维拉帕米对视网膜Müller细胞分泌VEGF的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病性视网膜病变(Diabetic Retinopathy,DR)是糖尿病常见的微血管并发症,是发生双眼盲的最主要疾病。如何有效的防治DR,是现今世界研究的热点。DR的主要病理表现为视网膜病理性新生血管形成,功能不全的新生血管伴随视网膜内皮细胞向玻璃体腔增殖,而后形成瘢痕,最终瘢痕牵拉视网膜而导致失明。因此,有效的预防新生血管的形成,可减缓糖尿病性视网膜病变的进展,对改善患者的生存质量具有重要意义。DR发生时出现的病理性血管新生,与VEGF的关系极为密切。VEGF可增加血管的通透性,促进内皮细胞迁移和增殖,从而促进新生血管的形成。视网膜Müller细胞是特化的神经胶质细胞,是人类视网膜最主要的神经胶质细胞,它贯穿整个内界膜至外界膜的视网膜,对维持视网膜内环境的稳定起重要作用。由Müller细胞衍生的VEGF,是血管渗漏、视网膜前及视网膜内病理性新生血管形成的主要因素。我们前期的实验已经证实,Müller细胞存在L-型钙离子通道,且应用L-型钙离子通道阻滞剂维拉帕米,可抑制Müller细胞外钙离子内流。本实验的目的在于研究钙通道阻滞剂维拉帕米,是否能够通过抑制Müller细胞钙离子内流,从而抑制Müller细胞VEGF的表达,探寻钙通道及VEGF表达的内在联系,为DR的防治提供新的思路。
     本实验采用组织块悬浮培养的方法建立了体外兔视网膜Müller细胞的原代培养体系,并分为正常对照组、高浓度葡萄糖组、高浓度胰岛素组、高糖高胰岛素组、维拉帕米对照组、维拉帕米高糖组、维拉帕米高胰岛素组、及维拉帕米高糖高胰岛素组,应用免疫细胞化学染色法测定维拉帕米对高糖、高胰岛素环境下体外培养的视网膜Müller细胞分泌VEGF的影响。结果显示:高糖组与正常对照组相比VEGF表达在第1天有显著差异(P<0.01),第3天及第5天有差异(P<0.05);维拉帕米对照组与正常对照组相比VEGF的表达在第1天、第3天无明显差异(P>0.05),第5天有差异(P<0.05);维拉帕米高糖组与高糖组相比VEGF的表达,第1天有显著差异(P<0.01)第3天及第5天有差异(P<0.05)。结论:高糖可使体外培养的兔视网膜Müller细胞VEGF表达增加;维拉帕米可以使高糖条件下体外培养的兔视网膜Müller细胞VEGF表达下降;维拉帕米对正常对照组VEGF的表达无显著影响。本实验为钙离子及钙通道在DR形成中的作用机制及寻找新的治疗方法提供了理论和实验依据。
Diabetic retinopathy (DR) is a common microvascular complications of diabetes.DR is also one of the most important leading cause of double eye blindness. Retinal neovascularization is the main pathological manifestation of DR. Pathological neovessels accompany with retinal endothelial cells proliferate into vitreous cavity, then form scars. The scars traction result in retinal detachment, which cause blindness in the end. It is considered that VEGF is highly associated with the pathological neovascularization occurs in DR. VEGF can increase vascular permeability, promote endothelial cell migration and proliferation, thereby promoting angiogenesis. Müller cell-derived VEGF is a major factor contributes to vascular leakage and pathological neovascularization of retina. Our previous experiments have confirmed that Müller cells exist L-type calcium channel, and verapamil,the L-type calcium channel blocker,can inhibit the extracellular calcium influx of Müller cell. The purpose of this experiment is to study whether verapamil is able to inhibit the expression of VEGF in Müller cells by inhibiting the calcium influx of Müller cells, and to explore the relationship between VEGF expression and calcium channel, and to provide new ideas for the prevention and the treatment of DR .
     Objective: To observe the effects of verapamil on VEGF expression in cultured retinal Müller cells.
     Method:Establish primary culture system of rabbit retina Müller cell by using tissue piece suspension culture, and divided into normal control group, high concentrations of glucose group, high concentrations of insulin group, high glucose and high insulin group, verapamil control group, verapamil high glucose group, verapamil high insulin group, verapamil high glucose and high insulin group. Use immunohistochemical staining to determinate the effects of verapamil on the expression of VEGF in cultuered retinal Müller cells under normal control, high concentrations of glucose, high concentrations of insulin, high glucose and high insulin conditions.
     Result: VEGF immunohistochemical staining results:the VEGF expression in Müller cells of high glucose group were significantly higher(P<0.01) on the first day, and higher(P<0.05)on the third and the fifth day compared with the normal control group; the VEGF expression in Müller cells of verapamil high glucose group were significantly lower(P<0.01)on the first day, and lower(P<0.05)on the third and the fifth day compared with the high glucose group; the VEGF expression in Müller cells of verapamil control group compared with the control group had no significant difference (P>0.05) on the first and third day, and were lower(P <0.05)on the fifth day.
     Conclusion: 1. High glucose can increase the expression of VEGF in cultured retinal Müller cells. 2. Verapamil has no significant effect on the expression of VEGF in cultured retinal Müller of normal control group. 3.Verapamil can decrease the expression of VEGF in cultured retinal Müller cells under high glucose condition.
引文
[1] Nakajima M, Cooney MJ, Tu AH, et al. Normalization of retinal vascular perm eability in experimental diabetes with genistein[J]. Ophthalmol Vis Sci, 2001, 42(9): 2110-4.
    [2]李筱荣,刘巨平等.天津市2型糖尿病患者糖尿病视网膜病变流行病学调查[C].第三届全球华人眼科学术大会暨中华医学会第十一届全国眼科学术大会论文汇编, 2006.
    [3] Sapieha P, Hamel D, Shao Z, et al. Proliferative retinopathies: angiogenesis that blinds[J]. Cell Biol. 2010, 42(1): 5-12.
    [4] Barbosa JH, Oliveira SL, Seara LT. The role of advanced glycation end-products (AGEs) in the development of vascular diabetic complications [J]. Arq Bras Endocrinol Metabol, 2008, 52(6): 940-50.
    [5] Yamagishi S, Ueda S, Matsui T, et al. Role of advanced glycation end products (AGEs) and oxidative stress in diabetic retinopathy[J].Curr Pharm Des, 2008, 14(10): 962-8.
    [6] Treins C, Giorgetti peraloli S, Murdaca J, et al. Regulation of vascular endothelial growth factor expression by advanced glycation end products [J]. Biol Chem, 2001, 276(47): 43836-43841.
    [7] Yokoi M, Yamagishi S, Takeuchi M, et al. Elevations of AGE and vascular endothelial growth factor with decreased total an tioxidant status in the vitreous fluid of diabetic patients with retinopathy[J]. Ophthalmo1, 2005, 89: 673-675.
    [8]陈百华,姜德咏,唐罗生.糖基化终产物诱导牛视网膜毛细血管周细胞凋亡及凋亡调节基因的表达[J].中华眼科杂志, 2003, 39: 224-227.
    [9] Yamagishi S, Nakamura K, Matsui T, et al. Receptor for advanced glycationend products (RAGE): a novel therapeutic target for diabetic vascular complication[j]. Curr Pharm Des. 2008, 14(5): 487-95.
    [10] Yamagishi S, Matsui T, Nakamura K, et al. Telmisartan inhibits advanced glycation end products (AGEs)-elicited endothelial cell injury by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation[J].Protein Pept Lett. 2008, 15(8): 850-3.
    [11] Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes[J]. Pharmacol Res. 2007 Jun; 55(6): 498-510.
    [12] Feke GT, Buzney SM, Ogasawara H, et al. Retinal circulatory abnormalities in type 1 diabetes[J]. Invest Ophthalmol Vis Sci 1994, 35: 2968-75.
    [13] Bursell S-E, Clermont AC, Kinsley BT, et al. Retinal blood flow changes in patients with insulindependent diabetes mellitus and no diabetic retinopathy [J]. Invest Ophthalmol Vis Sci 1996, 37: 886-97.
    [14] Small KW, Stefansson E, Hatchell D. Retinal blood flow in normal and diabetic dogs[J]. Invest Ophthalmol Vis Sci 1987, 28: 672-5.
    [15] Clermont AC, Brittis M, Shiba T, et al. Normalization of retinal blood flow in diabetic rats with primary intervention using insulin pumps[J]. Invest Ophthalmol Vis Sci 1994, 35: 981-90.
    [16] Miyamoto K, Ogura Y, Nishiwaki H, et al. Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat[J]. Invest Ophthalmol Vis Sci 1996, 37: 898-905.
    [17] Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, et al. Activation of PKC- delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy[J].Nat Med. 2009 Nov; 15(11): 1298-306.
    [18] Budhiraja S, Singh J. Protein kinase C beta inhibitors: a new therapeutictarget for diabetic nephropathy and vascular complications[J]. Fundam Clin Pharmacol. 2008 Jun; 22(3): 231-40.
    [19] Idris I, Donnelly R. Protein kinase C beta inhibition: A novel therapeutic strategy for diabetic microangiopathy[J]. Diab Vasc Dis Res. 2006 Dec; 3(3): 172-8.
    [20] Aiello LP, Clermont A, Arora V, et al. Inhibition of PKC beta by oral administration of ruboxistaurin is well tolerated and ameliorates diabetes- induced retinal hemodynamic abnormalities in patients[J].Invest Ophthalmol Vis Sci. 2006 Jan; 47(1): 86-92.
    [21] Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives[J]. Rev Endocr Metab Disord. 2008 Dec; 9(4): 315-27.
    [22] Nishikawa T, Kukidome D, Sonoda K, et al. Impact of mitochondrial ROS production on diabetic vascular complications[J]. Diabetes Res Clin Pract. 2007 Sep; 77 Suppl 1: S41-5.
    [23] Nishikawa T, Araki E. Investigation of a novel mechanism of diabetic complications: impacts of mitochondrial reactive oxygen species[J]. Rinsho Byori. 2008 Aug; 56(8): 712-9.
    [24] Kern TS. Contributions of Inflammatory Processes to the Development of the Early Stages of Diabetic Retinopathy[J]. Exp Diabetes Res.2007; 2007: 95103.
    [25] Johnsen-Soriano S, Sancho-Tello M, Arnal E, et al. IL-2 and IFN-gamma in the retina of diabetic rats[J]. Graefes Arch Clin Exp Ophthalmol. 2010 Mar 6.
    [26] Shen X, Xu G. Role of IL-1beta on the glutamine synthetase in retinal Müller cells under high glucose conditions[J]. Curr Eye Res. 2009 Sep; 34(9): 727-36.
    [27] Joussen AM, Doehmen S, Le ML, et al. TNF-alpha mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations[J]. Mol Vis. 2009 Jul 25; 15: 1418-28.
    [28] Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor: Multiple protein forms are encoded through alternative exonsplicing[J]. Biol chem 1991, 266(18): 11947-11954.
    [29] N. Ferrara, H.P. Gerber, J. LeCouter. The biology of VEGF and its receptors[J]. Nat. Med. 9 (2003) 669-676.
    [30] K.A. Houck, N. Ferrara, J. Winer, et al. The vascular endothelial growth factor family: identification of a fourth molecular species and character- ization of alternative splicing of RNA[J]. Mol. Endocrinol. 5 (1991) 1806-1814.
    [31] K. Suto, Y. Yamazaki, T. Morita, et al. Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms: insight into selective VEGF binding to kinase insert domain-containing receptor but not to fms-like tyrosine kinase-1[J]. Biol. Chem. 280 (2005) 2126-2131.
    [32] Otrock ZK, Makarem JA, Shamseddine AI. Vascular endothelial growth factor family of ligands and receptors: review[J]. Blood Cells Mol Dis. 2007 May-Jun; 38(3): 258-68.
    [33] Pierce EA, Avery RL, Foley ED, et al. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization[J]. Proc Natl Acad Sci U S A 1995, 92: 905-909.
    [34] Miller JW, Adamis AP, Aiello LP. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy[J]. Diabetes Metab Rev 1997, 13: 37-50.
    [35] Aiello LP, Northrup JM, Keyt BA, et al. Hypoxic regulation of vascularendothelial growth factor in retinal cells[J]. Arch Ophthalmol 1995, 113: 1538-1544.
    [36] Stone J, Itin A, Alon T, et al. Development of retinal vasculature is mediated by hypoxiainduced vascular endothelial growth factor (VEGF) expression by neuroglia[J]. Neurosci 1995, 15: 4738-4747.
    [37] Stone J, Chan-Ling T, Pe’er J, et al. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity[J]. Invest Ophthalmol Vis Sci 1996, 37: 290-299.
    [38] Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/ VEGF receptor system and its role under physiological and pathological conditions[J]. Clin Sci (Lond). 2005 Sep; 109(3): 227-41.
    [39] Bates DO, Harper S. Regulation of vascular permeability by vascular endothelial growth factors[J]. Vascul. Pharmacol. J. (2002) 39, 225-237.
    [40] Bai Y, Ma JX, Guo J, et al. Müller cell-derived VEGF is a significant contributor to retinal neovascularization[J]. Pathol. 2009 Dec; 219(4): 446-54.
    [41] ZHANG Xiao-ling, WEN Liang, CHEN Yan-jiong, et al. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide[J]. Chin Med, 2009, 122(3): 338-343.
    [42] Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors[J]. Nat Med. (2003) 9: 669-676.
    [43] Ferrara N. Vascular endothelial growth factors: Basic science and clinical progress[J]. Endocr Rev. (2004) 25: 581-611.
    [44] McMahon G. VEGF receptor signaling in tumor angiogenesis[J]. Oncologist (2000) (Suppl–1): 3-10.
    [45] Abdallah W, Fawzi AA. Anti-VEGF therapy in proliferative diabeticretinopathy[J]. Int Ophthalmol Clin. 2009 Spring;49(2): 95-107.
    [46] Chung TW, Kim SJ, Choi HJ, et al. Ganglioside GM3 inhibits VEGF/ VEGFR-2-mediated angiogenesis: direct interaction of GM3 with VEGFR-2 [J]. Glycobiology. 2009 Mar; 19(3): 229-39.
    [47] Hu J, Qu C, Yu Y, et al. Protamine sulfate downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF and its receptor binding in vitro[J]. Adv Exp Med Biol. 2010, 664: 341-7.
    [48] Reichenbach A, Stolzenburg JU, Eberhardt W, et al. What do retinal Muller(glial) cells do fortheir neuronal“small siblings”?[J]. Chem Neuroanat, 1993, 180: 71-79.
    [49] Claudio L, Martiney JA, Brosnan CE. Ultrastruetural studies of the blood-retina barrier after exposure to interleukin-1 beta or tumor necrosis factor-alpha[J]. LabInvest. 1994 Jun; 70(6): 850-61.
    [50] Abu EI-grar AM, Desmet S, Meersschaert A, et al. Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus[J]. Am J OPhthalmol, 2001: 132(4): 551-556.
    [51] Murata T, Nakagawa K, KhaliI A, et al. The relation between expression of vaseular endothelial growth faetor and breakdown of the blood-retinal barrier in diabetic rat retinas[J]. LabInvest. 1996APr; 74(4): 819-25.
    [52]关小康.高浓度葡萄糖以及高浓度胰岛素对体外培养的视网膜Müller细胞膜钙离子通道以及细胞内钙含量的影响[D].吉林:吉林大学第一医院, 2008.
    [53] Savage S, Miller LA, Schrier RW. The future of calcium channel blocker therapy in diabetes mellitus[J]. Cardiovasc Pharmacol. 1991;18 Suppl 1: S19-24.
    [54] Netland PA, Eriekson KA. Calcium channel bloekers in glaucomamanagement[J]. OPhthalmol Clin Nor Am, 1995, 8: 327.
    [55] Siegner SW, Netland PA, Schroeder A, et al. Effect of calcium channel blockers alone and in combination with antiglaucoma medications on intraocular pressure in the primate eye[J]. J Glaucoma. 2000 Aug; 9(4): 334-9.
    [56] Schroeder A, Erickson KA. Verapamil inereases facility of outflow in the human eye in vitro[J]. Invest OPhthalmol Vis Sei, 1993, 34(Suppl): 924.
    [57] Mikheytseva IN, Kashintseva LT, Krizhanovsky GN, et al. The influence of the calcium channel blocker verapamil on experimental glaucoma[J]. Int Ophthalmol. 2004 Mar; 25(2): 75-9.
    [58]陈飞,魏厚仁.维拉帕米对牛眼小梁细胞合成细胞外基质的影响[J].实验研究. 2003.Vol.21.No.4.
    [59]陈飞,魏厚仁.维拉帕米对牛眼小梁细胞表达转化因子-β的影响[J].实验研究. 2004. Vol.22.No.2.
    [60] Abelson MB. Sustained reduction of intra ocular pressure in humans with the Calcium channel blocker verapamil[J]. Am J OPhthalmol, 1988, 105: 155-159.
    [61] Netland PA, Chaturvedi N, Dreye EB. Calcium channel blockers in the management of low-tension and open-angle glaucoma[J]. AM J Ophthalmol, 1993, 155: 608.
    [62] Shin DH, Kardasis CT, Kim C, et al. Topical verapamil in glaucoma filtration surgery[J]. J Glaucoma. 2001 Jun; 10(3): 211-4.
    [63] Gupta PD, Johar K, Vasavada A. Causative and preventive action of calcium in cataracto-genesis[J]. Acta Pharmacol Sin. 2004 Oct; 25(10): 1250-6.
    [64] Bardak Y, Ceki? O, Totan Y, et al. Effect of verapamil on lenticular calcium, magnesium and iron in radiation exposed rats[J]. Int Ophthalmol.1998, 22(5): 285-8.
    [65] Ettl A, Daxer A, G?ttinger W, et al. Inhibition of experimental diabeticcataract by topical administration of RS-verapamil hydrochloride[J]. Br J Ophthalmol. 2004 Jan; 88(1): 44-7.
    [66]姚刚,谭少健.维拉帕米对人晶状体上皮细胞整合素表达的抑制作用[J].眼科研究. 2009. Vol.27.No.6.
    [67] Meissner A, Noack T. Proliferation of human lens epithelial cells (HLE-B3) is inhibited by blocking of voltage-gated calcium channels[J]. Pflugers Arch. 2008 Oct;457(1):47-59. Epub 2008 May 1.
    [68] Kametaka S, Kasahara T, Ueo M. Effect of nifedipine on severe experimental cataract in diabetic rats[J]. Pharmacol Sci. 2008 Apr; 106(4): 651-8.
    [69] Richter D, Hatvani I, Tóth A. Growth inhibition of intraocular proliferative explants under in vitro conditions by verapamil[J]. Ocul Pharmacol; 1993, 303: 206-211.
    [70] Hoffman S, Gopalakrishna R, Gundimeda U, et al. Verapamil inhibits proliferation, migration and protein kinase C activity in human retinal pigment epithelial cells[J]. Exp Eye Res. 1998 Jul; 67(1): 45-52.
    [71]庞东渤,洪晶.维拉帕米诱导人视网膜色素上皮细胞凋亡及细胞内钙变化[J].国际眼科杂志.2006 Apr. Vol.6, No2:324-327.
    [72] Hoffmann S, Balthasar S, Friedrichs U, et al. Inhibitory effects of verapamil isomers on the proliferation of choroidal endothelial cells[J]. Graefes Arch Clin Exp Ophthalmol. 2006 Mar; 244(3): 376-81.
    [73]王越辉,宋鄂等.兔视网膜Muller细胞原代培养[J].吉林大学学报(医学版). 2003, 29(3): 367-369.
    [74] Hirata C, Nakano K, Nakamura N, et al. Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells[J]. Biochem Biophys Res Commun. 1997 Jul 30; 236(3): 712-5.
    [75] McBain VA, Robertson M, Muckersie E, et al. High Glucose concentration decreases insulin-like growth factor type 1-mediated protein kinase activation in bovine retinal endothelial cells[J]. Metabolism, 2003, 52(5): 547-51.
    [76] Poulaki V, Qin W, Joussen AM, et al. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia inducible factor-1a and VEGF[J]. Clin Invest, 2002, 109(6): 805-815.
    [77] Treins C, Giorgetti-Peraldi S, Murdaca J, et al. Regulation of Vascular Endothelial Growth Factor Expression by Advanced Glycation End Products[J]. J Biol Chem, 2001, 276(47): 43836-43841.
    [78] Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract[J]. FASEB J, 1999, 13(1): 23-30.
    [79] Murata M, Kador P F, Sato S. Vascular endothelial growth factor(VEGF) enhances the expression of receptors and activates mitogen-activated protein(MAP)kinase of dog retinal capillary endothelial cells[J]. J Ocul Pharmacol Th, 2000, 16(4): 383-391.
    [80] Mo ll V, WeickM, Milenkovic I, et al. P2Y receptor mediated stimulation of Müller glial DNA synthesis[J]. InvestOphthalmolVis Sci.2002, 43(3): 766-773.
    [81]张海宁,惠延年.高浓度葡萄糖对体外培养大鼠Müller细胞P2Y2受体的影响[J].国际眼科杂志. 2008 Apr. Vol.8, No4:717-720.
    [82] Deakin CD, Fagan EA, Williams R. Cytoprotective effects of calcium channel blockers. Mechanisms and potential applications in hepatocellular injury[J].J Hepatol. 1991 Mar; 12(2): 251-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700