tumor necrosis factor-a (TNF-α) expression, and the role of hypoxia inducible factor-la (HIF-la) in TNF-a regulation.
     Methods and results:HEK293 and HepG2 cells were exposed in a hypoxia (1% O2) chamber or treated with CoCl2 to mimic hypoxia. HIF-la nuclear protein expression was detected by western blot, TNF-a mRNA levels were assayed by real time PCR. Significant up-regulation of HIF-la nuclear protein could be seen in both cell lines after 6-hour hypoxia and 3-hour CoCl2 mimic hypoxia stimulation. Obvious up-regulation of TNF-αmRNA levels was observed after 12-hour hypoxia and 12-hour CoCl2 mimic hypoxia. Inhibition of HIF-1αby 2-methoxyestradiol (2ME2) inhibited CoCl2 induced HIF-1αnuclear protein accumulation and TNF-a mRNA elevation. We found seven possible hypoxia response elements (HREs) at regions of 5'to the proximal 5000-bp fragment of the TNF-αpromoter relative to the transcription start site. Eight reporter gene plasmids were constructed after promoter truncation analysis, and then transiently transfected into HEK293 and HepG2 cells. Promoter activity was detected by dual-luciferase reporter assay after 24-hour hypoixa treatment. The results showed HIF consensus binding sites spanning bp-1470 relative to the transcription start site were functional for TNF-a promoter activity induction by hypoxia.
     Conclusions:We demonstrate that TNF-a is a hypoxia-inducible gene, whose transcription is stimulated through HIF-1αinteraction with HRE sites located at-1470 of the TNF-a promoter.
引文
1 中华医学会心血管病学会.慢性心力衰竭诊断治疗指南.中华心血管病杂志,2007:35:1076-95
    2 Colluci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997; 80:15-25
    3 Liao YH, Cheng X. Autoimmunity in myocardial infarction. International Journal of Cardiology 2006; 112:21-6
    4 Blankesteijn WM, Creemers E, Lutgens E, etc. Dynamic of cardiac wound healing following myocardial infarction:observations in genetically altered mice. Acta Physiol Scand 2001; 173:75-82
    5 Fahim MR, Halim SM, Kamel I. Tumor necrosis factor alpha in patients with acute myocardial infarction. Egypt J Immunol 2004; 11:31-7
    6 Satoh M, Shimoda Y, Maesawa C, etc. Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol 2006; 109:226-34
    7 Kaur K, Sharma AK, Singal PK. Significance of changes in TNF-alpha and IL-10 levels in the progression of heart failure subsequent to myocardial infarction. Am J Physiol Heart Circ Physiol 2006; 291:H106-13
    8 Kapadia SR, Oral H, Lee J, etc. Hemodynamic regulation of tumor necrosis factor-a gene and protein expression in adult feline myocardium. Circ Res 1997; 81:187-195
    9 Kapadia SR, Lee J, Torre-Amione G, etc. Tumor necrosis factor-a gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 1995; 96:1042-52
    10 Irwin M, Mak S, Mann D, etc. Tissue expression and immunolocalization of tumour necrosis factor-alpha in post infarction-dysfunctional myocardium. Circulation 1999; 99:1492-98
    11程翔,廖玉华,李彬等。早期美托洛尔治疗改善急性心肌梗死大鼠心肌炎症 因子表达和心功能。中华心血管病杂志,2005;33:448-52
    12 Murray DR, Prabhu SD, Chandrasekar B. Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation 2000; 101: 2338-41
    13 Nian M, Lee P, Khaper N, etc. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004; 94:1543-53
    14 Ono K, Matsumori A, Shioi T, etc. Cytokine gene expression after myocardial infarction in rat hearts:possible implication in left ventricular remodeling. Circulation 1998; 98:149-56
    15 Yamaoka M, Yamaguchi S, Okuyama M, etc. Anti-inflammatory cytokine profile in human heart failure:behavior of interleukine-10 in association with tumor necrosis factor-alpha. Jpn Circ J 1999; 63:951-95
    16 Li H, Ko HP, Whitlock JP. Induction of phosphoglycerate kinase 1 gene expression by hypoxia. Roles of ARNT and HIF1alpha. J Biol Chem 1996; 271: 21262-7
    17 Huang J, Zhao Q, Mooney SM, etc. Sequence determinants in hypoxia inducible factor-1 for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 2002; 277:39792-800
    18 Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999; 15:551-78
    19 Jiang BH, Semenza GL, Bauer C, etc. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996; 271:1172-80
    20 Semenza GL, Nejfelt MK, Chi SM, etc. Hypoxia-inducible nuclear factors bind to an enhancer element located 3'to the human erythropoietin gene. Proc Natl Acad Sci USA 1991; 88:5680-4
    21 Zhang W, Petrovic JM, Callaghan D, etc. Evidence that hypoxia-inducible factor-1 (HIF-1) mediates transcriptional activation of interleukin-lbeta (IL-lbeta) in astrocyte cultures. J Neuroimmunol 2006; 174:63-73
    22 Chen WY, Chang MS. IL-20 is regulated by hypoxia-inducible factor and up-regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke. J Immunol 2009; 182:5003-12
    23 Hellwig-Burgel T, Rutkowski K, Metzen E, etc. Interleukin-1β and tumor necrosis factor-a stimulate DNA binding of hypoxia-inducible factor-1. Blood 1999; 94:1561-7
    24 Scharte M, Han X, Bertges DJ, etc. Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am. J. Physiol. Gastrointest. Liver Physiol 2003; 284, G373-84
    1 中华医学会心血管病学会.慢性心力衰竭诊断治疗指南.中华心血管病杂志,2007:35:1076-95
    2 Liao YH, Cheng X. Autoimmunity in myocardial infarction. International Journal of Cardiology 2006; 112:21-6
    3 Kapadia SR, Oral H, Lee J, etc. Hemodynamic regulation of tumor necrosis factor-a gene and protein expression in adult feline myocardium. Circ Res 1997; 81:187-195
    4 Kapadia S, Lee J, Torre-Amione G, etc. Tumor necrosis factor-a gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 1995; 96:1042-52
    5 Irwin M, Mak S, Mann D, etc. Tissue expression and immunolocalization of tumour necrosis factor-alpha in post infarction-dysfunctional myocardium. Circulation 1999; 99:1492-98
    6 程翔,廖玉华,李彬,等。早期美托洛尔治疗改善急性心肌梗死大鼠心肌炎症因子表达和心功能。中华心血管病杂志,2005;33:448-52
    7 Murray DR, Prabhu SD, Chandrasekar B. Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation 2000; 101: 2338-41
    8 Nian M, Lee P, Khaper N, etc. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004; 94:1543-53
    9 Ono K, Matsumori A, Shioi T, etc. Cytokine gene expression after myocardial infarction in rat hearts:possible implication in left ventricular remodeling. Circulation 1998; 98:149-56
    10 Yamaoka M, Yamaguchi S, Okuyama M, etc. Anti-inflammatory cytokine profile in human heart failure:behavior of interleukine-10 in association with tumor necrosis factor-alpha. Jpn Circ J 1999; 63:951-95
    11 Semenza GL, Nejfelt MK, Chi SM, etc. Hypoxia-inducible nuclear factors bind to an enhancer element located 3'to the human erythropoietin gene. Proc Natl Acad Sci USA 1991; 88:5680-4
    12 Hellwig-Burgel T, Rutkowski K, Metzen E, etc. Interleukin-1β and tumor necrosis factor-a stimulate DNA binding of hypoxia-inducible factor-1. Blood 1999;94:1561-7
    13 Scharte M, Han X, Bertges DJ, etc. Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am. J. Physiol. Gastrointest. Liver Physiol 2003; 284, G373-84
    14 Paul S, Shoshana S. Differentiation of Rat Myocytes in Single Cell Cultures with and without Proliferating Nonmyocardial Cells. Circ Res 1982; 50:101-16
    15 Von HR, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999; 99:2934-41
    16 Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995; 270:1230-7
    17 Wang GL, Jiang BH, Rue EA, etc. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92:5510-4
    18 Jiang BH, Rue E, Wang GL, etc. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 1996; 271:17771-8
    19 Heidbreder M, Frohlich F, Johren O. Hypoxia rapidly activates HIF-3α mRNA expression. FASEB J 2003; 17:1541-3
    20 Maxwell PH, Wiesener MS, Chang GW, etc. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399:271
    21 Huang J, Zhao Q, Mooney SM, etc. Sequence determinants in hypoxia inducible factor-1 for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 2002; 277:39792-800
    22 Tracey KJ, Cerami A. Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol 1993; 9:317-43
    23 Sack MN, Smith RM, Opie LH. Tumor necrosis factor in myocardial hypertrophy and ischaemia-an anti-apoptotic perspective. Cardiovasc Res 2000; 45:688-95.
    24 Mann DL. The effect of tumor necrosis factor-a on cardiac structure and function: a tale of two cytokines. J Card Fail 1996; 2:S165-72
    25 Sack M. Tumor necrosis factor-a in cardiovascular biology and the potential role for anti-tumor necrosis factor-a therapy in heart disease. Pharmacol Ther 2002; 94:123-35
    26 Peyssonnaux C, Datta V, Cramer T, etc. HIF-1α expression regulates the bactericidal capacity of phagocytes. J Clin Invest 2005; 115:1806-15
    27 Peyssonnaux C, Cejudo-Martin P, Doedens A, etc. Cutting edge:Essential role of hypoxia inducible factor-la in development of lipopolysaccharide-induced sepsis. J Immunol 2007; 178:7516-9
    1 Taylor CT, Colgan SP. Hypoxia and gastrointestinal disease. J Mol Med 2007; 85: 1295-300
    2 Karhausen J, Haase VH, Colgan SP. Inflammatory hypoxia:Role for hypoxia-inducible factor. Cell Cycle 2005; 4:256-8
    3 Hatoum OA, Miura H, Binion DG. The vascular contribution in the pathogenesis of inflammatory bowel disease. Am J Physiol Heart Circ Physiol 2003; 285: 1791-6
    4 Zinkernagel AS, Johnson RL, Nizit V. Hypoxia inducible factor (HIF) function in innate immunity and infection. J MolMed 2007; 85:1339-46
    5 Semenza GL, Agani F, Booth G, etc. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int 1997; 51:553-5
    6 Li H, Ko HP, Whitlock JP. Induction of phosphoglycerate kinase 1 gene expression by hypoxia. Roles of ARNT and HIF1alpha. J Biol Chem 1996; 271: 21262-7
    7 Huang J, Zhao Q, Mooney SM, etc. Sequence determinants in hypoxia inducible factor-1 for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 2002; 277:39792-800
    8 Semenza G.L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999; 15:551-78
    9 Jiang BH, Semenza GL, Bauer C, etc. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996; 271:1172-80
    10 Semenza GL, Jiang BH, Leung SW, etc. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996; 271: 32529-37
    11 Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721-32
    12 Lee JW, Bae SH, Jeong JW, et al. Hypoxia-inducible factor (HIF-1)alpha:its protein stability and biological functions. Exp Mol Med 2004; 36:1-12
    13 Zhang W, Petrovic JM, Callaghan D, etc. Evidence that hypoxia-inducible factor-1 (HIF-1) mediates transcriptional activation of interleukin-lbeta (IL-lbeta) in astrocyte cultures. J Neuroimmunol 2006; 174:63-73
    14 Sato H, Watanabe A, Tanaka T, etc. Regulation of the human tumor necrosis factor-alpha promoter by angiotensin Ⅱ and lipopolysaccharide in cardiac fibroblasts:different cis-acting promoter sequences and transcriptional factors. J Mol Cell Cardiol 2003; 35:1197-205
    15 Mabjeesh NJ, Escuin D, LaVallee TM, etc.2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 2003;3:363-75
    16 Latini R, Bianchi M, Correale E, etc. Cytokines in acute myocardial infarction: selective increase in circulating tumor necrosis factor, its soluble receptor, and interleukin 1 receptor antagonist. J Cardiovasc Pharmacol 1994; 23:1-6
    17 Levine B, Kalman J, Mayer L, etc. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990; 323:236-41
    18 Neumann FJ, Ott I, Gawaz M, etc. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation 1995; 92:748-55
    19 Oral H, Dorn GW,. Mann DL. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-a in the adult mammalian cardiac myocyte. J Biol Chem 1997; 272:4836-425
    20 Oral H, Kapadia S, Nakano M, Torre-Amione G, Lee J, Lee-Jackson D, Young JB, Mann DL. Tumor necrosis factor-a and the failing human heart. Clin Cardiol 1995; 18:S20-7
    21 Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. Tumor necrosis factor-a provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 1997; 95:1247-52
    22 Chen WY, Chang MS. IL-20 is regulated by hypoxia-inducible factor and up-regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke. J Immunol 2009; 182:5003-12
    23 Jeong HJ, Chung HS, Lee BR, etc. Expression of proinflammatory cytokines via HIF-1α and NF-κB activation on desferrioxamine-stimulated HMC-1 cells. Biochem Biophys Res Commun 2003; 306:805-11
    24 Han J, Huez G, Beutler B. Interactive effects of the tumor necrosis factor promoter and 3'-untranslated regions. J Immunol 1991; 146:1843-8
    25 Economou JS, Rhoades K, Essner R, etc. Genetic analysis of the human tumor necrosis factor a/cachectin promoter region in a macrophage cell line. J Exp Med 1989; 170:321-6
    26 Han J, Brown T, Beutler B. Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J Exp Med 1990; 171:465-75
    27 Falvo JV, Uglialoro AM, Brinkman BM, et al. Stimulus-specific assembly of enhancer complexes on the tumor necrosis factor a gene promoter. Mol Cell Biol 2000; 20:2239-47
    28 Tsytsykova AV, Goldfeld AE. Inducer-specific enhanceosome formation controls tumor necrosis factor a gene expression in T lymphocytes. Mol Cell Biol 2002; 22:2620-31
    29 Rhoades KL, Golub SH, Economou JS. The regulation of the human tumor necrosis factor alpha promoter region in macrophage, T cell, and B cell lines. J Biol Chem 1992; 267:22102-7
    30 Kramer B, Meichle A, Hensel G, etc. Characterization of an Krox-24/Egr-l-responsive element in the human tumor necrosis factor promoter. Biochim Biophys Acta 1994; 1219:413-21
    31 Leitman DC, Ribeiro RC, Mackow ER, etc. Identification of tumor necrosis factor-responsive element in the tumor necrosis factor alpha gene. J Biol Chem 1991;266:9343-6
    32 Rhoades KL, Cai S, Golub SH, etc. Granulocyte-macrophage colony-stimulating factor and interleukin-4 differentially regulate the human tumor necrosis factor-alpha promoter region. Cell Immunol 1995; 161:125-31
    33 Tsai EY, Jain J, Pesavento PA, etc. Tumor necrosis factor alpha gene regulation in activated T cells involves ATF-2/Jun and NFATp. Mol Cell Biol 1996; 16:459-67
    34 Kramer B, Weigmann K, Kronke M. Regulation of the human TNF promoter by the transcription factor factor Ets. J Biol Chem 1995; 270:6577-83
    35 Drouet C, Shakhov AN, Jongeneel CV. Enhancers and transcription factors controlling the inducibility of the tumor necrosis factor-apromoter in primary macrophages. J Immunol 1991; 147:1694-700
    36 Takashiba S, Van Dyke TE, Shapira L, etc. Lipopolysaccharideinducible and salicylate-sensitive nuclear factor(s) on human tumor necrosis factor alpha promoter. Infect Immun 1995; 63:1529-34
    37 Semenza GL. Hydroxylation of HIF-1:oxygen sensing at the molecular level. Physiology 2004; 19:176-82
    1 Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12:5447-54
    2 Beck I, Weinmann R, Caro J. Characterization of hypoxia-responsive enhancer in the human erythropoietin gene shows presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood 1993; 82:704-11
    3 Jelkmann W. Molecular biology of erythropoietin. Intern Med 2004; 43:649-59
    4 Forsythe JA, Jiang BH, Iyer NV, etc. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604-13
    5 Kimura H, Weisz A, Ogura T, etc. Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J Biol Chem 2001; 276:2292-8
    6 Coulet F, Nadaud S, Agrapart M, etc. Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 2003; 278:46230-40
    7 Lee PJ, Jiang BH, Chin BY, etc. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 1997; 272:5375-381.
    8 Ferrara N, Gerber HP, Lecouter J. The biology of VEGF and its receptors. Nat Med 2003; 9:669-76
    9 Firth JD, Ebert BL, Pugh CW, etc. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes:similarities with the erythropoietin 3 enhancer. Proc. Natl. Acad Sci USA 1994; 91:6496-500
    10 Wenger RH. Cellular adaptation to hypoxia:O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 2002;16:1151-62
    11 Hellwig-Burgel T, Stiehl DP, Jelkmann W. Hypoxia-inducible factor-1. In: Oxygen Sensing. S. Lahiri, G.L. Semenza, and N.R. Prabhakar (eds) New York: Marcel Dekker Inc; 2003:95-108
    12 Li H, Ko HP, Whitlock JP. Induction of phosphoglycerate kinase 1 gene expression by hypoxia. Roles of ARNT and HIF1 alpha. J Biol Chem 1996; 271: 21262-7
    13 Lando D, Peet DJ, Gorman JJ, etc. Asparagine hydroxylation of the HIF transactivation domain. Science 2002; 295:858-61
    14 Tian H, Mcknight SL, Russel DW. Endothelial PAS domain protein 1, a transcription factor selectively expressed in endothelial cells. Genes Dev 1997; 11: 72-82
    15 Maxwell P, Weisner M, Chang GW, etc. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399:271-5
    16 Maynard MA, Qi H, Chung J, etc. Multiple splice variants of the human HIF-3alpha locus are targets of the VHL E3 ubiquitin ligase complex. J Biol Chem 2003; 278:11032-40
    17 Makino Y, Cao R, Svensseon K, etc. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 2001; 414:550-4
    18 Maranchie JK, Vasselli JR, Riss J, etc. The contribution of VHL substrate binding and HIF-1 alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 2002; 1:247-55
    19 Huang J, Zhao Q, Mooney SM, etc. Sequence determinants in hypoxia inducible factor-1 for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 2002; 277:39792-800
    20 Masson N, Willam C, Maxwell PH, etc. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 2001; 20:5197-206
    21 Metzen E, Berchner-Pfannschmidt U, Stengel P, etc. Intracellular localization of human HIF-lahydroxylases:Implications for oxygen sensing. J Cell Sci 2003; 116:1319-26
    22 Berra E, Benizri E, Ginouves A, etc. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia. EMBO J 2003; 22: 4082-90
    23 Epstein AC, Gleadle JM, McNeill LA, etc. C elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107:43-54
    24 Jeong JW, Bae MK, Ahn MY, etc. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002; 111:709-20
    25 Palmer LA, Gaston B, Johns RA. Normoxic stabilization of hypoxia-inducible factor-1 expression and activity:redox-dependent effect of nitrogen oxides. Mol Pharmacol 2000; 58:1197-203
    26 Sogawa K, Numayamatsuruta K, Ema M, etc. Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci USA 1998; 95:7368-73
    27 Zhong H. Modulation of HIF-1α expression by the epidermal growth factor/PI3K/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000; 60: 1541-5
    28 Lando D, Peet DJ, Gorman JJ, etc. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of HIF. Genes Dev 2002; 16:1466-71
    29 Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721-32
    30 Denko N, Fontana LA, Hudson KM, et al. Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 2003; 22:5907-14
    31 Wenger RH, Stiehl DP, Camenish G. Integration of oxygen signaling at the consensus HRE. Sci STKE 2005; 306:12
    32 Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 2000; 97:9082-7
    33 Kothari S, Cizeau J, McMillan-Ward E, et al. BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 2003;22:4734-44
    34 KimJY, Ahn HJ, Ryu JH, etc. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1α. J Exp Med 2004; 199:113-24
    35 Piret JP, Minet E, Cosse JP, et al. Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-induced apoptosis. J Biol Chem 2005; 280:9336-44
    36 Wenger RH, Kvietikova I, Rolfs A, etc. Oxygen-regulated erythropoietin gene expression is dependent on a CpG methylation-free hypoxiainducible factor-1 DNA-binding site. Eur J Biochem 1998; 253:771-8
    37 Boast K, Binley K, Iqball S, et al. Characterization of physiologically regulated vectors for the treatment of ischemic disease. Hum Gene Ther 1999; 10: 2197-208
    38 Ameri K, Burke B, Lewis CE, etc. Regulation of a rat VL30 element in human breast cancer cells in hypoxia and anoxia:role of HIF-1. Br J Cancer 2002; 87: 1173-81
    39 Kimura H, Weisz A, Ogura T, et al. Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J Biol Chem 2001; 276:2292-8
    40 Swanson HI, Yang JH. Specificity of DNA binding of the c-Myc/Max and ARNT/ARNT dimmers at the CACGTG recognition site. Nucleic Acids Res 1999;27:3205-12
    41 Camenisch G, Stroka DM, Gassmann M, etc. Attenuation of HIF-1 DNAbinding activity limits hypoxia-inducible endothelin-1 expression. Pflugers Arch 2001; 443:240-9
    42 Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase A: interaction between hypoxia inducible factor 1 and cAMP response elements. J Biol Chem 1995; 270:21021-7
    43 Damert A, Ikeda E, RisauW. Activator-protein-1 binding potentiates the hypoxiainducible factor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells. Biochem J 1997; 327:419-23
    44 Galson DL, Tsuchiya T, Tendler DS, et al. The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue-specific and hypoxia specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1. Mol Cell Biol 1995; 15:2135-44
    45 Kaluz S, Kaluzova M, Stanbridge EJ. Expression of the hypoxia marker carbonic anhydrase IX is critically dependent on SP1 activity. Identification of a novel type of hypoxia-responsive enhancer. Cancer Res 2003; 63:917-22
    46 Rolfs A, Kvietikova I, Gassmann M, etc. Oxygen-regulated transferring expression ismediated by hypoxia-inducible factor-1. J Biol Chem 1997; 272: 20055-62
    47 Bhattacharya S, Michels CL, Leung MK, etc. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev 1999; 13: 64-75
    48 Firth JD, Ebert BL, Pugh CW, etc. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes:similarities with the erythropoietin 3'enhancer. Proc Natl Acad Sci USA 1994; 91:6496-500
    49 Huang LE, Bunn HF. Hypoxia-inducible factor and its biomedical relevance. J Biol Chem 2003; 278:19575-8
    50 Rosenberger C, Mandriota S, Jurgensen JS, et al. Expression of hypoxia-inducible factor-1α and-2α in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 2002; 13:1974-6
    51 Gruber M, Hu CJ, Johnson RS, etc. Acute postnatal ablation of HIF-2a results in anemia. Proc Natl Acad Sci USA 2007; 104:2301-6
    52 Bilton RL, Booker GW. The subtle side to hypoxia-inducible factor (HIF) regulation. Eur. J. Biochem 2003; 270,791-8
    53 Hellwig-Burgel T, Rutkowski K, Metzen E, etc. Interleukin-1β and tumor necrosis factor-a stimulate DNA binding of hypoxia-inducible factor-1. Blood 1999; 94:1561-7
    54 Scharte M, Han X, Bertges DJ, etc. Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am. J. Physiol. Gastrointest. Liver Physiol 2003; 284, G373-84
    55 Stiehl DP, Jelkmann W, Wenger RH, etc. Normoxic induction of the hypoxiainducible factor-la by insulin and interleukin-1β involves the phosphatidylinositol 3-kinase pathway. FEBS Lett 2002; 512:157-62
    56 Sandau KB, Zhou J, Kietzmann T, etc. Regulation of the hypoxia-inducible factor-la by the inflammatory mediators nitric oxide and tumor necrosis factor-a in contrast to desferroxamine and phenylarsine oxide. J Biol Chem 2001; 276: 39805-11
    57 Jung YJ, Isaacs JS, Sunmin L, etc. IL-1β-mediated up-regulation of HIF-la via an NFκB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 2003; 17:2115-7
    58 Hellwig-Burgel T, Stiehl DP, Katshinski D, etc. VEGF production by primary human renal proximal tubular cells:requirement of HIF-1, PI3-kinase and MAPKK-1 signaling. Cell Physiol Biochem 2005; 15:99-108
    59 Jung Y, Isaacs JS, Lee S, etc. Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation. Biochem J 2003; 370:1011-7
    60 Reddy SA, Huang JH, Liao WS. Phosphatidylinositol 3-kinase as a mediator of TNF-induced NF-kappa B activation. J Immunol 2000; 164:1355-63
    61 Haddad JJ, Land SC. A non-hypoxic, ROS sensitive pathway mediates TNF-a-dependent regulation of HIF-1α. FEBS Lett 2001; 505:269-74
    62 Zhou J, Schmid T, Brune B. Tumor necrosis factor-a causes accumulation of a ubiquitinated form of hypoxia inducible factor-1α through a nuclear factor-KB-dependent pathway. Mol Biol Cell 2003; 14:2216-25
    63 Blouin CC, Page EL, Soucy G.M, etc. Hypoxic gene activation by lipopolysaccharide in macrophages:implication of hypoxia-inducible factor-1 alpha. Blood 2004; 103:1124-30
    64 Gorlach A, Diebold I, Schini-kerth VB, etc. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22phox-containing NADPH oxidase. Circ Res 2001; 89:47-54
    65 Caniggia I, Mostachfi H, Winter J, etc. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFβ3. J Clin Invest 2000; 105:577-87
    66 Schaffer L, Scheid A, Spielmann P, etc. Oxygen-regulated expression of TGF-beta 3, a growth factor involved in trophoblast differentiation. Placenta 2003; 24:941-50
    67 Cramer T, Yamanishi Y, Clausen BE, etc. HIF-1α is essential for myeloid cell mediated inflammation. Cell 2003; 112:645-57
    68 Oda T, Hirota K, Nishi K, etc. Activation of hypoxia-inducible factor 1 during macrophage differentiation. Am. J. Physiol. Cell Physiol 2006; 291:C104-13
    69 Cummins EP, Taylor CT. Hypoxia-responsive transcription factors. Pflugers Arch 2005; 450:363-71
    70 Cummins EP, Berra E, Comerford KM, etc. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc Natl Acad Sci USA 2006; 103:18154-9
    71 Cockman ME, Lancaster DE, Stolze IP, etc. Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci USA 2006; 103: 14767-72
    72 Belaiba RS, Bonello S, Z¨ahringer C, etc. Hypoxia up-regulates hypoxia-inducible factor-la transcription by involving phosphatidylinositol 3-kinase and nuclear factor κB in pulmonary artery smooth muscle cells. Mol Biol Cell 2007; 18:4691-7
    73 Van UP, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-la by NF-κB. Biochem J 2008; 412:477-84
    74 Bracken CP, Whitelaw ML, Peet DJ. Activity of hypoxia-inducible factor 2a is regulated by association with the NF-κB essential modulator. J Biol Chem 2005; 280:14240-51
    75 O' Connell RM, Rao DS, Chaudhuri AA, etc. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J ExpMed 2008; 205:585-94
    76 Scortegagna M, Cataisson C, Martin RJ, etc. HIF-la regulates epithelial inflammation by cell autonomous NFκB activation and paracrine stromal remodeling. Blood 2008; 111; 3343-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700