载脂蛋白嵌合模拟肽对巨噬细胞脂代谢和炎症反应的调控及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     巨噬细胞是动脉粥样硬化(AS)发生发展中最主要的细胞类型,与脂质沉积及炎症密切相关。循环中单核细胞募集至内皮下是动脉粥样硬化发生的最早期事件。单核细胞分化为巨噬细胞,吞噬大量含载脂蛋白B(apoB)且富含胆固醇的脂蛋白颗粒。在动脉粥样硬化的早期阶段,大部分被吞噬的胆固醇以胆固醇-脂肪酸酯的形式储存,导致了巨噬细胞源性泡沫细胞的形成。当动脉粥样硬化病变进一步进展,出现胆固醇酯含量的逐步下降,以及相应的非酯化的游离胆固醇(free cholesterol, FC)含量的进行性增加。FC在细胞的大量蓄积,导致巨噬细胞凋亡和继发性坏死,继而引起病变坏死、斑块破裂、血栓形成,最终导致临床急性心血管事件发生。同时越来越多研究者发现,在FC诱导凋亡发生前所触发的炎症反应是影响斑块稳定性、造成动脉粥样硬化病变进展的另一重要因素。
     AS所致缺血性心脏疾病是中、老年人群发病和死亡的常见原因,探索能有效防治AS的措施一直是心血管疾病领域的研究热点。AS是一种多因素疾病,体内多种因子均不同作用地参与其发生发展,其中,载脂蛋白A-I(apoA-I)和载脂蛋白E(apoE)被认为是该疾病的两个保护性因子,二者均能通过多种途径拮抗AS,且相互存在协同效应。通过重组apoA-I和apoE全蛋白质(holoprotein)虽然能够治疗AS,但因二者均为大分子蛋白(分子量分别为28kD和34kD),故只能通过静脉给药,且制备不易、成本高昂,限制了其临床应用。因此,通过研制分子量更小而功能上相当的apoA-I模拟肽和apoE模拟肽用以治疗AS及其相关性疾病,被认为是防治AS方面很有前景的新策略,且已取得了较大进展。然而,现有apoA-I模拟肽和apoE模拟肽在抗AS方面均存在各自的不足,这在一定程度上降低了二者的治疗效应。于是有研究者利用天然apoA-I与apoE功能上的互补性,将apoE受体结合域与含有两性螺旋结构的apoA-I模拟肽共价结合,形成一种新型的具有双结构域的载脂蛋白嵌合模拟肽即Ac-hE-18A-NH2。研究发现这种双结构域的嵌合模拟肽可以促进成纤维细胞、HepG2细胞对低密度脂蛋白(LDL)的摄取、吸收和降解。进一步研究发现Ac-hE-18A-NH2模拟肽在体内具有抗炎及抗氧化的特性。在apoE基因敲除小鼠模型,静脉注射该模拟肽,血浆胆固醇水平明显下降。高胆固醇血症兔静脉注射Ac-hE-18A-NH2后,不仅显著降低了血浆胆固醇水平,而且通过降低血浆中过氧化氢脂质、增加高密度脂蛋白(HDL)对氧磷酶浓度、诱导超氧阴离子形成从而对抗氧化应激、改善内皮功能,从而起到抗动脉粥样硬化作用。
     目的
     观察载脂蛋白嵌合模拟肽Ac-hE-18A-NH2对氧化低密度脂蛋白(oxLDL)刺激下RAW 264.7巨噬细胞胆固醇流出、凋亡及炎症介质释放的影响,并探讨其可能的作用机制。
     方法
     RAW264.7巨噬细胞传代后接种于细胞培养板,分为三组:(1)胆固醇流出检测组:细胞种植于24孔板,用0.5μCi/孔3H-胆固醇和含50μg/ml oxLDL共同孵育24小时之后,给予不同浓度的Ac-hE-18A-NH2 (0-100μg/ml)干预24h,收集细胞用液体闪烁计数法检测胆固醇流出。采用酶联免疫吸附试验(ELISA)测定细胞内环磷酸腺苷(cAMP)含量,采用实时荧光定量PCR及Western blot检测三磷酸腺苷结合盒转运体A1(ABCA1),肝X受体α(LXRα)、过氧化物酶体增殖物激活受体γ(PPARγ)的mRNA及蛋白表达;(2)凋亡检测组:细胞种植于6孔板,50μg/ml oxLDL处理RAW264.7细胞48小时后加入不同浓度的模拟肽Ac-hE-18A-NH2(1、10、50、100μg/ml)和胆固醇流出促进剂β-环糊精(β-CD)或胆固醇流出阻断剂布雷菲得菌素(BFA)共同孵育24小时。Annexin V-FITC/PI细胞凋亡检测试剂盒及流式细胞仪检测细胞凋亡;分别通过试剂盒检测caspase-3活性及细胞内胆固醇含量;Western-blot检测细胞bcl-2蛋白的表达;(3)炎症反应组:oxLDL刺激RAW264.7巨噬细胞,给予不同浓度的模拟肽Ac-hE-18A-NH2(1-100μg/ml)干预,收集细胞,测定TNF-α分泌和mRNA表达水平。Western-blot检测ABCA1及P-IκB蛋白浓度。EMSA检测核因子-κB (NF-κB)活性。
     结果
     1.模拟肽Ac-hE-18A-NH2以浓度依赖及时间依赖方式促进巨噬细胞内胆固醇流出。1、10、50、100μg/ml Ac-hE-18A-NH2干预24小时后,其介导的胆固醇流出率分别为12.04±1.65%、16.19±1.45%、26.93±4.37%和24.58±2.43%;50μg/ml Ac-hE-18A-NH2干预细胞不同时间,其介导的胆固醇流出率分别为10.86±1.46%(6h),13.43±1.55%(12h),20.58±1.34%(18h),和26.93±4.37%(24h)。
     2.Ac-hE-18A-NH2以浓度依赖方式增加细胞内cAMP水平,上调ABCA1、LXRα和PPARγmRNA和蛋白表达。
     3.加用cAMP刺激剂8-Br-cAMP, Ac-hE-18A-NH2介导的胆固醇流出率明显增加(26.93±4.37,35.81±2.73;P<0.05),ABCA1mRNA表达增加了66.67%。而加用PPARγ特异性抑制剂预处理细胞后,PPARγ的表达几乎完全抑制,ABCA1和LXRα的表达也受到一定程度抑制,Ac-hE-18A-NH2介导的胆固醇流出率明显减少(26.93±4.37,17.23±1.93;P<0.01)。
     4.OxLDL诱导的RAW264.7巨噬细胞的凋亡率随着oxLDL浓度的增加和处理时间的延长而显著提高。
     5.50μg/ml oxLDL处理细胞48小时后,加入不同浓度的模拟肽Ac-hE-18A-NH2 (1、10、50、100μg/ml)干预,细胞凋亡率以浓度依赖的方式逐渐减少。
     6.模拟肽Ac-hE-18A-NH2呈浓度依赖性的促进细胞内胆固醇流出和降低细胞内的胆固醇含量,降低caspase-3的活性,上调bcl-2的蛋白表达。
     7.β-CD与Ac-hE-18A-NH2共同作用后胆固醇流出明显增加,细胞凋亡率相应减少。而通过BFA部分阻断介导的胆固醇流出,细胞凋亡率明显增加。
     8.OxLDL刺激使RAW264.7巨噬细胞TNF-α分泌和mRNA表达明显增强,细胞内胆固醇蓄积,促进IκB磷酸化,并激活NF-κB。
     9.Ac-hE-18A-NH2浓度依赖性降低TNF-α分泌及mRNA表达,上调ABCA1 mRNA和蛋白的表达,减少细胞内胆固醇含量,抑制NF-κB活化,并抑制IκB磷酸化。相同的实验条件下及作用浓度,D-4F对于TNF-α分泌的抑制作用不如Ac-hE-18A-NH2。
     10.与oxLDL刺激组比较,50μg/ml Ac-hE-18A-NH2使上清TNF-α浓度降低56%,其mRNA表达降低67%,细胞内胆固醇含量降低65%,ABCA1 mRNA和蛋白表达均明显上调,NF-κB活性减少65.34%,胞浆中IκB-α蛋白水平明显升高,而p-IκB-α蛋白水平明显降低。
     结论
     1.模拟肽Ac-hE-18A-NH2可以明显促进巨噬细胞胆固醇流出,其机制可能与cAMP-ABCA1和PPARγ-LXRα-ABCA1两种途径有关。
     2.模拟肽Ac-hE-18A-NH2可以明显抑制oxLDL诱导的巨噬细胞胆固醇凋亡,其作用与促进细胞胆固醇流出、减少细胞内胆固醇蓄积有关。
     3.Ac-hE-18A-NH2能抑制oxLDL诱导的RAW264.7巨噬细胞TNF-α分泌和mRNA表达,FC-IκB/NF-KB-TNFα信号通路是其中作用途径之一。
Background
     Macrophages are the most prominent cell type in atherosclerotic lesions and are associated with two hallmarks of the disease, lipid deposition and inflammation. Recruitment of circulating monocytes to the subendothelial space is one of the earliest events in atherogenesis. Monocytes differentiate into macrophages, which subsequently internalize large amount of atherogenic, cholesterol-rich lipoprotein particles. In the early stages of atherosclerosis, most of the internalized cholesterol is stored as cholesteryl esters, resulting in "foam cell" formation. As a lesion becomes more advanced, however, there is a progressive decrease in the cholesteryl ester content and a reciprocal increase in the unesterified, or "free" cholesterol (FC) content. FC accumulation is a potent inducer of macrophage apoptosis and secondary necrosis, which is thought to contribute to necrosis and plaque disruption, leading to acute atherothrombotic cardiovascular events. Another key characteristic of advanced, or "vulnerable," atherosclerotic lesion is the presence of a variety of inflammatory cytokines, many of which are thought to be secreted by macrophages and triggered by FC accumulation.
     Atherosclerotic diseases are the leading cause of death in developed countries and part of developing countries. These facts highlight the need for effective therapies to manage atherosclerosis and thrombosis. In this regard, high-density lipoprotein (HDL)-based therapies have recently become the focus of attention. Apolipoprotein A-I (apoA-I) and apolipoprotein (apoE) are the main protein in HDL and exert diverse atheroprotective functions. However, both apoE and apoA-I are macromolecular protein (molecular weight of 28kD and 34kD, respectively) and can only be administered intravenously. In addition, difficult preparation and expensive cost limit their clinical application.Thus, their mimetic peptides which mimic the function of apolipoprotein with smaller molecular weight are increasingly considered as potential antiatherogenic strategy. Recently, a dual-domain peptide has been designed that possesses the arginine-rich domain (LRKLRKRLLR, 141-to 150-residue region of apo E) from apoE, covalently linked to the well-characterized class A amphipathic helical peptide 18A, high-affinity lipid-associating peptide (DWLKAFYDKVAEKL KEAF). The resulting peptide (Ac-hE-18A-NH2) has been shown to promote the rapid uptake and clearance of atherogenic apoB-containing lipoproteins in vitro and in dyslipidemic mouse models. In the Watanabe heritable hyperlipidemic (WHHL) rabbit, a single administration of the peptide Ac-hE18A-NH2 not only reduced plasma cholesterol levels but also restored endothelial function.
     Objective
     The aim of this study was to evaluate the effect of a dual-domain mimetic peptide, Ac-hE-18A-NH2 on the cholesterol efflux, apoptosis and inflammation response in RAW264.7 macrophages treated with oxidized low density lipoprotein(oxLDL), and to elucidate the possible mechanisms.
     Methods
     RAW264.7 macrophages were divided into three groups:(1) Cholesterol efflux group:RAW264.7 macrophages were incubated in the medium containing various concentration of the peptide, Ac-hE-18A-NH2 (1,10,50 and 100μg/ml) for 24 hours. The intracellular cAMP level was determined by ELISA. ABCA1、LXRαand PPARγexpression in macrophages was quantitated by realtime RT-PCR and Western blot analysis. (2) Apoptosis group:The cells were exposed to 50μg/ml oxLDL for 48 hrs, and then the cells were incubated with the peptide Ac-hE-18A-NH2 with various concentrations. The apoptosis was detected using Annexin V-FITC staining and flow cytometric analysis. The caspase-3 activity and intracellular cholesterol content were measured using commercially available quantitation kits. Bcl-2 protein expression in macrophages was detected by Western blot analysis. In some experiments, the cells were co-treated withβ-cyclodextrin (a cholesterol efflux stimulator) or BFA (a cholesterol efflux blocker) for 24hours. (3) Inflammation group:Macrophages were incubated in the medium containing various concentrations of Ac-hE18A-NH2 (1-50μg/ml) with ox-LDL (50μg/ml) stimulated. The TNF-a level and intracellular cholesterol content were measured using commercially available quantitation kits. TNFαand ABCA1 mRNA expression were detected by Real-time PCR. ABCA1 and IκB protein expression in macrophages was determined by Western blot analysis. NF-κB activity was evaluated by Electrophoretic Mobility Shift Assay (EMSA).
     Results
     1. The peptide Ac-hE-18A-NH2 significantly increased the cholesterol efflux in concentration-and time-dependent manner. Compared with the control group,1.3-fold increase in 10μg/ml peptide Ac-hE-18A-NH2-mediated cholesterol efflux was seen, whereas 0.7-fold increase was observed in 1μg/ml Ac-hE-18A-NH2-mediated cholesterol efflux. The maximum cholesterol efflux mediated by the peptide was occurred at 50μg/ml (26.93±4.37%). Cholesterol efflux from macrophages at different time points was 10.86±1.46%(6 hrs),13.43±1.55%(12 hrs), 20.58±1.34%(18 hrs), and 26.93±4.37%(24 hrs), respectively.
     2. Concomitantly, Ac-hE-18A-NH2 increased intracellular cAMP level, ABCA1 mRNA and protein expression in dose-dependent manner, consistent with the changes of cholesterol efflux from macrophages.
     3.8-Br-cAMP was a potent activator of cholesterol efflux and ABCA1 expression during the process of cholesterol efflux mediated by Ac-hE-18A-NH2. Moreover, Ac-hE-18A-NH2 upregulated the expression of LXRa and PPARy. Addition of GW9662 markedly inhibited the increase of ABCA1 gene expression and Ac-hE-18A-NH2-mediated cholesterol efflux.
     4. After treated with 50μg/ml ox-LDL for various time points, the apoptotic rate of RAW264.7 macrophages increased in a time-dependent manner. Ox-LDL with increasing concentration induced macrophages apoptosis in a dose-dependent manner.
     5. The peptide Ac-hE-18A-NH2 with various concentrations (1μg/wl,10μg/ml, and 50μg/ml) inhibited the ox-LDL-mediated apoptosis in a concentration-dependent manner.
     6. The peptide also decreased the caspase-3 activity and increased bcl-2 expression in macrophages in a dose-dependent manner. It was accompanied by an increased rate of intracellular cholesterol efflux, and decreased total cholesterol levels in cells in a concentration-dependent manner.
     7. Moreover, blockage of cholesterol efflux by brefeldin A decreased the protective effect of Ac-hE-18A-NH2 on ox-LDL induced apoptosis While increase of the cholesterol efflux byβ-cyclodextrin led to a dramatic decrease in the apoptotic rate of cells.
     8. OxLDL stimulation induced a significant increase of TNFa secretion, mRNA expression, cholesterol accumulation and NF-κB activity in RAW264.7 macrophages.9. Ac-hE-18A-NH2 reduced TNFa secretion and mRNA expression, up-regulated the ABCA1 mRNA and protein expression, reduced the intracellular cholesterol content and inhibited NF-κB activation in a dose-dependent manner.
     10. Treatment with Ac-hE-18A-NH2 at 50μg/ml significantly suppressed TNFa secretion by 56%, reduced intracellular cholesterol content by 65%, inhibited NF-κB activation by 65.34%, upregulated ABCA1 mRNA and protein expression, and suppressed IκB-αphosphorylation as compared with ox-LDL stimulated group. Under the same condition and the same concentration, Ac-hE-18A-NH2 is more efficient than D-4F (apoA-I mimetic peptide) to inhibit the inflammatory response induced by ox-LDL in macrophages.
     Conclusions
     1. Ac-hE-18A-NH2 affects cholesterol efflux, cAMP level and ABCA1 expression of macrophages, and the cAMP is probably involved. Furthermore, the pathway of LXRα-PPARγ-ABCA1 may also be involved in this process.
     2. The mimetic peptide Ac-hE-18A-NH2 exerts a protective effect against macrophage apoptosis, through reducing the accumulation of cholesterol.
     3. Ac-hE-18A-NH2 could suppress TNFa secretion and mRNA expression in ox-LDL-stimulated RAW264.7 macrophages by IKBa-NF-KB signaling pathway.
引文
[1]Tall AR, Yvan-Charvet L, Terasaka N, et al. HDL, ABC transporters, and cholesterol efflux:implications for the treatment of atherosclerosis. Cell Metab,2008, 7(5):365-375.
    [2]Navab M, Anantharamaiah GM, Reddy ST, et al. Peptide mimetics of apolipoproteins improve HDL function. J Clin Lipidol,2007,1(2):142-147.
    [3]Shah PK, Chyu KY. Apolipoprotein A-I mimetic peptides:potential role in atherosclerosis management. Trends Cardiovasc Med,2005,15(8):291-296.
    [4]Navab M, Anantharamaiah GM, Reddy ST, et al. Apolipoprotein A-I mimetic peptides. Arterioscler Thromb Vasc Biol,2005,25(7):1325-1331.
    [5]Navab M, Anantharamaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis:the role of oxidized phospholipids and HDL. J Lipid Res,2004,45: 993-1007.
    [6]Nikoulin IR, Curtiss LK. An apolipoprotein E synthetic peptide targets to lipoproteins in plasma and mediates both cellular lipoprotein interactions in vitro and acute clearance of cholesterol-rich lipoproteins in vivo. J Clin Invest,1,998,101(1): 223-234.
    [7]Anantharamaiah GM. Synthetic peptide analogs of apolipoproteins. Methods Enzymol,1996,128:627-647.
    [8]Datta G, Chaddha M, Garber DW, et al. The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL in fibroblasts. Biochemistry,2000,39: 213-220.
    [9]Garber DW, Handattu S, Aslan I, et al. Effect of an arginine-rich amphipathic helical peptide on plasma cholesterol in dyslipidemic mice. Atherosclerosis,2003, 168:229-237.
    [10]Gupta H, White CR, Handattu S, et al. Apolipoprotein E mimetic Peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits. Circulation,2005,111:3112-3118.
    [11]Datta G, Garber DW, Chung BH, et al. Cationic domain 141-150 of apo E covalently linked to a class A amphipathic helix enhances atherogenic lipoprotein metabolism in vitro and in vivo. J Lipid Res,2001,42:959-966.
    [12]Yokoyama S. Release of cellular cholesterol:molecular mechanism for cholesterol homeostasis in cells and in the body. Biochim Biophys Acta,2003,1529:. 231-244.
    [13]Van Lenten BJ, Wagner AC, Anantharamaiah GM,et al. Apolipoprotein A-I mimetic peptides. Curr Atheroscler Rep,2009,11:52-57
    [14]Navab M, Anantharamaiah GM, Reddy ST, et al.Apolipoprotein A-I mimetic peptides. Arterioscler Thromb Vasc Biol,2005,25:1325-1331.
    [15]Navab M, Anantharamaiah GM, Reddy ST, et al. Oral D-4F causes formation of pre-β high-density lipoprotein and improves highdensity lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation,2004,109:3215-3220.
    [16]Huang ZH., Fitzgerald ML, Mazzone T. Distinct cellular loci for the ABCA1-dependent and ABCA1-independent lipid efflux mediated by endogenous apolipoprotein E expression. Arterioscler Thromb Vasc Biol,2006,26:157-162.
    [17]Kolovou GD, Mikhailidis DP, Anagnostopoulou KK, et al. Tangier disease four decades of research:a reflection of the importance of HDL. Curr Med Chem, 2006,13(7):771-782.
    [18]Brooks-Wilson A, Marcil M, Clee SM, et al.Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genetics,1999,22: 336-345.
    [19]Nofer JR, Remaley AT. Tangier disease:still more questions than answers. Cell Mol Life Sci,2005,62(19-20):2150-2160.
    [20]Rigot V, Hamon Y, Chambenoit O, et al. Distinct sites on ABCA1 control distinct steps required for cellular release of phospholipids. J Lipid Res,2002,43(12):2077-2086.
    [21]Wade DP, Owen JS. Regulation of the cholesterol efflux gene, ABCA1. Lancet, 2001,357:161-163.
    [22]Oram J.F, Lawn R.M, Garvin M.R, et al. ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J. Biol. Chem,2000,275:34508-34511.
    [23]Haidar B, Denis M, Marcil M, et al. ApolipoproteinA-I activates cellular cAMP signaling through the ABCA1 transporter. J. Biol.Chem,2004,279:9963-9969.
    [24]Wojcicka G, Jamroz-Wisniewska A, Horoszewicz K, et al.Liver X receptors (LXRs). Part I:structure, function, regulation of activity, and role in lipid metabolism. Postepy Hig Med Dosw,2007,61:736-759.
    [25]Baranowski M. Biological role of liver X receptors. J Physiol Pharmacol,2008, 59 Suppl 7:31-55.
    [26]Villacorta L, Garcia-Barrio MT, Chen YE. Transcriptional regulation of peroxisome proliferator-activated receptors and liver X receptors. Curr Atheroscler Rep,2007,9(3):230-237.
    [27]Tontonoz P, Spiegelman BM. Fat and beyond:the diverse biology of PPAR gamma. Annu Rev Biochem,2008,77:289-312.
    [28]Jay MA, Ren J. Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr Diabetes Rev,2007,3(1):33-39.
    [29]Martin H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res,2009,669(1-2):1-7.
    [30]Yaacob NS, Kaderi MA, Norazmi MN. Differential transcriptional expression of PPARalpha, PPARgammal, and PPARgamma2 in the peritoneal macrophages and T-cell subsets of non-obese diabetic mice. J Clin Immunol,2009,29(5):595-602.
    [31]Moraes LA, Piqueras L, Bishop-Bailey D. Peroxisome proliferator-activated receptors and inflammation. Pharmacol Ther,2006,110(3):371-385.
    [32]Farmer SR.Regulation of PPARgamma activity during adipogenesis. Int J Obes, 2005,29 Suppll:S13-16.
    [33]Schmitz G, Langmann T. Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochim Biophys Acta,2005,1735(1):1-19.
    [34]Babaev VR, Yancey PG, Ryzhov SV, et al. Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol,2005,25(8):1647-1653.
    [35]Zhou J, Febbraio M, Wada T, et al.Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology,2008,134(2):556-567.
    [1]Da Fonseca RR, Kosiol C, Vinar T, et al. Positive selection on apoptosis related genes. FEBS Lett,2010,584(3):469-476.
    [2]Seimon T, Tabas I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res,2009,50 Suppl:S382-387.
    [3]Salvayre R, Auge N, Benoist H, et al. Oxidized low-density lipoprotein-induced apoptosis [J]. BiochimBiophysActa,2002,1585(2-3):213-221.
    [4]Martin-Fuentes P, Civeira F, Recalde D, et al. Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. J Immunol,2007,79(5):3242-3248
    [5]Dhaliwal BS, Steinbreacher UP. Cholesterol delivered to macrophages by oxidized low density lipoprotein is sequestered in lysosomes and fails to efflux normally. J Lipid Res,2000; 41:1658-1665.
    [6]Tabas I. Consequences of cellular cholesterol accumulation:basic concepts and physiological implications. J Clin Invest,2002,110:905-911.
    [7]Myoishi M, Hao H, Minamino T, et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation,2007, 116(11):1226-1233.
    [8]Datta G, Garber DW, Chung BH, et al. Cationic domain 141-150 of apo E covalently linked to a class A amphipathic helix enhances atherogenic lipoprotein metabolism in vitro and in vivo. J Lipid Res,2001,42:959-966.
    [9]Gupta H, White CR, Handattu S, et al. Apolipoprotein E mimetic Peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits. Circulation,2005,111(23):3112-3118.
    [10]Rossi ML, Marziliano N, Merlini PA, et al. Different quantitative apoptotic traits in coronary atherosclerotic plaques from patients with stable angina pectoris and acute coronary syndromes [J]. Circulation,2004,110(13):1767-1773.
    [11]Zorc M, Zorc-Pleskovic R, Vraspir-Porenta O, et al. Apoptosis and histopathologic changes in diffuse coronary atherosclerosis [J]. Angiology,2003, 54(1):81-84.
    [12]Boisvert WA, Rose DM, Boullier A, et al. Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size [J]. Arterioscler Thromb Vasc Biol,2006, 26(3):563-569.
    [13]Schrijvers DM, De Meyer GR, Herman AG, et al. Phagocytosis in atherosclerosis; Molecular mechanisms and implications for plaque progression and stability. [J]. Cardiovasc Res,2007,73(3):470-480.
    [14]Tabas I. Signal transduction pathways in free cholesterol-loaded macrophages: cell biological insight into the progression of atherosclerosis [J]. International Congress Series,2004,1262:392-395
    [15]Waldo SW, Li Y, Buono C, et al. Heterogeneity of human macrophages in culture and in atherosclerotic plaques. Am J Pathol,2008,172 (4):1112-1126.
    [16]Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis:the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol,2005,25(11):2255-2264.
    [17]Chen J, Mehta JL, Haider N, et al. Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res,2004,94(3): 370-376.
    [18]Ermak N, Lacour B, Drueke TB, et al.Role of reactive oxygen species and Bax in oxidized low density lipoprotein-induced apoptosis of human monocytes. Atherosclerosis,2008,200(2):247-256.
    [19]Bustamante M, Diaz F, Munoz M, et al. Oxidized low density lipoproteins induce apoptosis in human lymphocytes:involvement of mitogen-activated protein kinases. Cell Mol Biol,2007,53 Suppl:OL954-964.
    [20]Kataoka H, Kume N, Miyamoto S, et al. Oxidized LDL modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler. Arterioscler Thromb Vasc Biol,2001,21:955-960.
    [21]Salvayre R, Auge N, Benoist H, et al. Oxidized low-density lipoprotein-induced apoptosis [J]. BiochimBiophysActa,2002,1585(2-3):213-221.
    [22]Ishii T, Itoh K, Ruiz E, et al. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages:activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res,2004,94(5):609-616.
    [23]Khan M, Pelengaris S, Cooper M, et al. Oxidised lipoproteins may promote inflammation through the selective delay of engulfment but not binding of apoptotic cells by macrophages [J]. Atherosclerosis,2003,171(1):21-29.
    [24]Hung YC, Hong MY, Huang GS. Cholesterol loading augments oxidative stress in macrophages [J]. FEBS Letters,2006,580(3):849-861.
    [25]Geng YJ, Phillips JE, Mason RP, et al. Cholesterol crystallization and macrophage apoptosis:implication for atherosclerotic plaque instability and rupture [J]. BiochemPharmacol,2003,66(8):1485-1492.
    [26]Tabas I, Yao PM. Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem,2001,276:42468-42476.
    [27]Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene,2008,27(48):6194-6206.
    [28]Levine B, Sinha S, Kroemer G Bcl-2 family members:dual regulators of apoptosis and autophagy. Autophagy,2008,4(5):600-606.
    [29]Sanossian N, Saver JL, Navab M, et al. High-density lipoprotein cholesterol:an emerging target for stroke treatment. Stroke,2007,38(3):1104-1109.
    [30]Terasaka N, Wang N, Yvan-Charvet L, et al. High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc Natl Acad Sci U S A,2007,104(38): 15093-15098.
    [31]Jiang P, Yan PK, Chen JX, et al. High density lipoprotein 3 inhibits oxidized low density lipoprotein-induced apoptosis via promoting cholesterol efflux in RAW264.7 cells. Acta Pharmacol Sin,2006,27(2):151-157.
    [32]Christian AE, Haynes MP, Phillips MC, et al. Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res,1997,38(11):2264-2272.
    [33]Verghese PB, Arrese EL, Howard AD,et al. Brefeldin A inhibits cholesterol efflux without affecting the rate of cellular uptake and re-secretion of apolipoprotein A-I in adipocytes. Arch Biochem Biophys,2008,478(2):161-166.
    [1]Packard RR, Libby P. Inflammation in atherosclerosis:from vascular biology to biomarker discovery and risk prediction. Clin Chem,2008,54(1):24-38.
    [2]McKellar GE, McCarey DW, Sattar N, et al. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol,2009,6(6):410-417.
    [3]Mizia-Stec K, Zahorska-Markiewica B, Mandecki T, et al. Hyperlipidaemias and serum cytokines in patients with coronary artery disease. Acta Cardiol,2003,58:9-15.
    [4]Cesari M, Penninx BW, Newman AB, et al. Inflammatory markers and onset of cardiovascular events:results from the Health ABC study. Circulation,2003,108: 2317-2322.
    [5]Bacci S, Pieri L, Buccoliero AM, et al. Smooth muscle cells, dendritic cells and mast cells are sources of TNF alpha and nitric oxide in human carotid artery atherosclerosis.Thromb Res,2008,122(5):657-667.
    [6]Lei X, Buja LM. Detection and localization of tumor necrosis factor-alpha in WHHL rabbit arteries. Atherosclerosis,1996,125:81-89.
    [7]Tesfamariam B, DeFelice AF. Endothelial injury in the initiation and progrossion of vascular disorders [J].Vasc Pharmaeol,2007,46(4):229-237.
    [8]Ermak N, Lacour B, Drueke TB, et al. Role of reactive oxygen species and Bax in oxidized low density lipoprotein-induced apoptosis of human monocytes. Atherosclerosis,2008,200(2):247-256.
    [9]Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb,2003,10(2):63-71.
    [10]Akiba S, Kumazawa S, Yamaguchi H, et al. Acceleration of matrix metalloproteinase-1 production and activation of platelet-derived growth factor receptor beta in human coronary smooth muscle cells by oxidized LDL and 4-hydroxynonenal. Biochim Biophys Acta,2006,1763(8):797-804.
    [11]Ishigaki Y, Oka Y, Katagiri H. Circulating oxidized LDL:a biomarker and a pathogenic factor. Curr Opin Lipidol,2009,20(5):363-369.
    [12]Tedgui A, Mallat Z. Cytokines in atherosclerosis:pathogenic and regulatory pathways. Physiol Rev,2006,86(2):515-581.
    [13]Florentin M, Liberopoulos EN, Wierzbicki AS, et al. Multiple actions of high-density lipoprotein. Curr Opin Cardiol,2008,23(4):370-378.
    [14]Petraki MP, Mantani PT, Tselepis AD. Recent advances on the antiatherogenic effects of HDL-derived proteins and mimetic peptides. Curr Pharm Des,2009,15(27): 3146-3166.
    [15]Datta G, Garber DW, Chung BH, et al. Cationic domain 141-150 of apo E covalently linked to a class A amphipathic helix enhances atherogenic lipoprotein metabolism in vitro and in vivo. J Lipid Res,2001,42:959-966.
    [16]Gupta H, White CR, Handattu S, et al. Apolipoprotein E mimetic Peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits. Circulation,2005,111(23):3112-3118.
    [17]Rodriguez G, Mago N, Rosa F. Role of inflammation in atherogenesis. Invest Clin,2009,50(1):109-129.
    [18]Boyle JJ. Macrophage activation in atherosclerosis:pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol,2005,3(1):63-68.
    [19]van der Wal AC, Becker AE, van der Loos CM, et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespectibe of the dominant plaque morphology[J].Circulation, 1994,89:36-44,
    [20]van Horssen R, Ten Hagen TL, Eggermont AM.TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist.2006; 11(4):397-408.
    [21]McKenzie JA, Ridley AJ.Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol,2007,213(1): 221-228.
    [22]Chen C, Chou C, Sun Y, et al. Tumor necrosis factor alpha-induced activation of downstream NF-kappaB site of the promoter mediates epithelial ICAM-1 expression and monocyte adhesion. Involvement of PKCalpha, tyrosine kinase, and IKK2, but not MAPKs, pathway. Cell Signal,2001,13(8):543-553.
    [23]Weber C, Draude G, Weber KS, et al. Downregulation by tumor necrosis factor-alpha of monocyte CCR2 expression and monocyte chemotactic protein-1-induced transendothelial migration is antagonized by oxidized low-density lipoprotein:a potential mechanism of monocyte retention in atherosclerotic lesions. Atherosclerosis, 1999,145(1):115-123.
    [24]Stoll G, Bendszus M.Inflammation and atherosclerosis:novel insights into plaque formation and destabilization. Stroke,2006,37(7):1923-1932.
    [25]Nabata A, Kuroki M, Ueba H, et al. C-reactive protein induces endothelial cell apoptosis and matrix metalloproteinase-9 production in human mononuclear cells: Implications for the destabilization of atherosclerotic plaque. Atherosclerosis,2008, 196(1):129-135.
    [26]Linton MF, Fazio S. Macrophages, inflammation, and atherosclerosis. Int J Obes Relat Metab Disord,2003,27 Suppl 3:S35-40.
    [27]Ross R. Cell biology of atherosclerosis. Annu Rev Physiol,1995,57:791-804.
    [28]Leitinger N. Cholesteryl ester oxidation products in atherosclerosis. Mol Aspects Med,2003,24(4-5):239-250.
    [29]Pennings M, Meurs I, Ye D, et al. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. FEBS Lett, 2006,580(23):5588-5596.
    [30]Seimon T, Tabas I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res,2009,50 Suppl:S382-387.
    [31]Li Y, Schwabe RF, DeVries-Seimon T, et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB-and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem,2005,280(23):21763-21772.
    [32]Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB:current knowledge, new insights, and future perspectives. Cell Res,2010,20(1):24-33.
    [33]Zywicka B, Czarny A, Zaczynska E, et al. Activation of nuclear factor kappaB (NF-kappaB), induction of proinflammatory cytokines in vitro and evaluation of biocompatibility of the carbonate ceramic in vivo. Polim Med,2006,36(3):23-35.
    [34]Mankan AK, Lawless MW, Gray SG, et al. NF-kappaB regulation:the nuclear response. J Cell Mol Med,2009,13(4):631-643.
    [35]Yamamoto Y, Gaynor RB. IkappaB kinases:key regulators of the NF-kappaB pathway. Trends Biochem Sci,2004,29(2):72-79.
    [36]Monaco C, Andreakos E, Kiriakidis S, et al.Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc Natl Acad Sci U S A,2004,101(15):5634-5639.
    [37]Van der Heiden K, Cuhlmann S, Luong le A, et al. Role of nuclear factor kappaB in cardiovascular health and disease. Clin Sci (Lond),2010,118(10):593-605.
    [38]de Winther MP, Kanters E, Kraal G, et al. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol,2005,25(5):904-914.
    [1]Sharma RK, Singh VN, Reddy HK. Thinking beyond low-density lipoprotein cholesterol:strategies to further reduce cardiovascular risk. Vase Health Risk Manag, 2009,5:793-799.
    [2]Laitinen DL, Manthena S, Webb S. Association between HDL-C concentration and risk for a major cardiovascular event. Curr Med Res Opin,2010,26(4):933-941.
    [3]Meurs I, Van Eck M, Van Berkel TJ. HDL:Key Molecule in Cholesterol Efflux and the Prevention of Atherosclerosis. Curr Pharm Des,2010,23:1-23.
    [4]Choi BG, Vilahur G, Yadegar D, et al. The role of high-density lipoprotein cholesterol in the prevention and possible treatment of cardiovascular diseases. Curr Mol Med,2006,6(5):571-587.
    [5]Robins SJ, Collins D, Wittes JT, et al. Veterans Affairs High-Density Lipoprotein Intervention Trial.Relation of gemfibrozil treatment and lipid levels with major coronary events:VA-HIT:a randomized controlled trial. JAMA,2001,285(12): 1585-1591.
    [6]Chapman MJ. Therapeutic elevation of HDL-cholesterol to prevent atherosclerosis and coronary heart disease. Pharmacol Ther,2006,111(3):893-908.
    [7]Brochu M, Poehlman ET, Savage P, et al. Coronary risk profiles in men with coronary artery disease:effects of body composition, fat distribution, age and fitness. Coron Artery Dis,2000,11(2):137-144.
    [8]Ginter E, Simko V. Statins:the drugs for the 21st century? Bratisl Lek Listy.2009; 110 (10):664-668.
    [9]Drexel H. Statins, fibrates, nicotinic acid, cholesterol absorption inhibitors, anion-exchange resins, omega-3 fatty acids:which drugs for which patients? Fundam Clin Pharmacol,2009,23(6):687-692.
    [10]Nicholls SJ, Tuzcu EM, Sipahi ML, et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis.JAMA,2007,297:499-508.
    [11]Paiva H, Rhelen KM, van Coster R, et al. High-dose statins and skeletal muscle metabolism in humans:a randomized, controlled trial. Clin Pharmacol Ther,2005,78: 60-68.
    [12]Barter PJ, Brandrup-Wognsen G, Palmer MK, et al. Effect of statins on HDL:a complex process unrelated to changes in LDL:Analysis of the VOYAGER Database. J Lipid Res,2009 Dec 30, [Epub ahead of print]
    [13]Harikrishnan S, Rajeev E, Tharakan JA, et al. Efficacy and safety of combination of extended release niacin and atorvastatin in patients with low levels of high density lipoprotein cholesterol. Indian Heart J,2008,60(3):215-222.
    [14]McTaggart F, Jones P. Effects of statins on high-density lipoproteins:a potential contribution to cardiovascular benefit. Cardiovasc Drugs Ther,2008,22(4):321-338.
    [15]Asztalos BF, Batista M, Horvath KV, et al. Change in alphal HDL concentration predicts progression in coronary artery stenosis. Arterioscler Thromb Vasc Biol,2003, 23(5):847-852.
    [16]Hossain MA, Tsujita M, Gonzalez FJ, et al. Effects of fibrate drugs on expression of ABCA1 and HDL biogenesis in hepatocytes. J Cardiovasc Pharmacol,2008,51(3): 258-266.
    [17]Staels B, Auwerx J. Regulation of apo A-I gene expression by fibrates. Atherosclerosis,1998,137 Suppl:S19-23.
    [18]Tenkanen L, Manttari M, Kovanen PT, et al. Gemfibrozil in the treatment of dyslipidemia:an 18-year mortality follow-up of the Helsinki Heart Study. Arch Intern Med,2006,166(7):743-748.
    [19]Robins S J, Collins D, Wittes J T, et al. Veterans Affairs High-Density Lipoprotein Intervention Trial. Relation of gemfibrozilt reatment and lipid levels with major coronary events:VA-HIT:a randomized controlled trial[J]. JAMA,2001,285 (12):1585-1591.
    [20]Kamanna VS, Kashyap ML.Mechanism of action of niacin. Am J Cardiol.2008; 101(8A):20B-26B.
    [21]Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart diease[J]. JAMA,1975,231:360-381.
    [22]Brown B G, Zhao X-Q, Chait A, et al. Simvastatin and niacin,antioxidant vitamins, or the combination for t he prevention of coronary disease[J]. N Engl J Med, 2001,345:1583-1592.
    [23]Allen J, Lance E, Hyun J, et al. Arterial Biology for the Investiation of the Treatment Effects of Reducing Cholesterol(ARBITER)2:A Double-Blind, Placebo-Controlled Study of Extended-Release Niacin on Atherosclerosis Progression in Secondary Prevenion Patients Treated With Statins [J]. Circulation,2004,110:3512-3517.
    [24]Brinton E A, Eisenberg S, breslowJ L. Human HDL cholesterol levels are determined by apoA-I fractional catabolic rate,which correlates inversely with estimates of HDL particle size. Effects of gender,hepatic and lipoprotein lipases, triglyceride and insulin levels, and body fat distribution. Arterioscler Thromb,1994, 14(5):707-720.
    [25]Moore RE, Navab M, Millar JS, et al. Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res,2005,97(8):763-771.
    [26]Benoit P, Emmanuel F, Caillaud JM, et al. Somatic gene transfer of human apoA-I inhibits atheroscleosis progression in mouse models. Circulation,1999,99(1): 105-110.
    [27]Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA,1994,91:9607-9611
    [28]Chiesa G, Sirtori CR. Use of recombinant apolipoproteins in vascular diseases: the case of apoA-I. Curr Opin Investig Drugs,2002,3:420-426
    [29]Nanjee MN, Doran JE, Lerch PG, et al. Acute effects of intravenous infusion of apoA-I/phosphatidylcholine discs on plasma lipoproteins in humans. Arterioscler Thromb Vasc Biol,1999,19:979-989
    [30]Nanjee MN, Cooke CJ, Garvin R, et al. Intravenous apoA-I/lecithin discs increase pre-β-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J Lipid Res,2001,42:1586-1593
    [31]Kujiraoka T, Nanjee MN, Oka T, et al. Effects of intravenous apolipoprotein A-I/phosphatidylcholine discs on LCAT, PLTP, and CETP in plasma and peripheral lymph in humans. Arterioscler Thromb Vasc Biol,2003,23:1653-1659.
    [32]Eriksson M, Carlson LA, Miettinen TA, et al. Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I. Potential reverse cholesterol transport in humans. Circulation,1999,100(6):594-598.
    [33]Calabresi L, Sirtori CR, Paoletti R, et al. Recombinant apolipoprotein A-IMilano for the treatment of cardiovascular diseases. Curr Atheroscler Rep,2006,8(2):163-167.
    [34]Calabresi L, Canavesi M, Bernini F, et al. Cell cholesterol efflux to reconstituted high-density lipoproteins containing the apolipoprotein A-IMilano dimer. Biochemistry,1999,38(49):16307-16314.
    [35]Kaul S, Shah PK. ApoA-I Milano/phospholipid complexes emerging pharmacological strategies and medications for the prevention of atherosclerotic plaque progression. Curr Drug Targets Cardiovasc Haematol Disord,2005,5(6):471- 479.
    [36]Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes:a randomized controlled trial. JAMA,2003,290(17):2292-2300.
    [37]Anantharamaiah GM. Synthetic peptide analogs of apolipoproteins. Methods Enzymol,1986,128:627-647.
    [38]Datta G, Chaddha M, Hama S, et al. Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. J Lipid Res,2001,42:1096-1104.
    [39]Van Lenten BJ, Wagner AC, Anantharamaiah GM, et al. Apolipoprotein A-I mimetic peptides. Curr Atheroscler Rep,2009,11(1):52-57.
    [40]Getz GS, Wool GD, Reardon CA. Apoprotein A-I mimetic peptides and their potential anti-atherogenic mechanisms of action. Curr Opin Lipidol,2009,20(3):171-175.
    [41]Navab M, Anantharamaiah GM, Reddy ST, et al. Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation,2004,109(25):3215-3220.
    [42]Navab M, Anantharamaiah GM, Hama S, et al. D-4F and statins synergize to render HDL anti-inflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol,2005,25:1426-1432
    [43]Navab M, Anantharamaiah GM, Reddy ST, et al. An oral apoJ peptide renders HDL anti-inflammatory in mice and monkeys and dramatically reduces atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol,2005, 25:1932-1937.
    [44]Navab M, Anantharamaiah GM, Reddy ST, et al. Oral small peptides render HDL anti-inflammatory in mice and monkeys and reduce atherosclerosis in apoE null mice. Circulat Res,2005,97:524-532.
    [45]Nikoulin IR, Curtiss LK. An apolipoprotein E synthetic peptide targets to lipoproteins in plasma and mediates both cellular lipoprotein interactions in vitro and acute clearance of cholesterol-rich lipoproteins in vivo. J Clin Invest,1998,101(1): 223-234.
    [46]Anantharamaiah GM. Synthetic peptide analogs of apolipoproteins.Methods Enzymol,1996,128:627-647.
    [47]Datta G, Chaddha M, Garber DW, et al. The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL in fibroblasts. Biochemistry,2000,39:213-220.
    [48]Garber DW, Handattu S, Aslan I, et al. Effect of an arginine-rich amphipathic helical peptide on plasma cholesterol in dyslipidemic mice. Atherosclerosis,2003, 168:229-237.
    [49]Gupta H, White CR, Handattu S, et al. Apolipoprotein E mimetic Peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits. Circulation,2005,111:3112-3118.
    [50]Ira Tabas, Kevin Jon Williams, Jan Boren. Subendothelial lipoprotein retention as the initiating process in atherosclerosis:update and therapeutic implications. Circulation,2007,116:1832-1844.
    [51]Edwards PA, Kast HR, Anisfeld AM. BAREing it all:the adoption of LXR and FXR and their roles in lipid homeostasis[J]. J Lipid Res,2002,43 (1):2-12.
    [52]Edwards PA, Kennedy MA, Mark PA. LXRs; Oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis[J]. J Vascular Pharmacology,2002,38(4):249-256.
    [53]Marino JP Jr, Kallander LS, Ma C, et al. The discovery of tertiary-amine LXR agonists with potent cholesterol efflux activity in macrophages. Bioorg Med Chem Lett,2009,19(19):5617-5621.
    [54]Kase ET, Thoresen GH, Westerlund S, et al. Liver X receptor antagonist reduces lipid formation and increases glucose metabolism in myotubes from lean, obese and type 2 diabetic individuals. Diabetologia,2007,50 (10):2171-2180.
    [55]Kratzer A, Buchebner M, Pfeifer T, et al. Synthetic LXR agonist attenuates plaque formation in apoE-mice without inducing liver steatosis and hypertriglyceridemia. J Lipid Res,2009,50(2):312-326.
    [56]Smoak K, Madenspacher J, Jeyaseelan S, et al. Effects of liver X receptor agonist treatment on pulmonary inflammation and host defense. J Immunol,2008,180(5): 3305-3312.
    [57]Miao B, Zondlo S, Gibbs S, et al. Raising HDL cholesterol without inducing hepatic steatosis and hypertriglyceridemia by a selective LXR modulator. J Lipid Res, 2004,45(8):1410-1417.
    [58]Hamblin M, Chang L, Fan Y, et al. PPARs and the cardiovascular system. Antioxid Redox Signal,2009,11(6):1415-1452.
    [59]Fruchart JC, Staels B, Duriez P. The role of fibric acids in atherosclerosis. Curr Atheroscler Rep,2001,3(1):83-92.
    [60]Despres JP, Lemieux I, Robins SJ. Role of fibric acid derivatives in the management of risk factors for coronary heart disease. Drugs,2004,64(19):2177-2198.
    [61]Wang D, Wang H, Shi Q, et al. Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor δ [J]. Cancer Cell,2004,6(3):285-295.
    [62]Berger J, Moller DE. The mechanisms of action of PPARs[J]. Annu Rev Med, 2002,53:409-435.
    [63]Berger JP, Akiyama TE, Meinke PT. PPARs:therapeutic targets for metabolic disease[J]. Trends Pharm Sci,2005,26(5):244-251.
    [64]Leibowitz MD, Fievet C, Hennuyer N, et al. Activation of PPARdelta alters lipid metabolism in db/db mice. FEBS Lett,2000,473(3):333-336.
    [65]Oliver WR Jr, Shenk JL, Snaith MR, et al. A selective peroxisome proliferator-activated receptor-delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA,2001,98:5306-5311.
    [66]Duan SZ, Usher MG, Mortensen RM. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res,2008,102(3):283-294.
    [67]Stumvoll M.Thiazolidinediones-some recent developments. Expert Opin Investig Drugs,2003,12(7):1179-1187.
    [68]Lebovitz HE, Banerji MA. Insulin resistance and its treatment by thiazolidinediones. Recent Prog Horm Res,2001,56:265-294.
    [69]Colville-Nash PR, Qureshi SS, Willis D, et al. Inhibition of inducible nitric oxide synthase by peroxisome proliferator-activated receptor agonists:correlation with induction of heme oxygenase 1. J Immunol,1998,161(2):978-984.
    [70]Peters Harmel AL, Kendall DM, Buse JB, et al. Impact of adjunctive thiazolidinedione therapy on blood lipid levels and glycemic control in patients with type 2 diabetes. Curr Med Res Opin,2004,20(2):215-223.
    [71]Mittra S, Sangle G, Tandon R, et al. Increase in weight induced by muraglitazar, a dual PPARalpha/gamma agonist, in db/db mice:adipogenesis/or oedema? Br J Pharmacol,2007,150(4):480-487.
    [72]van der Hoorn JW, Jukema JW, Havekes LM, et al. The dual PPARalpha/gamma agonist tesaglitazar blocks progression of pre-existing atherosclerosis in APOE*3 Leiden.CETP transgenic mice. Br J Pharmacol,2009,156(7):1067-1075.
    [73]Wendi V. Rodrigueza, Sandra K. Klimuk, P. Haydn Pritchard, et al. Cholesterol mobilization and regression of atheroma in cholesterol-fed rabbits induced by large unilamellar vesicles. Biochimica et Biophysica Acta,1998,1368:306-320.
    [74]Todd Anderson, Francois Charbonneau, Sammy Chan, et al. The effect of large unilamellar vesicles on vascular function in patients with coronary atherosclerosis. Atherosclerosis,2008,200:424-431.
    [75]Yamashita S, Hbujo H, Arai H, et al. Long-term probucol treatment prevents secondary cardiovascular events:a cohort study of patients with heterozygous familial hyper-cholesterolemia in Japan. J Atheroscler Thromb,2008,15(6):292-303.
    [76]Yamashita S, Matsuzawa Y. Where are we with probucol:a new life for an old drug? Atherosclerosis,2009,207(1):16-23.
    [77]Tardif JC, Gregoire J, Lavoie MA, et al. Pharmacologic prevention of both restenosis and atherosclerosis progression:AGI-1067, probucol, statins, folic acid and other therapies. Curr Opin Lipidol,2003,14(6):615-620.
    [78]Vergeer M, Stroes ES. The pharmacology and off-target effects of some cholesterol ester transfer protein inhibitors. Am J Cardiol,2009,104(10 Suppl): 32E-38E.
    [79]Gaofu Q, Jun L, Xiuyun Z, et al. Antibody against cholesteryl ester transfer protein (CETP) elicited by a recombinant chimeric enzyme vaccine attenuated atherosclerosis in a rabbit model. Life Sci,2005,77(21):2690-2702.
    [80]Davidson MH, Maki K, Umporowicz D, et al. The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis,2003,169(1):113-120.
    [81]Okamoto H, Y onemori F, Wakitani K, et al. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits [J]. Nature,2000,406:203-207.
    [82]de Grooth GJ, Kuivenhoven JA, Stalenhoef AF, et al. Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans:a randomized phase Ⅱ dose-response study. Circulation,2002,105(18):2159-2165.
    [83]Brousseau ME, Schaefer EJ, Wolfe ML, et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol [J]. N Engl J Med,2004,350: 505-515.
    [84]Clark RW, Sutfin TA, Ruggeri RB, et al. Raising high-density lipoprotein in humans through inhibition of cholesteryl ester transfer protein:an initial multidose study of torcetrapib[J]. Arterioscler Thromb Vasc Biol,2004,24:490-497.
    [85]McKenney JM, Davidson MH, Shear CL, et al. Efficacy and safety of torcetrapib, a novel cholesteryl ester transfer protein inhibitor, in individuals with below-average high-density lipoprotein cholesterol levels on a background of atorvastatin. J Am Coll Cardiol,2006,48(9):1782-1790.
    [86]Barter P. Lessons learned from the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Am J Cardiol, 2009,104(10 Suppl):10E-15E.
    [87]Jin W, Marchadier D, Rader DJ. Lipases and HDL metabolism. Trends Endocrinol Metab,2002,13(4):174-178.
    [88]MyNgan Duong, Maria Psaltis, Daniel J. Rader, et al. Evidence that hepatic lipase and endothelial lipase have different substrate specificities for high-density lipoprotein phospholipids. Biochemistry,2003,42:13778-13785.
    [89]Paradis ME, Lamarche B. Endothelial lipase:its role in cardiovascular disease.Can J Cardiol,2006,22 Suppl B:31B-34B.
    [90]Wang H, Roberson R, Du J, et al. Regulation of apolipoprotein secretion by biliary lipids in newborn swine intestinal epithelial cells. Am J Physiol,1999,276: G353-G362.
    [91]Wang H, Du J, Lu S, et al. Regulation of intestinal apolipoprotein A-I synthesis by dietary phosphatidylcholine in newborn swine. Lipids,2001,36:683-687.
    [92]Mohamad Navab, Susan Hama, Greg Hough, et al. Oral synthetic phospholipid (DMPC) raises high-density lipoprotein cholesterol levels, improves high-density lipoprotein function, and markedly reduces atherosclerosis in apolipoprotein E-Null mice.Circulation,2003,108:1735-1739.
    [93]Christopher J. Stamler, Dalibor Breznan, Tracey A-M. Neville, et al. Phosphatidylinositol promotes cholesterol transport in vivo. Journal of Lipid Research,2000,41:1214-1221.
    [94]Mandema JW, Hermann D, Wang W, et al. Model-based development of gemcabene, a new lipid-altering agent. AAPS J,2005,7(3):E513-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700