Graves病患者外周血FOXP3、GITR及CD25基因的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】研究Graves病不同阶段患者外周血叉状头/翅膀状螺旋转录因子(forkhead box protein 3, FOXP3)、糖皮质激素诱导肿瘤坏死因子受体(glucocorticoid-induced tumor necrosis factor receptor, GITR)及IL-2受体α链(interleukin-2-receptor a-chain, CD25)基因的表达变化,探讨其在Graves病发病机制中的作用。
     【方法】收集90例自2009年2月至2009年7月在山东大学齐鲁医院门诊就诊的Graves病患者,所有患者均符合Graves病的诊断标准:①临床甲亢的症状和体征;②甲状腺弥漫性肿大(触诊和B超证实),少数病例可以无甲状腺肿大;③血清TSH浓度降低,甲状腺激素浓度升高;④排除其他甲状腺疾病。入选者均除外肝肾疾病,恶性肿瘤及其他传染性疾病,未用其他免疫抑制剂,按病情分为Graves病初诊组30例(男13例,女17例);Graves病缓解组30例(男10例,女20例);Graves病复发组30例(男11例,女19例)。健康查体者30例(男14例,女16例)作为正常对照组,均来自我院自2009年2月至2009年7月健康查体人群。应用实时荧光定量PCR法检测各组外周血单个核细胞中FOXP3、GITR及CD25 mRNA含量,同时利用电化学发光的方法测定各组血清甲状腺激素水平及甲状腺过氧化酶抗体(TPOAb)、甲状腺球蛋白抗体(TGAb)的水平。【结果】Graves病各组患者外周血FOXP3 mRNA表达较健康对照组均显著降低(P<0.05),缓解组FOXP3 mRNA水平与初诊组相比显著升高(P<0.05),复发组FOXP3mRNA水平虽低于缓解组(P<0.05),但明显高于初诊组(P<0.05);Graves病各组女性患者FOXP3mRNA表达水平显著高于男性患者(P<0.05);Graves病初诊及复发组GITR mRNA、CD25mRNA表达水平显著高于对照组(P<0.05)。
     【结论】FOXP3、GITR及CD25基因可能参与了Graves病的发生、发展及复发过程。
[Objective] To investigate the roles of FOXP3, GITR and CD25 genes in the pathogenesis of different stages of Graves'disease.
     [Methods] From February 2009 to July 2009 in Qilu Hospital affiliated to Shandong University, Ninty cases of Graves'disease were collected. All the patients were out-patients and consistent with Graves'disease diagnostic criteria:(1) clinical symptoms and signs of hyperthyroidism; (2) diffuse thyroid enlargement (palpation or ultrasoud-confirmed), a small number of cases can be no goiter; (3) lower serum TSH concentration, and thyroid hormone concentration increased. (4) exclude other thyroid diseases. Patients were selected except for liver and kidney disease, malignant tumors and other infectious diseases, not using other immunosuppressive agents. All objects were divided into three groups:30 cases of newly diagnosed of Graves'disease (13 men, 17 women); 30 cases of disease remission group (10 men,20 women); 30 cases of disease recurrence group (11 men,19 women).30 normal persons (14 men,16 women) served as healthy controls. The levels of FOXP3, GITR and CD25mRNA in peripheral blood mononuclear cells were measured by Light Cycler fluorescence quantitative PCR instrument, and the levels of serum thyroid hormone, TPOAb and TGAb were measured by electrochemiluminescence.
     [Results] The level of FOXP3 mRNA in each Graves'disease group was significantly lower than that of healthy controls (P<0.05), the FOXP3 mRNA level in the remission group was significantly higher than that of the newly diagnosed group (P<0.05), and the FOXP3 mRNA level in the recurrence group was lower than that of the remission group (P<0.05) but higher than that of the newly diagnosed group (P<0.05). The level of FOXP3 mRNA in female Graves'disease patients was significantly higher than that of male Graves'disease patients (P<0.05). The levels of GITR mRNA and CD25 mRNA in the newly diagnosed and the recurrence groups increased compared with that in the healthy controls (P<0.05).
     [Conclusions] The FOXP3, GITR and CD25 genes may be involved in the process of Graves'disease and its recurrence.
引文
[1]李少林.核医学[M].第5版.北京:人民卫生出版社,2002,343.
    [2]Orunesu E, Bagnasco M, Salmaso C, et al. Use of an artificial neural network to predict Graves'disease outcome within 2 years of drug withdrawal [J]. Eur J Clin Invest, 2004,34(3):210-217.
    [3]Lippe BM, Landaw EM, Kaplan SA. Hyperthroidism in children treated with long term medical therapy:twenty-five percent remission every two years[J]. J Clin Endocrinol Metab,1987,64(6):1241-1245.
    [4]武革,司徒玉,揭育丽,等.不同疗程的抗甲状腺药物治疗Graves病对近期复发作用的前瞻研究[J].临床内科杂志,2003,20(8):419-420.
    [5]李卫红,吕建新,张建国,等.抗甲状腺药物治疗Graves病的疗效与疗程观察[J].中国医药导报,2007,4(18):64-65.
    [6]Villanueva R, Tomer Y, Greenberg DA, et al. Autoimmune thyroid disease susceptibility loci in a large Chinese family[J]. Clin Endocrinol(Oxf),2002,56(1): 45-51.
    [7]Vestergaard P, Rejnmark L, Weeke J, et al. Smoking as a risk factor for Graves' disease, toxic nodular goiter, and autoimmune hypothyroidism[J]. Thyroid,2002,12(1): 69-75.
    [8]Eheman CR, Garbe P, Tuttle RM. Autoimmune thyroid disease associated with environmental thyroidal irradiation[J]. Thyroid,2003,13(5):453-464.
    [9]Jonuleit H, Schmitt E. The regulatory T cell family:distinct subsets and their interrelations[J]. J Lmmunol,2003,171(12):6323-6327.
    [10]Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor foxp3[J]. Science,2003,299(5609):1057-1061.
    [11]中华医学会内分泌学分会《中国甲状腺疾病诊治指南》编写组.中国甲状腺疾病诊治指南——甲状腺功能亢进症[J].中华内科杂志,2007,46(10):876-882.
    [12]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of single mechanism of serf-tolerance causes various autoimmune diseases[J]. J Immunol,1995, 155(3):1151-1164.
    [13]Contasta I, Pellegrini P, Berghella AM, et al.Cell cycle control in cellular homeostasis during the immune response:interactions between TH1, TH2 cytokines, and Bcl2 and p53 molecules[J]. Cancer Biother Radiopharm,2001,16(1):63-71.
    [14]Lindley S, Dayan CM, Bishop A, et al. Defective suppressor function in CD4(+), CD25(+)T-cells from patients with type 1 diabetes[J]. Diabetes,2005,54(1):92-99.
    [15]Crispin JC, Martinez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus[J]. J Autoimmun,2003,21(3):273-276.
    [16]Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+regulatory T cells in patients with multiple sclerosis[J]. J Exp Med,2004, 199(7):971-979.
    [17]Weetman AP. Autoimmune thyroid disease[J]. Autoimmunity,2004,37(4): 337-340.
    [18]Stassi G, De Maria R. Autoimmune thyroid disease:new models of cell death in autoimmunity [J]. Nat Rev Immunol,2002,2(3):195-204.
    [19]Marazuela M, Garcia-Lopez MA, Figueroa-Vega N, et al. Regulatory T cells in human autoimmune thyroid disease[J]. J Clin Endocrinol Metab,2006, 91(9):3639-3646.
    [20]Nakano A, Watanabe M, Iida T, et al. Apoptosis-induced decrease of intrathyroidal CD4(+)CD25(+) regulatory T cells in autoimmune thyroid disease[J]. Thyroid,2007, 17(1):25-31.
    [21]Baecher-Allan C, Brown JA, Freeman GJ, et al. CD4+CD25high regulatory cells in human peripheral blood [J]. J Immunol,2001,167(3):1245-1253.
    [22]Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/ winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse[J]. Nat Genet,2001,27(1):68-73.
    [23]Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells[J]. Nat Immunol,2003,4(4):337-342.
    [24]Fontenot JD, Gavin MA, Rudenky AY. Foxp3 programs the development and function of CD4+CD25+regulatory T cells[J]. Nat Immunol,2003,4(4):330-336.
    [25]Gavin MA, Torgerson TR, Houston E, et al. Single-cell allaIysis of normal and FOXP3-mutant human T cells:FOXP3 expression without regulatory T cell development[J]. Proc Nati Acad Sci U S A,2006,03(17):6659-6664.
    [26]Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enterepathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3[J]. Nat Genet,2001,27:20-21.
    [27]Huan J, Culbertson N, Spencer L, et al. Decreased FOXP3 levels in multiple sclerosis patients [J]. J Neurosci Res,2005,81(1):45-52.
    [28]Jaeckel E, von Boehmer H, Manns MP. Antigen-specific Foxp3-transduced T-cells can control established type 1 diabetes[J]. Diabetes,2005,54(2):306-310.
    [29]Wang H, Zhao S, Tang X, et al. Changes of regulatory T cells in Graves'disease[J].J Huazhong Univ Sci Technolog Med Sci,2006,26(5):545-547.
    [30]唐大海,徐尔理,吴玲.Graves病患者外周血CD4+、CD25+调节性细胞的定量及功能分析[J].海军医学杂志,2008,29(2):114-118.
    [31]Morgan ME, van Bilsen JH, Bakker AM, et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+T regulatory cells in humans[J].Hum Immunol,2005,66(1): 13-20.
    [32]Polanczyk MJ, Carson BD, Subramanian S, et al. Cutting edge:estrogen drives expansion of the CD4+CD25+regulatory T cell compartment[J]. J Immunol,2004, 173(4):2227-2230.
    [33]闫晓波,冯银玲,包忠蕾,等.雌二醇对实验性自身免疫性脑脊髓炎调节性T细胞及细胞因子的影响[J].中国神经免疫学和神经病学杂志,2009,16(5):352-355.
    [34]孙庆利,谢汝萍,王荫华,等.雌激素受体基因多态性与多发性硬化[J].中国神经免疫学和神经病学杂志,2004,11(5):249-252.
    [35]王深明,毛盛明,赵国强,等.雌激素受体与Graves病的相关性[J].中华外科杂志,2000,38(8):619-621.
    [36]Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+) CD4(+) regulatory T cells through GITR breaks immunological self-tolerance [J]. Nat Immunol, 2002,3(2):135-142.
    [37]Uraushihaca K, Kanai T, Ko K, et al. Regulation of murine inflammatory bowel disease by CD25+and CD25-CD4+glueocorticoid-induced TNF receptor family-related gene+regulatory T cells[J]. J Immunol,2003,171(2):708-716.
    [38]Kohm AP, Williams JS, Miller SD, et al. Cutting edge:ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+T cell activation and experimental autoimmune encephalomyelitis[J].J Immunol,2004,172(8):4686-4690.
    [39]Cuzzocrea S, Nocentini G, Di Paola R, et al. Glucocorticoid-induced TNF receptor family gene (GITR) knockout mice exhibit a resistance to splanchnic artery occlusion (SAO) shock[J]. J Leukoc Biol,2004,76(5):933-940.
    [40]Cuzzocrea S, Ayroldi E, Di Paola R, et al. Role of glucocorticoid-induced TNF receptor family gene (GITR) in collagen-induced arthritis[J]. FASEB J,2005,19(10): 1253-1265.
    [41]Morris GP, Kong YC. Interference with CD4+CD25+T-cell-mediated tolerance to experimental autoimmune thyroiditis by glucocorticoid-induced tumor necrosis factor receptor monoclonal antibody[J]. J Autoimmun,2006,26(1):24-31.
    [42]Surh CD, Sprent J, Webb SR. Exclusion of circulating T cells from the thymus does not apply in the neonatal period[J]. J Exp Med,1993,177(2):379-385.
    [43]Pan D, Shin Y H, Gopalakrishnan G, et al. Regulatory T cells in Graves' disease[J].Clin Endocrinol(oxf),2009,71(4):587-593.
    [44]Hori S, Sakaguchi S. Foxp3:a critical regulator of the development and function of regulatory T cells[J]. Microbes Infect,2004,6(8):745-751.
    [1]Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead /winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse[J]. Nat Genet,2001,27(1):68-73.
    [2]Cao D, Borjesson O, Larsson P, et al. FOXP3 identifies regulatory CD25bright CD4+ T cells in rheumatic joints[J]. Scand J Immunol,2006,63(6):444-452.
    [3]Bovenschen HJ, van Vlijmen-Willems IM, van de Kerkhof PC, et al. Identification of lesional CD4+CD25+Foxp3+regulatory T cells in Psoriasis[J]. Dermatology,2006, 213(2):111-117.
    [4]Alvarado-Sanchez B, Hernandez-Castro B, Portales-Perez D, et al. Regulatory T cells in patients with systemic lupus erythematosus[J]. J Autoimmun,2006,27(2): 110-118.
    [5]Blair PJ, Bultman SJ, Haas JC, et al. CD4+CD8-T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse [J]. J Immunol,1994,153(8):3764-3774.
    [6]Bennett CL, Ochs HD, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3[J]. Nat Genet,2001,27(1):20-21.
    [7]Wildin RS, Ramsdell F, Proll S, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy [J]. Nat Genet,2001,27(1):18-20.
    [8]Bassuny WM, Ihara K, Sasaki Y, et al. A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type ldiabetes[J]. Immunogenetics,2003,55(3):149-156.
    [9]Carlsson P, Mahlapuu M. Forkhead transcription factor:key players in development and metabolism. Dev Biol,2002,250(1):1-23.
    [10]Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor foxp3[J]. Science,2003,299(5609):1057-1061.
    [11]Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells[J]. Nat Immunol,2003,4(4):337-342.
    [12]Fontenot JD, Gavin MA, Rudenky AY. Foxp3 programs the development and function of CD4+CD25+regulatory T cells[J]. Nat Immunol,2003,4(4):330-336.
    [13]Cosmi L, Liotta F, Lazzeri E, et al. Human CD8+CD25+thymocytes share phenotypic and functional features with CD4+CD25+regulatory thmocytes [J]. Blood, 2003,102(12):4107-4114.
    [14]Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and efector functions of T helper cells[J]. Proc Natl Acad Sci U S A,2005,102(14):5138-5143.
    [15]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of single mechanism of serf-tolerance causes various autoimmune diseases[J]. J Immunol,1995, 155(3):1151-1164.
    [16]Bacchetta R, Passerini L, Gambineri E, et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations[J]. J Clin Invest 2006,116(6): 1713-1722.
    [17]Hori S, Sakaguchi S. Foxp3:a critical regulator of the development and function of regulatory T cells[J]. Microbes Infect,2004,6(8):745-751.
    [18]Apostolou I, Sarukhan A, Klein L, et al. Origin of regulatory T cells with known specificity for antigen[J]. Nat Immunol,2002,3(8):756-763.
    [19]Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide[J]. Nat Immunol,2001,2(4): 301-306.
    [20]Tai X, Cowan M, Feigenbaum L et al. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2[J]. Nat Immunol,2005,6(2):152-162.
    [21]Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+regulatory T cells by TGF-beta induction of transcription factor Foxp3[J]. J Exp Med,2003,198(12):1875-1886.
    [22]Peng Y, Laouar Y, Li MO, et al. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+regulatory T cells responsible for protection against diabetes[J]. Proc Natl Acad Sci U S A,2004,101(13):4572-4577.
    [23]Fantini MC, Becker C, Monteleone G, et al. Cutting edge:TGF-beta induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7[J]. J Immunol,2004,172(9):5149-5153.
    [24]Montagnoli C, Bacci A, Bozza S, et al. B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans[J]. J Immunol,2002,169(11):6298-6308.
    [25]Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge:CD28 controls peripheral homeostasis of CD4+CD25+regulatory T cells[J]. J Immunol,2003,171(7):3348-3352.
    [26]Polanczyk MJ, Carson BD, Subramanian S, et al. Cutting edge:estrogen drives expansion of the CD4+CD25+regulatory T cell compartment[J]. J Immunol,2004, 173(4):2227-2230.
    [27]Chazenbalk GD, Pichurin P, Chen CR, el al. Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor[J]. J Clin Invest,2002,110(2):209-217.
    [28]Huan J, Culbertson N, Spencer L, et al. Decreased FOXP3 levels in multiple sclerosis patients [J]. J Neurosci Res,2005,81(1):45-52.
    [29]Jaeckel E, von Boehmer H, Manns MP. Antigen-specific Foxp3-transduced T-cells can control established type 1 diabetes[J]. Diabetes,2005,54(2):306-310.
    [30]Ban Y, Tozaki T,Tobe T, et al. The regulatory T cell gene FOXP3 and genetic susceptibility to thyroid autoimmunity:an association analysis in Caucasian and Japanese cohorts[J]. J Autoimmun,2007,28(4):201-207.
    [31]Villano MJ, Huber AK, Greenberg DA, et al. Autoimmune thyrioditis and diabetes: dissecting the joint genetic susceptibility in a large cohort of multiplex families[J]. J Clin Endocrinol Metab,2009,94(4):1458-1466.
    [32]Saitoh O, Nagayama Y. Regulation of Graves'hyperthyroidism with naturally occurring CD4+CD25+regulatory T cells in a mouse model[J]. Endocrinology, 2006,147(5):2417-2422.
    [33]Thornton AM, Shevach EM. Suppressor effeetor function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific[J]. J Immunol,2000,164(1):183-190.
    [34]Marazuela M, Garcia-Lopez MA, Figueroa-Vega N, et al. Regulatory T cells in human autoimmune thyroid disease[J]. J Clin Endocrinol Metab,2006,91(9): 3639-3646.
    [35]Wang H, Zhao S, Tang X, et al. Changes of regulatory T cells in Graves'disease[J].J Huazhong Univ Sci Technolog Med Sci,2006,26(5):545-547.
    [36]唐大海,徐尔理,吴玲.Graves病患者外周血CD4+、CD25+调节性细胞的定量及功能分析[J].海军医学杂志,2008,29(2):114-118.
    [37]Nakano A, Watanabe M, Iida T, et al. Apoptosis-induced decrease of intrathyroidal CD4(+)CD25(+) regulatory T cells in autoimmune thyroid disease[J]. Thyroid,2007, 17(1):25-31.
    [38]Pan D, Shin Y H, Gopalakrishnan G, et al. Regulatory T cells in Graves' disease[J].Clin Endocrinol(oxf),2009,71(4):587-593.
    [39]Owen CJ, Eden JA, Jennings CE, et al. Genetic association studies of the FOXP3 gene in Graves'disease and autoimmune Addison's disease in the United Kingdom population[J]. J Mol Endocrinol,2006,37(1):97-104.
    [40]Tomer Y, Menconi F, Davies TF, et al. Dissecting genetic heterogeneity autoimmune thyroid disease by subset analysis[J]. J Autoimmun,2007,29(2-3):69-77.
    [41]王胜军,许化溪,王永忠,等.CD4+CD25+调节性T细胞抑制小鼠自身免疫性甲状腺炎的发生[J].中国免疫学杂志,2005,21(2):102-104.
    [42]Watanabe M, Yamamoto N, Maruoka H, et al. Independent Involvement of CD8+CD25+cells and thyroid autoantibodies in disease severity of Hashimoto's Disease[J]. Thyroid,2002,12(9):801-808.
    [43]Fountoulakis S, Vartholomatos G, Kolaitis N, et al. HLA-DR expressing peripheral T regulatory cells in newly diagnosed patients with different forms of autoimmune thyroid disese[J]. Thyroid 2008,18 (11):1195-1200.
    [44]Ochs HD, Ziegler SF, Torgerson TR. FOXP3 acts as a rheostat of the immune response[J]. Immunol Rev,2005,203:156-164.
    [45]Costa-Carvalho BT, de Moraes-Pinto MT, de Almeida LC, et al. A remarkable depletion of both naive CD4+and CD8+with high proportion of memory cells in an IPEX infant with a FOXP3 mutation in the forkhead domain[J]. Scand J Immunol,2008, 68(1):85-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700