乙肝病毒体内外感染模型的建立及其在乙肝新药药效学评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙肝病毒(hepatitis B virus, HBV),是目前已知的感染人类最小的双链DNA病毒,属于嗜肝DNA病毒科(hepadnavividae)。乙肝病毒感染肝细胞后,能引起一系列的疾病,如急性肝炎、慢性肝炎、肝硬化、肝癌等,还往往伴有严重的并发症,然而在过去的三十年由于缺乏理想合适的经济型HBV感染模型,对HBV的感染机制和发病机制,特别是早期感染机制不清楚。
     乙肝病毒有严格的宿主特异性,除了黑猩猩以外缺乏理想的易感动物模型。虽然黑猩猩能被乙肝病毒感染,而且跟人有亲源关系,具有类似人的乙肝病毒感染史,但是属于濒危动物,来源困难、价格昂贵,存在伦理等问题,所以应用受到限制,不能作为常规实验动物进行研究。因此需要来源广泛且经济适用的小型动物代替黑猩猩作为HBV感染模型。
     虽然目前已经有一系列经济型的小鼠模型在使用,如HBV转基因小鼠、HBV转染小鼠模型、免疫缺陷嵌合肝小鼠模型,但都存在各自的缺点。转基因小鼠模型存在遗传不稳定、对HBV免疫耐受、病毒复制过程缺少cccDNA,不适合用于HBV体内复制机制和病毒清除机制的研究。HBV转染小鼠模型,因为分泌的HBV病毒不能感染健康的小鼠肝细胞,不适合作为HBV感染机制、发病机制的模型进行研究,作为抗病毒药物药效的评价模型也不是很理想,因为病毒很快就被清除。嵌合肝免疫缺陷小鼠模型,嵌合了人肝细胞,因此可以作为研究HBV感染机制、抗病毒药物药效学评价的模型,但是人肝细胞来源困难,虽然可以用树鼩肝细胞代替,但是这样还不如直接使用树鼩模型。
     早在90年代瑞士和德国科学家就发现树鼩对HBV具有易感性,他们进行了体内外实验获得证实。他们在树鼩原代肝细胞体外感染HBV实验中,肝细胞内能检测到HBV DNA、HBV RNA,且细胞上清中有HBsAg和HBeAg的分泌,表明树鼩肝细胞能被HBV感染,而且病毒能在树鼩肝细胞进行繁殖,树鼩肝细胞对HBV的易感性后来也被大量的实验证明。树鼩在体内感染HBV实验中,他们发现树鼩肝组织中有HBV DNA的表达,并且血液中出现了HBsAg,接着产生了HBsAb、HBeAb、HBcAb,病毒很快就被清除,表明树鼩体内能感染HBV,并且属于一种急性自限性感染。
     既然证实树鼩体内外均能被HBV有效感染,具有完整的病毒感染和复制过程,而且感染后能引起机体免疫系统应答并被被机体清除,甚至可能引起肝组织病理变化,这些表明树鼩不仅可用于研究HBV感染机制和机体免疫清除病毒机制,而且可作为抗HBV新药药效学评价的模型,大量的体外研究证实了树鼩肝细胞的这种应用价值。但是,一直以来没有科学家在树鼩体内进行抗HBV药物药效学的评价研究工作,一方面是由于树鼩没有稳定的品系,不像其它动物品系那样具有很好的重复性,另一方面,没有人进行树鼩感染HBV后详细的病程研究,对树鼩感染HBV后体内病毒繁殖情况以及是否引起树鼩病理变化不清楚。
     不过这给我们一个提示,如果对树鼩感染HBV后的详细病程进行深入研究,以树鼩在体模型作为抗乙肝病毒新药药效学评价模型将更有说服力。基于此,我们做了大量的树鼩在体感染HBV实验,研究感染后的病理过程。首先摸索树鼩的有效HBV感染剂量,再确定采血时间点,通过对血液化验分析、肝组织免疫组化和病理分析,深入研究树鼩感染HBV后详细的病理过程,并建立病程图。本次实验不仅有助于深入研究树鼩感染HBV后的发病机制,而且能给新药药效学的评价体系提供参考数据,具有重要的医学研究意义。
     目前临床对乙肝的治疗策略仅限于对HBV在病人体内的复制进行干预,主要通过干扰素和核苷类药物应用。虽然这些药能暂时能有效控制住病毒的复制,但是不能完全清除病毒,一旦停药,仍会复发。而且干扰素存在着副作用、稳定性差、半衰期短等特点,核苷类药物则容易引起乙肝病毒突变株和耐药株,虽然通过联合用药可以提高疗效,且降低乙肝病毒突变株和耐药株的产生几率,但是这种抑制病毒复制的治疗方案不能从根本上治愈乙肝。
     近年来通过HepRG细胞系和树鼩原代肝细胞模型的研究发现乙肝病毒表面抗原preS1蛋白可能与HBV结合宿主肝细胞有关,肝细胞的HBV受体的结合位点可能就位于preS1上,而且大量体外的研究证实了preS1 N端的48AA,可能就是HBV结合肝细胞步骤中的关键位点,而且来源于preS1 N端的48AA的衍生肽经豆蔻酰修饰后具有很强的阻断病毒感染肝细胞的效果, IC50约为8nM。但是目前这种衍生肽的药效学评价仅限于体外研究,没有在动物体内进一步评价。这提示我们,如果在动物,如树鼩体内进一步评价这种衍生肽的药效,更能体现出阻断乙肝病毒感染的药效。
     综上所述,我们决定建立树鼩体内外感染乙肝病毒模型并应用于乙肝病毒表面抗原preS1衍生肽L47的药效评价。我们首先在体外实验中证实L47阻断HBV感染药效,然后在树鼩体内进一步进行抗乙肝病毒药效学评价。
     第一部分实验,我们建立树鼩体内外感染乙肝病毒模型,并进行鉴定。首先建立树鼩肝细胞体外感染乙肝病毒模型,通过不连续蔗糖梯度离心获得的乙肝病病毒用于体外感染实验,两步灌注法分离树鼩肝细胞,进行原代培养作为病毒感染对象,用不同感染复数的乙肝病毒进行孵育感染,发现乙肝病毒能有效感染树鼩肝细胞,并在肝细胞内的繁殖,病毒表达量与感染复数成良好的依赖关系,表明我们成功建立了HBV体外感染模型;然后我们建立树鼩体内感染乙肝病毒模型,通过摸索有效HBV感染剂量和采血时间点,并对采集到的血液标本进行病毒血清学定量检测、ALT生化定量测定、HBV DNA荧光定量PCR检测,我们不但证实了HBV感染树鼩后能在肝组织内大量繁殖,而且发现HBV引起树鼩急性肝炎。
     第二部分实验,在建立好的体外感染模型上证实L47具有阻断HBV感染树鼩肝细胞的药效,发现L47,半抑制率IC50约为2.5nM(n=7),低于报道的类似衍生肽8nM的半抑制率,表明能更有效阻断病毒感染,具有更好的开发和应用前景;在树鼩体内感染乙肝病毒模型上进一步评价L47阻断HBV感染的药效作用,发现0.08mg/kg的L47剂量能非常显著的降低树鼩体内的病毒复制和预防病毒感染引起的肝功异常。
Hepatitis B virus (HBV) is a small circular DNA virus, belonging to the hepadnavirus family. The virus attacks liver cells and can cause lifelong infection, scarring of the liver, liver failure, and death. Despite considerable advances in the understanding of the natural history of HBV infection, most of them,especially, the early steps,remain unclear as the lack of practicable primate little animal model in the past three decades.
     Chimpanzee was the first animal described for its susceptibility to HBV infection. However, chimpanzees are relatively rare and expensive, protected by law, no longer represent an appropriate model for HBV studies. The restriction of HBV infection to chimpanzee has increased demand for small animal models for studies HBV.
     A series of mouse models represent more accessible for HBV studies and evaluation of anti-HBV drug, but none of they could replace the chimpanzees. Transgenic mouse and hydrodynamic HBV mouse model are not susceptible to HBV infection, only be used for evaluation of antiviral drug. In addition, uPA-mouse transplanted human hepatocytes or tupaia hepatocytes can be used for HBV entry mechanism studies, but human hepatocytes are scare and difficulte to work, furthermore, tupaias may be better choice for HBV studies.
     Despite the narrow species specificity of hepadnaviruses, the susceptibility of tupaias for human HBV is approved. HBV infection in vitro, results in viral DNA and RNA synthesis in tupaia hepatocytes, and secretion hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) into culture medium. Moreover, tupaias can be infected with HBV in vivo, resulting in viral DNA replication and gene expression in tupaia livers, similar to acute self-limited hepatitis B in human, HBsAg is rapidly cleared from serum, followed by seroconversion to HBeAb and HBsAb.
     These reports strongly support tupaia as a valid model for experimental studies of HBV infection and evaluation of anti-HBV drug. However, evaluation of anti-HBV drug in vivo had been hampered by the lack of longitudinal analyses evaluating the clinical development and pathology of tupaias after HBV infection.
     HBV is one of the major threaten to human health and it was estimated that about more than 400 million people worldwide are chronically infected with HBV. Since currently available therapy strategies are restricted to anti-HBV replication by interferon- alpha (IFN-a) and nucleos(t)ide analogues, although, combination therapies, such as lamivudine combined with hepatitis B immunoglobulin or adefovir have been widely adopted for improve efficacy and avoid drug-resistant virus strains, but none of them could effectively eliminate HBV in patient, the number of HBV-infected people and HBV-related deaths continues to increase worldwide.
     Monoclonal antibodies against the S-domain were showed neutralized infectivity of HBV for primay human hepatocytes and primary tupaia hepatocytes cultures previously, and envelope protein-derived entry inhibitors resulted from the development of the HBV-susceptible cell line HepaRG. These inhibitors are acylated peptides derived from HBV preS1 domain could block virus attached to hepatocytes in vitro, especially, the preS1-derived peptides (HBVpreS/2-48myr) which can effectively block HBV infection at very low doses and bound strongly to hepatocytes but not to non hepatic cells. Thus, the N-terminal 47 amino acid residue of preS1 domain, are important in mediating attachment of HBV to hepatocytes.
     These dates indicat that myristoylated preS1-derived peptides (HBVpreS/2-48myr) are promising candidates for specific antiviral therapy against hepatitis B infections, leading to open a new perspectives for the future therapy of chronic hepatitisB and the emergence of resistant strains after antiviral treatment. But these preS1-derived peptides have not be examined in tupaias for evaluation of block virus infection in vivo
     To validate whether L47 synthetic peptides derived from preS1 can impede HBV infection in tupaias, we verified its efficacy against virus attaching to tupaia hepatocytes in vitro model at first, and found its IC50 less than 2.5nM, then we used HBV-infected tupaias model for evaluation of L47 after longitudinal analyses of HBV pathogensis during the course of infection within 6 weeks. In this case, HBV caused tupaias hepatitis during the acute phase of infection, wherase HBV infection was constrained in tupaias treated with L47 at 0.08 mg/kg dose.
引文
1. Zoulim, F. Antiviral therapy of chronic hepatitis B. Antiviral Res 2006; 71: 206–215.
    2. Lavanchy D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J Clin Virol 2005; 34(Suppl 1):S1-S3.
    3. Chan, H.L., Sung, J. Hepatocellular carcinoma and hepatitis B virus. Semin. Liver Dis 2006; 26:153–161.
    4. Reherman, B and Nascimben, M. Immunology of hepatitis B virus and hepatitis C viruss infection. NatRev. Immunol 2005; 5(3):215-229.
    5. Wright, T.L. Introduction to chronic hepatitis B infection. J Gastroenterol 2006;101, (Suppl):S1-6.
    6. Urban, S., Gripon, P. Inhibition of duck hepatitis B virus infection by a myristoylated pre-S peptide of the large viral surface protein. J Virol 2002; 76:1986–1990.
    7. Funk A, Mhamdi M, Will H, Sirma H. Avian hepatitis B viruses: molecular and cellular biology, phylogenesis, and host tropism. World JGastroenterol 2007; 13:91-103.
    8. Robert E. Lanford, Deborah Chavez, Azeneth Barrera, and Kathleen M. Brasky et al. An Infectious Clone of Woolly Monkey Hepatitis B Virus. J. Virol 2003; 77: 7814-7819.
    9. Lanford, R.E., Chavez, D., Brasky, K.M., Burns, R.B. III, Rico-Hesse, R. Isolation of a hepadnavirus from the woolly monkey, a New World primate. Proc. Natl. Acad. Sci. USA 1998; 95:5757–5761.
    10. Menne S, Cote PJ. The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J Gastroentero 2007; 13:104-124.
    11. Dandri M, Volz TK, Lutgehetmann M, Petersen J. Animal models for the study of HBV replication and its variants. J Clin Virol 2005; 34(Suppl 1):54-62.
    12. Dandri, M., Lutgehetmann, M., Volz, T., Petersen, J. Small animal model systems for studying hepatitis B virus replication and pathogenesis. Semin. Liver Dis 2006; 26:181–191.
    13. Hillis WD. An outbreak of infectious hepatitis among chimpanzee handlers at a United States Air Force Base. Am J Hyg 1961; 73:316-328.
    14. Berquist KR, Peterson JM, Murphy BL, Ebert JW, Maynard JE, Purcell RH. Hepatitis B antigens in serum and liver of chimpanzees acutely infected with hepatitis B virus. Infect Immun 1975; 12:602-605.
    15. Bancroft WH, Snitbhan R, Scott RM, Tingpalapong M, Watson WT, Tanticharoenyos P, et al. Transmission of hepatitis B virus to gibbons by exposure to human saliva containing hepatitis B surface antigen. J Infect Dis 1977; 135:79-85.
    16. Kedda MA, Kramvis A, Kew MC, Lecatsas G, Paterson AC, Aspinall S, et al. Susceptibility of chacma baboons (Papio ursinus orientalis) to infection by hepatitis B virus. Transplantation 2000; 69:1429-1434.
    17. Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 2003; 37: 764-770.
    18. Shlomai A, Shaul Y. RNA interference--small RNAs effectively fight viral hepatitis. Liver Int 2004; 24:526-531.
    19. Zheng Y, Chen WL, Louie SG, Yen TS, Ou JH. Hepatitis B virus promotes hepatocarcinogenesis in transgenic mice. Hepatology 2007; 45: 16-21.
    20. Rauschhuber C, Xu H, Salazar FH, Marion PL, Ehrhardt A. Exploring gene-deleted adenoviral vectors for delivery of short hairpin RNAs and reduction of hepatitis B virus infection in mice. J Gene Med 2008; 10: 878-889.
    21. Isogawa M, Kakimi K, Kamamoto H, Protzer U, Chisari FV. Differential dynamics of the peripheral and intrahepatic cytotoxic T lymphocyte response to hepatitis B surface antigen. Virology 2005; 333:293-300.
    22. Yang PL, Al thage A, Chung J, Chisari FV. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci U S A 2002; 99: 13825-13830.
    23. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005; 23:1002-1007.
    24. Liu FJ, Liu L, He F, Wang S, Zhou TY, Liu C, Deng LY, Tang H.. Establishment and primary application of a mouse model with hepatitis B virus replication. World J Gastroenterol 2007; 13: 5324-5330.
    25. Ketzinel-Gilad M, Zauberman A, Nussbaum O, Shoshany Y, Ben-Moshe O, Pappo O, Felig Y,Ilan E, Wald H, Dagan S, Galun E. The use of the hydrodynamic HBV animal model to study HBV biology and anti-viral therapy. Hepatol Res, 2006, 34:228-237.
    26. Takehara T, Suzuki T, Ohkawa K, Hosui A, Jinushi M, Miyagi T, Tatsumi T, Kanazawa Y, Hayashi N. covalently closed circular DNA in a nontransgenic mouse model for chronic hepatitis B replication. Journal of Hepatology 2006; 2:267-274.
    27. Gheit T, Sekkat S, Cova L, Chevallier M, Petit MA, Hantz O, et al. Experimental transfection of Macaca sylvanus with cloned human hepatitis B virus. J Gen Virol 2002; 83:1645-1649.
    28. Julie Lucifora, Isabelle E. Vincent, Pascale Berthillon, Tatiana Dupinay, Maud Michelet, Ulrike Protzer, Fabien Zoulim , David Durantel , Christian Trepo, Isabelle Chemin. Hepatitis B virus replication in primary macaque hepatocytes: Crossing the species barrier toward a new small primate model. Published Online: 19 Feb, 2010.
    29. Sandgren, E.P. et al. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell 1991; 66:245–256.
    30. Dandri, M. et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 2001; 33:981–988.
    31. Dandri, M. et al. Chronic infection with hepatitis B viruses and antiviral drug evaluation in uPA mice after liver repopulation with tupaia hepatocytes. J Hepatol 2005; 42:54–60.
    32. Petersen J, Dandri M, Mier W, Lütgehetmann M, Volz T, von Weizs?cker F, Haberkorn U, Fischer L, Pollok JM, Erbes B, Seitz S, Urban S. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol 2008; 26(3):335-41.
    33. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA. 2002; 99(24):15655-15660.
    34. Hantz O, Parent R, Durantel D, Gripon P, Guguen-Guillouzo C, Zoulim F. Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells. J Gen Virol 2009; 90:127-135.
    35. Schulze-Bergkamen H, Untergasser A, Dax A, Vogel H, Buchler P, Klar E, et al. Primary human hepatocytes—a valuable tool for investigation of apoptosis andhepatitis B virus infection. J Hepatol 2003; 38:736-744.
    36. Hantz O, Parent R, Durantel D, Gripon P, Guguen-Guillouzo C, Zoulim F. Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells. J Gen Virol 2009; 90:127-135.
    37. Walter, E., Keist, R., Niederost, B., Pult, I., Blum, H.E. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology 1996; 24: 1–5.
    38. Schmitz, J., Ohme, M. & Zischler, H. The complete mitochondrial genome of Tupaia belangeri and the phylogenetic affiliation of scandentia to other eutherian orders. Mol.Biol. Evol 2000; 17, 1334–1343.
    39. Glebe, D., Bremer CM, Bung C, Kott N, Hardt M. Corinna M. Hepatitis B virus infection is dependent on cholesterol in the viral envelope. Cellular Microbiology 2009; 11(2):249-260.
    40. K?ck J, Baumert TF, Delaney WE 4th, Blum HE, von Weizs?cker F. Inhibitory effect of adefovir and lamivudine on the initiation of hepatitis B virus infection in primary tupaia hepatocytes. Hepatology 2003; 38(6):1410-1418.
    41. K?ck J, Nassal M, MacNelly S, Baumert TF, Blum HE, von Weizs?cker F.. Efficient Infection of Primary Tupaia Hepatocytes with purified Human and Woolly Mokkey Hepatitis B virus. Journal of Virology 2001; 75:5084-5089.
    42. Glebe, D., Gerlich, W.H.Study of the endocytosis and intracellular localization of subviral particles of hepatitis B virus in primary hepatocytes. Methods Mol Med 2004; 96:143–151.
    43. Yutaka Amako1, Kyoko Tsukiyama-Kohara, Asao Katsume, Yuichi Hirata Satoshi Sekiguchi, Yoshimi Tobita, Yukiko Hayashi, Tsunekazu Hishima, Nobuaki Funata, Hiromichi Yonekawa, and Michinori Kohara. Pathogenesis of hepatitis C virus infection in Tupaia belangeri. J Virol 2010; 84(1):303-311.
    44. Rumin S, Berthillon P, Tanaka E, Kiyosawa K, Trabaud MA, Bizollon T, et al. Dynamic analysis of hepatitis C virus replication and quasispecies selection in long-term cultures of adult human hepatocytes infected in vitro. J Gen Virol 1999; 80(pt 11):3007-3018.
    45. Dieter Glebe, Mehriar Aliakbari,Peter Krass, Eva V. Knoop,Klaus P. Valerius, and Wolfram H. Gerlich Pre-S1 Antigen-Dependent Infection of Tupaia Hepatocyte Cultures with Human Hepatitis B Virus. Journal of virology 2003; p: 9511–9521.
    46. Saito T, Kamimura T, Ishibashi M, Shinzawa H, Takahashi T. Electron microscopic study of hepatitis B virus-associated antigens on the infected liver cell membrane in relation to analysis of immune target antigens in chronic hepatitis B. Gastroenterol Jpn 1992; 27(6):734-44.
    47. Bruss, V. Hepatitis B virus morphogenesis. World J. Gastroenterol 2007; 13:65–73
    48. Hantz O, Parent R, Durantel D, Gripon P, Guguen-Guillouzo C, Zoulim F. Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells. J Gen Virol 2009; 90:127-135.
    49. Summers J, Smith PM, Horwich AL. Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. J Virol 1990; 64:2819-2824.
    50. Seigneres B, Pichoud C, Martin P, Furman P, Trepo C, Zoulim F. Inhibitory activity of dioxolane purine analogs on wild-type and lamivudineresistant mutants of hepadnaviruses. Hepatology 2002; 36:710-722.
    51. Lucifora J, Durantel D, Belloni L, Barraud L, Vincent IE, Villet S, et al. Initiation of viral genome replication cycle and production of infectious hepatitis B virus particles after transduction of HepG2 cells by novel recombinant baculovirus vectors. J Gen Virol 2008; 89:1819-1828.
    52. Margeridon S, Carrouee-Durantel S, Chemin I, Barraud L, Zoulim F, Trepo C, et al. Rolling circle amplification, a powerful tool for genetic and functional studies of complete hepatitis B virus genomes from lowlevel infections and for directly probing covalently closed circular DNA. Antimicrob Agents Chemother 2008; 52:3068-3073.
    53. Lampertico P, Malter JS, Gerber MA. Istituto di Medicina Interna. Development and application of an in vitro model for screening anti-hepatitis B virus therapeutics. Hepatology 1991; 13(3):422-6.
    54. Delaney WET, Isom HC. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology 1998; 28:1134-1146.
    55. Lucifora J, Durantel D, Belloni L, Barraud L, Vincent IE, Villet S, et al. Initiation of viral genome replication cycle and production of infectious hepatitis B virus particles after transduction of HepG2 cells by novel recombinant baculovirus vectors. J Gen Virol 2008; 89:1819-1828.
    56. Nowak MA, Bonhoeffer S, Hill AM. Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci USA 2005; 93(9):4398-4402.
    57. Karayiannis P. Hepatitis B virus: old, new and future approaches to antiviral treatment. J Antimicrob Chemother 2003; 51:761-785.
    58. Zoulim, F. Antiviral therapy of chronic hepatitis B. Antiviral Res 2006; 71(2/3): 206-215.
    59. Locarnini, S. et al. Management of antiviral resistance in patients with chronic hepatitis B. Antivir. Ther 2004; 9:679–693.
    60. Dandri, M., Petersen, J. Hepatitis B virus cccDNA clearance: killing for curing? Hepatology 2005; 42:1453–1455.
    61. Dandri, M. et al. Chronic infection with hepatitis B viruses and antiviral drug evaluation in uPA mice after liver repopulation with tupaia hepatocytes. J Hepatol 2005; 42:54–60.
    62. Werle-Lapostolle, B. et al. Persistence of cccDNA during the natural history of chronic hepatitis B and dECLIine during adefovir dipivoxil therapy. Gastroenterology 2004; 126:1750–1758.
    63. Zoulim F, Lucifora J. Hepatitis B virus and drug resistance: implications for treatment. Future Virol 2006; 1:361-376.
    64. Glebe, D., Urban, S. Viral and cellular determinants involved in hepadnaviral entry. World J Gastroenterol, 2007, 13: 22–38.
    65. Schulze, A., Gripon, P., Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 2007; 46: 1759–1768.
    66. G. Kuèttner , A. Kramerb, G. Schmidtkea, E. Giessmanna, L. Dong,D. Roggenbucka, C. Scholza, M. Seifertb, R-D. Stigler, Schneider-Mergenerb, T. Porstmannb, W. Hoèhnea. Characterization of neutralizing anti-pre-S1 and anti-pre-S2 (HBV) monoclonal antibodies and their fragments. Molecular Immunology 1999; 36:669-683.
    67. Glebe, D. Attachment sites and neutralising epitopes of hepatitis B virus. Minerva Gastroenterol Dietol 2006; 52(1):3–21.
    68. Gripon, P., Le, S.J., Rumin, S. & Guguen-Guillouzo, C. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 1995; 213: 292–299.
    69. LeSeyec, J., Chouteau, P., Cannie, I., Guguen-Guillouzo, C., Gripon, P. Infection process of the hepatitis B virus depends on the presence of a defined sequence in thepre-S1 domain. J Virol 1999; 73:2052–2057.
    70. Dieter Glebe, Mehriar Aliakbari, Peter Krass, Eva V. Knoop, Klaus P. Valerius, and Wolfram H. Gerlich. Pre-S1 Antigen-Dependent Infection of Tupaia Hepatocyte Cultures with Human Hepatitis B Virus. Journal of virology 2003; p: 9511–9521.
    71. Hyo Jeong Hong, Chun Jeih Ryu, Hyangsuk Hur, Seho Kim, Han Kyu Oh, Mee Sook Oh, and Song Yong Park. In vivo neutralization of hepatitis B virus infection by an anti-preS1 humanized antibody in chimpanzees. Virology 2004; 318:134–141.
    72. Seung-Wook Chi, Cheol-Young Maeng, Seung Jun Kim, Mee Sook Oh, Chun Jeih Ryu, Sang Jick Kim, Kyou-Hoon Han, Hyo Jeong Hong, and Seong Eon Ryu. Broadly neutralizing anti-hepatitis B virus antibody reveals a complementarity determining region H3 lid-opening mechanism. Proc Natl Acad Sci U S A 2007; 104(22):9230–9235.
    73. Gripon, P., Cannie, I., Urban, S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol 2005; 79: 1613–1622.
    74. Glebe, D., Urban, S., Knoop EV, Cag N, Krass P, Grün S, Bulavaite A, Sasnauskas K, Gerlich WH. Knoop, E.V., et al. Mapping of the hepatitis B virus attachment site by use of infection-inhibiting preS1 lipopeptides and tupaia hepatocytes. Gastroenterology 2005; 129: 234–245.
    75. Taylor, J.M. Hepatitis delta virus. Virology 2006; 344: 71–76.
    76. Qiang Deng, Jian-wei Zhai, Marie-Louise Michel, Jun Zhang, Jun Qin, Yu-ying Kong, Xin-xin Zhang, Agata Budkowska, Pierre Tiollais, Yuan Wang, and You-hua Xie. Identification and Characterization of Peptides That Interact with Hepatitis B Virus via the Putative Receptor Binding Site. J Virol 2007; 81(8): 4244–4254.
    77. Kim DH, Ni Y, Lee SH, Urban S, Han KH. An anti-viral peptide derived from the preS1 surface protein of hepatitis B virus. BMB Rep 2008; 41(9):640-644.
    1. Lupberger J, Hildt E. Hepatitis B virus-induced oncogenesis.World J Gastroenterol 2007; 13:74–78.
    2. Perrillo R. Hepatitis B virus replication 9 time equals trouble. Gastroenterology 2006; 130:989–991.
    3. Lai CL, Ratziu V, Yuen MF, Poynard T.Viral hepatitis B. Lancet 2003;362:2089–2094.
    4. Ansgar W. Lohse1, Christina Weiler-Normann, Gisa Tiegs. 2010 Immune-mediated liver injury. Journal of Hepatology 2003; l (52):136–144.
    5. Sherman M. Predicting survival in hepatitis B. Gut 2005; 54:1521–1523.
    6. Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology 2007; 45:507–539.
    7. Paola Rizza, Imerio Capone, Francesca Urbani, Enrica Montefiore, Maria Rapicetta, Paola Chionne, Angela Candido, Maria Elena Tosti, Maria Grimaldi, Ernesto Palazzini, et al. Evaluation of the effects of human leukocyte IFN-αon the immune response to the HBV vaccine in healthy unvaccinated individuals Vaccine 2008; 8(26):1038-1049.
    8. J. Zhang, J. K?ck, H.E. Blum, M. Nassal, J. Rasenack, T. Baumert, C. Thoma. 638 IFN-αtreatment of hepatocytes B virus (HBV)-infected primary human hepatocytes leads to a specific reduction of HBV mRNA levels. Journal of Hepatology 2010; 52:249-250.
    9. M.J. ter Borg, B.E. Hansen, G. Bigot, B.L. Haagmans, H.L.A. Janssen et al. ALT and viral load dECLIine during PEG-IFN alpha-2b treatment for HBeAg-positive chronic hepatitis B. Journal of Clinical Virology 2008; 2(42):160-164.
    10. J anssen HL, Gerken G, Carreno V, et al. Interferon alfa for chronic hepatitis B infection increased efficacy of prolonged t reatment. The European concerted action on viral hepatitis B. Hepatology 1999; 30 (1):238-243.
    11. Craxi A, Cooksley WG. Pegylated interferons for chronic hepatitis B. Antiviral Res 2003; 60:87-89.
    12. Manns MP. Current state of interferon t herapy in t he t reatment of chronic hepatitis B. Semin Liver Dis 2002; 22 (Suppl 1): 72-73.
    13. Perry CM, J arvis B. Peginterferon alpha-2a (40kD):a review of it s use in the management of chronic hepatitis C.Drug 2001; 61 (15) :2263-2288.
    14. Lam NP , Neumann AU , Gretch DR , et al. Dose-dependent acute clearance of hepatitis C genotype 1 virus wit h interferon alfa. Hepatology 1997; 26 (1):226-231.
    15. Cooksley, WG, Piratvisut, h T, Lee SD, et al. Peginterferon alpha-2a (40 kDa): an advance in t he t reatment of hepatitis B e antigen2positive chronic hepatitis B. J Viral Hepat 2003; 10(4):298-305.
    16. Arase Y, Tsubota A, Suzuki Y, et al. A pilot study of t hymosin alpha1 t herapy for chronic hepatitis B patient s. Intern Med 2003; 42 (10):941-946.
    17. Saruc M ,Ozden N , Turkel N ,et al. Long-term outcomes of t hymosin alpha1 and interferon alpha22b combination t herapy in patient s wit h hepatitis B e antigen ( HBeAg) negative chronic hepatitis B. J Pharm Sci 2003; 92 (7) :1386-1395.
    18. J arvis B, Faulds D. Lamivudine. A review of it s t herapeutic potential in chronic hepatitis B. Drugs 1999; 58 (1):101-141.
    19. Yu-Ming Wang and Ying-Zi Tang. Antiviral therapy for hepatitis B virus associated hepatic failure. Hepatobiliary Pancreat Dis Int 2009; 8(1):17-24.
    20. Jong Ryul Eun, Heon Ju Lee, Tae Nyeun Kim, Kyeung Soo Lee Risk assessment for the development of hepatocellular carcinoma: According to on-treatment viral response during long-term lamivudine therapy in hepatitis B virus-related liver disease Journal of Hepatology, In Press, Uncorrected Proof, Available online 4 April 2010.
    21. Xu Teng, Wei-Zhen Xu, Mei-Li Hao, Yong Fang, Ying-Xin Zhao, Si-Jia Chen, Di Li, Hong-Xi Gu Differential Inhibition of Lamivudine-resistant Hepatitis B virus by Allele-specific RNAi. Journal of Virological Methods, In Press, Accepted Manuscript, Available online 18 April 2010.
    22. Sezin Asik Akman, Sukran Kose, Oya Halicioglu.Lamivudine and adefovir resistance in children and young adults with chronic hepatitis B. International Journal of Infectious Diseases 2010: 14(3): 236-239.
    23. Chau-Ting Yeh, Chao-Wei Hsu, Yi-Cheng Chen, Yun-Fan Liaw Withdrawal of lamivudine in HBeAg-positive chronic hepatitis B patients after achieving effective maintained virological suppression. Journal of Clinical Virology 2009: 45(2):114-118.
    24. Hadziyannis SJ, Tassopoulos NC, Heat hcote EJ, et al Adefovir dipivoxil for the treatment of hepatitis B e antigen negative chronic hepatitis B. N Eng J Med 2003; 348 (12):800-807.
    25. Elefsiniotis, M. Buti, R. Jardi, E. Vezali, R. Esteban Clinical outcome of lamivudine-resistant chronic hepatitis B patients with compensated cirrhosis under adefovir salvage treatment.: Importance of HCC surveillance. European Journal of Internal Medicine 2009; 20(5):478-481.
    26. Adrian S. Ray, Jennifer E. Vela, Loren Olson, Arnold Fridland Effective metabolism and long intracellular half life of the anti-Hepatitis B agent adefovir in hepatic cells. Biochemical Pharmacology 2004; 68(9):1825-1831.
    27. Roula B. Qaqish, Keri A. Mattes, David J. Ritchie Adefovir dipivoxil: A new antiviral agent for the treatment of hepatitis B virus infection. Clinical Therapeutics 2003; 25(12): 3084-3099.
    28. Chia-Yen Dai, Wan-Long Chuang, Ming-Yen Hsieh, et al. Adefovir dipivoxil treatment of lamivudine-resistant chronic hepatitis B. Antiviral Research 2007; 75(2):146-151.
    29. Scott K. Fung, Hee Bok Chae, Robert J. Fontana, Hari Conjeevaram, Jorge Marrero, Kelly Oberhelman, Munira Hussain, Anna S.F. Lok. Virologic response and resistance to adefovir in patients with chronic hepatitis B. Journal of Hepatology 2006; 44(2):283-290.
    30. Jessica Tan, Bulent Degertekin, Stephen N. Wong, Munira Husain, Kelly Oberhelman, Anna S.F. Lok. Tenofovir monotherapy is effective in hepatitis B patients with antiviral treatment failure to adefovir in the absence of adefovir-resistant mutations. Journal of Hepatology 2008; 48(3): 391-398.
    31. Levine S , Hernandez D , Yamanaka G, et al Efficacies of entecavir against lamivudine resistant hepatitis B virus replication and recombinant polymerases in vit ro. Antimicrob Agent s Chemot her 2002; 46 (8) :2525-2532.
    32. Lai CL, Rosmawati M, Lao J, et al. Entecavir is superior to lamivudine in reducing hepatitis B virus DNA in patient s wit h chronic hepatitis B infection. Gast roenterology 2002; 123(6):1831-1838.
    33. Robert J. Fontana. Entecavir in decompensated HBV cirrhosis: The future is looking brighter. Journal of Hepatology 2010; 52(2):147-149.
    34. Yokosuka O, Takaguchi K, Fujioka S, Shindo M, Chayama K, Kobashi H, Hayashi N, Sato C, Kiyosawa K, Tanikawa K, Ishikawa H, Masaki N, Seriu T, Omata M.Long-term use of entecavir in nucleoside-na?ve Japanese patients with chronichepatitis B infection. J Hepatol, 2010 Mar 24. [Epub ahead of print].
    35. Wang AQ; Zhong SL; Rao ZH. Clinical observation of reduced glutathione in treating liver injury caused by antitubercular agents. Drug Evaluation 2008; 5(7):297-299.
    36. Didici B ,Bosnak M ,Ucmak H ,et al Failure of t herapeutic vaccination using hepatitis B surface antigen vaccine in t he immunotolerant phase of children wit h chronic hepatitis B infection. J Gast roenterol Hepatol 2003; 18(2):218-222.
    37. Thermet A, Rollier C, Zoulim F, et al. Progress in DNA vaccine for prophylaxis and t herapy of hepatitis B. Vaccine 2003; 21(7):659-662.
    38. Hu Hong Ming, Winter H, Ma J, et al. CD28, TNF receptor, and IL-12 are critical for CD4-independent cross priming of t herapeutic antitumor CD8 + Tcells. J Immunol 2002; 169(9):4897-4904.
    39. Shi TD, Wu YZ, J ia ZC, et al. Therapeutic polypep tides based on HBV core 18227 ep itope can induce CD8 + CTL2mediated cytotoxicity in HLA2A2 + human PBMCs.World J Gastroenterol 2004; 10 (13):1902-1906.
    40. Keeffe EB, Dieterich DT, Han SH, Jacobson IM, Martin P, Schiff ER. A treatment algorithm for the management of chronic hepatitis B virus infection in the United States. Clin Gastroenterol Hepatol 2004; 2(2):87-106.
    41. Fang-Pey Chen, Yen-Ying Kung, Yu-Chun Chen, Maw-Shiou Jong, Tzeng-Ji Chen, Fun-Jou Chen, Shinn-Jang. Hwang Frequency and pattern of Chinese herbal medicine prescriptions for chronic hepatitis in Taiwan. Journal of Ethnopharmacology 2008; 117(1):84-91.
    42. F. Stickel, D. Schuppan Herbal medicine in the treatment of liver diseases. Digestive and Liver Disease 2007; 39(4):293-304.
    43. K.F. Cheung, D.W. Ye, Z.F. Yang, L. Lu, C.H. Liu, X.L. Wang, R.T.P. Poon, Y. Tong, P. Liu, Y.C. Chen, George K.K. Lau. Therapeutic efficacy of Traditional Chinese Medicine 319 recipe on hepatic fibrosis induced by carbon tetrachloride in rats. Journal of Ethnopharmacology 2009; 124(1):142-150.
    44. W. Cho, H. Chen. Investigation of the efficacy on transcatheter arterial chemoembolization combined with or without Chinese herbal therapy for hepatocellular carcinoma: meta-analysis. European Journal of Cancer Supplements 2009; 7(2):393-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700