基于SSH技术研究茶树被茶尺蠖取食诱导的基因差异表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶树虫害一直是我国茶叶生产中优质和高效的主要限制因子,而茶树对害虫取食后所诱发的防御反应分子机制至今不清;同时常绿木本植物对害虫取食诱导防御的分子机理研究相当缺乏。本论文利用抑制性消减杂交(SSH)技术,在茶树叶片被主要害虫-茶尺蠖取食后,对茶叶中诱导表达的基因进行了筛选和研究,在此基础上通过荧光定量PCR技术,比较研究了与重要防御功能相关的差异表达片段(TDF)的表达特征和在不同品种间的表达变化差异。主要结果如下:
     (1)建立了稳定可靠的SSH技术体系,为后续研究不同样本之间的基因差异表达提供了技术保障。
     (2)通过对正向差减文库中包含的诱导表达cDNA片段进行克隆鉴定,并对长度大于200bp的片段进行测序,最终获得了280个TDF的序列。按照长度大小进行分类:长度在200bp-400bp之间的TDF有151个,占总量的54%;长度在400bp-600bp之间的TDF有101个,占总量的36%;长度大于600bp的TDF有28个,占总量的10%;通过Blastx比对显示:与已知功能基因序列具有较高同源性的的TDF有157个,占总量的56%;为推测蛋白的克隆子有19个,占总量的6%;没有任何匹配的有104个,占总量的37%。并已将其中的271个TDF序列登录在GenBank中(GW342615 - GW342885)。
     (3)对其中144个诱导表达基因的推测功能进行分类得出的结果表明:可能与蛋白质代谢相关的基因有31个,占总体的21%;与光合作用和初级代谢功能相关的有18个,占总体的13%;与转运类蛋白功能相关的有11个,占总体的8%;与转录功能相关的有12个,占总体的8%;与信号转导功能相关的有11个,占总体的8%;与脂类代谢和次级代谢功能相关的分别有7个和13个,分别占总体的5%和9%;与逆境与防御功能相关的有22个,占总量的15%;与植物体其他代谢途径相关的有19个,占总量的13%。(4)依据现有相关植物对害虫防御机制的报道分析得出茶树被茶尺蠖取食诱导可能所涉及的防御途径:与直接防御相关的有4个TDF,分别涉及咖啡碱合成酶(TDF-55、88)、黄酮醇合成酶(TDF-72、146)、精氨酸酶(TDF-2)和半胱氨酸酶抑制剂(TDF-144);与间接防御相关的有7个TDF,分别涉及绿叶性挥发物、芳香族挥发物和萜烯类挥发物生物很成相关。
     (5)通过定量PCR对诱导表达基因的表达量的分析,我们发现茶树受到茶尺蠖取食危害后,与不同防御机制相关的TDF上调表达量是不同的,且其随着时间的变化规律和在不同品种间表达量也存在差异。例如咖啡碱合成酶(TDF-55、88)和黄酮合成酶(TDF-72、146)受茶尺蠖取食后不同的时间里,二者都随着时间的增加而出现增加的现象,但是咖啡碱合成酶在取食后4小时增加的幅度明显比黄酮合成酶大。不同茶树品种被茶尺蠖取食诱导后,其诱导的差异片段的上调表达量也有不同。例如其中龙井43被取食后,TDF-73上调表达倍数比舒茶早高出最多,达到74.5%,TDF-55和TDF-139次之,分别比舒茶早高出57.8%和57.1%,TDF-40仅比舒茶早高出11.9%。而对于TDF-72和105来说则是龙井43的上调表达倍数比舒茶早低,分别为53.4%和26.9%。
Tea pests have always been the major limiting factor in high quality and efficiency tea production, however, the molecular mechanism of the tea plant resistance is not clear today. While the molecular mechanism induced defense research of feeding pests on evergreen woody plant is lacking. This paper researched the differentially expressed genes in both number and type after feeding main pests (tea looper) on the tea leaves using SSH technology. On this basis, comparative studies of the express characteristics of differentially expressed fragments(TDF)related with the important defense function, as well as the expression differences in different varieties were made through fluorescence quantitative PCR. Main results are as follows:
     (1) A stable and reliable technical system of SSH is established, and technical support for subsequent study of differences in gene expression between different samples is provided.
     (2) Based on the cloning identification of induced cDNA fragments included in the forward subtractive cDNA library, and the sequencing of the fragments longer than 200bp, 280 TDF sequences were obtained. According to the length, there are 151 TDF with the length between 200bp and 400bp, 54% of the total. The number of the TDF with the length between 400bp and 600bp is 101, 36% of the total. 28 TDF is longer than 600bp, 10% of the total. Through BlastX comparison shows: the gene has high homology with known functional sequence is 157, 56% of the total, the cloning of hypothetical protein is 19, 6% of the total. There's no match for 104, 37 % of the total. And 271 sequences of TDF is submitted to GenBank(GW342615 - GW342885)。
     (3) The classification results of 144 induced genes’probable function show that 31 genes related to the protein metabolism, 21% of the total;18 have relationships with photosynthesis and primary metabolic functions, about 13%;11 are with the transfer function of proteins, 8% of the total; and the number of genes related to the transcription function is 12, 8% of the total;11 related to the function of signal transduction, 8% of the total;and the number of the genes related to lipid metabolism and secondary metabolic function are respectively 7 and 13, 5% and 9%;22 are related to adversity and defense functions, 15% of the total;19 are related to other metabolic pathways of plant, 13% of the total.
     (4) According to the reports related to plant defense mechanism of pests, there are a few may involved in the tea looper feeding: 4 TDF related with direct defense, including caffeine synthase (TDF - 55, 88), flavonols synthase (TDF - 72, 146), arginine enzyme (TDF - 2) and homocysteine enzyme inhibitors (TDF - 144), And 7 TDF have relationships with indirect defense, including the processes of biosynthesis of green leafy volatiles, aromatic volatiles and terpenes volatiles.
     (5) Through quantitative polymerase chain reaction (PCR) analysis of induced gene expression level, it is founded that after feeding,the raised expression of the TDF related to different defense mechanisms is different, and along with the time expression varies in different varieties. Such as the phenomenon that caffeine synthase (TDF - 55, 88) and flavonoids synthase (TDF - 72, 146) increase in different time after feeding, but caffeine synthase was increased significantly greater than flavonoids synthase in four hours after feeding. Different varieties of tea, the raised expression of the induced TDF is different, too. For example, after feeding, longjing 43, TDF - 73 raised express multiple higher than shuchazao, reach to 74.5%, then are the TDF - 55 and TDF - 139, higher than the shuchazao 57.8% and 57.1% ,TDF - 40, higher than shuchazao only 11.9%. For TDF - 72 and 105 are lower than shuchazao, respectively 53.4% and 26.9%.
引文
[1] Green TR, Ryan CA. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects[J]. Science, 1972, 175:776-777.
    [2] Interaction of methyl jasmonate,wounding and fungal elicitation during sesquiterpene induction in Hyoscyamus muticus in root cultures[J]. Plant Cell Reports, 1998, 17:391-395.
    [3] A role for jasmonate in pathogen defense of Arabidopsis[J]. PNAS, 1998, 95:7209-7214.
    [4] Agrawal AA. Induced responses to herbivory and increased plant performance[J]. Science, 1998, 279:1201-1202.
    [5] Cervantes DE, Eigenbrode SD,Ding HJ,Bosque-Perez NA. Oviposition responses by HesSian ?y,Mayetiola destructor,to wheats varying in surfaces waxes[J]. J Chem Ecol, 2002, 28:193-210.
    [6] Danush V. Viswanathan, Anita J. T. Narwani, Jennifer S. Thaler. Specificity in induced plant responses shapes patterns of herbivore occurrence on Solanum dulcamara[J]. Ecology, 2005, 86(4):886-896.
    [7] Ehrlich PR,Raven PH. Butter?ies and plants: a study in coevolution[J]. Ecology, 1964, 279: 18:586-608.
    [8] Karban R,Myers JH.Induced plant responses to herbivory[J].Ann Rev Ecol Sys, 1989, 20:331-348.
    [9] Bergvinson DJ,Hamilton RI,Arnason JT. Leaf profile of maize resistance factors to european corn borer, Ostrinia nubilalis[J]. J Chem Ecol, 1995, 21:343-354.
    [10] Coley PD,Barone JA. Herbivory and plant defenses in tropical forests[J]. Annu Rev Ecol Syst,1996, 27:305-335.
    [11] Howlett BG, Clarke AR, Madden JL. The in?uence of leaf age on the oviposition preference of Chrysophtharta bimaculata (Olivier) and the establishment of neonates[J].Agric For Entomol,2001, 3:121-127.
    [12] Dussourd DE, Hoyle AM. Poisoned plusiines: toxicity of milkweed latex and cardenolides to some generalist caterpillars[J]. Chemoecology, 2000, 10:11-16.
    [13] Agrawal AA. Resistance and susceptibility of milkweed: competition, root herbivory, and plant genetic variation[J]. Ecology,2004, 85:2118-2133.
    [14]秦秋菊,高希武.昆虫取食诱导的植物防御反应.昆虫学报[J]. 2005, 48(1):125-134.
    [15] Feeny P. Seasonal change in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars[J]. Ecology, 1970, 51:565-581.
    [16] Rhoades DF, Cates RG. Towards a general theory of plant antiherbivore chemistry. In:Wallace JW Mansell RL (eds) Biochemical interaction between plants and insects[M]. Plenum Press,1976, 168-213.
    [17] Berenbaum MR. Turnabout is fair play: secondary roles for primary compounds[J]. J Chem Ecol, 1995, 21:925-940.
    [18]李新岗,刘惠霞,黄建.虫害诱导植物防御的分子机制研究进展[J].应用生态学报.2008, 19(4):893-900.
    [19]韦朝领,高香凤,江昌俊,叶爱华.基因表达谱差异显示技术及其在植物对害虫取食诱导反应研究中的应用[J].安徽农业大学学报. 2006, 33(1):94-99.
    [20] Liang, P, Pardee, A.B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J]. Science,1992, 257:967-971.
    [21] Bachem C W B, Hoeven R S, Bruijn S M. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:Analysis of gene expression during potato tuber development[J]. The Plant Journal ,1996, 9:(5)745-753.
    [22] Dudoit S, Yang Y.H, Callow M.J, Speed T.P. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments.Stat.Sinica, 2002,12:111-139.
    [23] Diachenko L, Lau Y C, Campbell A P. Suppression subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc Natl Acad Sci, 1996, 93: 6025-6030.
    [24] Reymond P, Bodenhausen N, Poecke RMP. A conserved transcript pattern in response to a specialist and a generalist herbivore[J]. The Plant Cell, 2004, 16: 3132-3147.
    [25] Zhu-Salzman K, Salzman RA., Ahn JE, et al. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid[J]. Plant Physiology, 2004, 134:420-431.
    [26] Qubbaj T, Reineke A, Zebitz CPW. Molecular interactions between rosy apple aphids, Dysaphis plantaginea ,and resistant and susceptible cultivars of its primary host Malus domestica[J]. Entomologia Experimentalis and Applicata , 2005, 115: 145-152.
    [27] Samuelian S, Kleine M, et al. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection[J]. Plant Molecular Biology, 2004, 54:147-156.
    [28] Hongyu Yuan, Xinping Chen, et al. Isolation and characterization of a novel rice gene encoding a putative insect-inducible protein homologous to wheat Wir1[J]. J. Plant Physiol, 2004, 161:79-85.
    [29] Xiaolan Wang, Xiang Ren, Lili Zhu, Guangcun He. OsBi1, a rice gene, encodes a novel protein with a CBS-like domain and its expression is induced in responses to herbivore feeding[J]. Plant Science, 2004, 166 :1581-1588.
    [30]曹明坤,宁伟文.安徽省茶叶农药残留现状与控制措施[J].农药科学与管理,2001, 22(2):16-17.
    [31]许宁,陈宗懋,游小清.引诱茶尺蠖天敌寄生蜂的茶树挥发物的分离与鉴定[J].昆虫学报,1999,42(2):129-130.
    [32]赵冬春,陈宗懋,程家安.茶树-假眼小绿叶蝉-白斑猎蛛间化学通讯物的分离与活性鉴定[J].茶叶科学,2002, 22(2):109-114.
    [33]张汉鹘,谭济才.中国茶树害虫及其无公害治理[M].安徽科技出版社, 2004.
    [34]陈亦根,黄明度.茶尺蠖生物防治进展[J].昆虫天敌, 2001, 23(4):181-184.
    [35]张汉鹄.我国茶树尺蛾区系考察[J].茶叶科学, 2001, 21(2):157-160.
    [36] Hoo Sun Chung, Gregg A. Howe. A Critical Role for the TIFY Motif in Repression of Jasmonate Signaling by a Stabilized Splice Variant of the JASMONATE ZIM-Domain Protein JAZ10 in Arabidopsis. The Plant Cell, 2009, 21:131-145.
    [37] David E, Clapham. Calcium Signaling[J]. Cell, 2007, 131:1047-1058.
    [38] K S Lee, M Buck, K Houglum. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression[J]. J Clin Invest, 1995, 96(5): 2461–2468.
    [39] Karam B, Singh,Rhonda C, Foley. Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology, 2002, 5(5):430-436.
    [40] Koji Sakamoto, Yuichi Tada, Yumi Yokozeki. Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats[J]. Plant Molecular Biology, 1999, 40:847-855.
    [41] Carine Ameline-Torregrosa, Bing-Bing Wang, Majesta S.O'Bleness. Identification and Characterization of Nucleotide-Binding Site-Leucine-Rich Repeat Genes in the Model Plant Medicago truncatula[J]. Plant physiology, 2008, 146:5-21.
    [42] Yuriko Osakabe, Kyonoshin Maruyama, Motoaki Seki. Leucine-Rich Repeat Receptor-Like Kinase1 is a Key Membrane-Bound Regulator of Abscisic Acid Early Signaling in Arabidopsis[J]. The Plant Cell, 2005, 17:1105-1119.
    [43] Cathie Martina, Javier Paz-Aresb. Plant protein Phosphorylation of thr668 in the cytoplasmic domain of the Alzheimer's disease amyloid precursor protein by stress-activated protein kinase 1b(Jun N-terminal kinase-3)[J]. Trends in Genetics, 1997, 13:67-73.
    [44] Chen Y H, Yang X Y, He Kun. The MYB Transcription Factor Superfamily of Arabidopsis:Expression Analysis and Phylogenetic Comparison with the Rice MYB Family[J]. Plant Molecular Biology, 2006, 60:107-124.
    [45] Takayuki Tohge, Yasutaka Nishiyama, Masami Yokota Hirai. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor[J]. The Plant Journal, 2005, 42:218-235.
    [46] K S Lee, M Buck, K Houglum. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression[J]. J Clin Invest, 1995, 96(5):2461–2468.
    [47] HH Kampinga. Thermotolerance in mammalian cells.Protein denaturation and aggregation, and stress proteins[J]. Journal of Cell Science, 1993, 104:11-17.
    [48] Stephen A.Baldwin,Paul R. Beal. The equilibrative nucleoside transporter family, SLC29[J]. Pflügers Archiv European Journal of Physiology, 2004, 447:735-743.
    [49] Johan Edqvist,Elin R?nnberg,Sara Rosenquist. Plants Express a Lipid Transfer Protein with High Similarity to Mammalian Sterol Carrier Protein-2[J]. Journal of Biological Chemistry, 2004, 279:53544-53553.
    [50] Norihiro Mitsukawa, Satoru Okumura, Yumiko Shirano. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited?conditions[J]. PNAS, 1997, 94: 7098-7102.
    [51] Nowak R S,Caldwell M M. A test of compensatory photo-synthesis in the field:implications for herbivory tolerance[J]. Oeologia, 1984, 61(3):311-318.
    [52] Philip A Fay, David C. Increased photosynthesis and water potentials in Sitphium integrifolium galled by cynipid wasps[J]. Oecologia, 1993, 93: 114-120.
    [53]李跃强,宣维健,王红托等.棉花对棉铃虫危害超补偿作用的生理机制[J].昆虫学报, 2003, 46(3): 267-271.
    [54] Kenichi Ozaki, Hideyuki Saito, Koji Yamamuro. Compensatory photosynthesis as a response to partial debudding in ezo spruce Picea jezoensis seedlings[J]. Joumal Ecological Research, 2004, 19(2): 225-231.
    [55] Oleksyn J, Karolewski P, Giertych M J. Primary and secondary host plants differ in leaf-level photosynthetic response to herbivory:evidence from Alnus and Betula grazed by the alder beetle ,Agelastica alni[J]. New Phytologist, 1998, 140(2):239-249.
    [56]韦朝领,童鑫,高香凤,江昌俊.茶树对茶尺蠖取食危害的补偿光合生理反应研究[J]. 2007, 34(3): 355-359.
    [57] Slaymaker DH, Navarre DA, Clark D. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response[J]. Proc Natl Acad Sci, 2002, 99:11640-11645.
    [58] Restrepo S, Myers KL, del Pozo O. Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase[J]. Mol Plant Microbe Interact, 2005, 18:913-922.
    [59] C. Sahi, M. Agarwal, M. K. Reddy, S. K. Sopory, A. Grover. Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method[J]. Theoretical and Applied Genetics, 2003, 106: 620-628.
    [60] Stephan Clemens. Molecular mechanisms of plant metal tolerance and homeostasis[J]. Planta, 2001, 212: 475-486.
    [61] E Vierling. The Roles of Heat Shock Proteins in Plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42:579-620.
    [62] A J Caplan, D M Cyr, M G Douglas. Eukaryotic homologues of Escherichia coli dnaJ: a diverse protein family that functions with hsp70 stress proteins[J]. Mol Biol Cell, 1993, 4(6): 555-563.
    [63] Jocelyne Marivet, Marcia Margis-Pinheiro, Pierre Frendo. Bean cyclophilin gene expression during plant development and stress conditions[J]. Plant Molecular Biology, 2004, 26: 1181-1189.
    [64] Gunter fischer, Brigitte Wittmann-Liebold, Kurt Lang. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins[J]. Nature, 1989, 337: 476-478.
    [65] Avram Hershko,Aaron Ciechanover. The Ubiquitin system[J]. Avram Hershko and Aaron Ciechanover, 1998, 67: 425-479.
    [66] John J. Grant, Gary J. Loake. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance[J]. Plant Physiology, 2000, 124(1):21-30.
    [67] X. Liu, C. E. Williams, J. A. Nemacheck, H. Wang. Reactive oxygen species are involved in plant defense against a gall midge[J]. Plant Physiology, 2010, 152:985-999.
    [68] Isaac John, Rachel Drake, Aldo Farrell. Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis[J]. The Plant Journal, 2003, 7:483-490.
    [69] Ricardo Ayub, Monique Guis, Mohamed Ben Amor. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits[J]. Nature Biotechnology, 1996, 14:862-866.
    [70] Daniel J. Kliebenstein, Juergen Kroymann, Paul Brown. Genetic Control of Natural Variation in Arabidopsis Glucosinolate Accumulation[J]. Plant Physiol, 2001, 126:811-825.
    [71] Juergen Kroymann, Susanne Textor, Jim G. Tokuhisa. A gene controlling variation in arabidopsis glucosinolate composition is part of the methionine chain elongation pathway[J]. Plant Physiol, 2001, 127:1077-1088.
    [72] Inga Mewis, Heidi M. Appel, Amanda Hom. Major Signaling Pathways Modulate Arabidopsis Glucosinolate Accumulation and Response to Both Phloem-Feeding and Chewing Insects[J]. Plant Physiol, 2005, 138:1149-1162.
    [73] Daniel J. Kliebenstein, Virginia M. Lambrix, Michael Reichelt. Gene duplication in the diversification of secondary metabolism: tandem 2-Oxoglutarate–Dependent Dioxygenases control glucosinolate biosynthesis in arabidopsis[J]. Plant Cell, 2001, 18: 681-693.
    [74] Gisele Passador-Gurgel, Wen-Ping Hsieh. Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster[J]. Nature Genetics, 2007, 39: 264-268.
    [75] Yun-Soo Kim, Hirotaka Uefuji, Shinjiro Ogita. Transgenic tobacco plants producing caffeine: a potential new strategy for insect pest control[J]. Transgenic Research, 2006, 15:667-672.
    [76] Rodrigo Lois.Accumulation of UV-absorbing flavonoids induced by UV-B radiation inAmbidopsis thaliana L[J]. Planta, 2004, 194:498-503.
    [77] Cervantes DE, Eigenbrode SD, Ding HJ, Bosque-Perez NA. Oviposition responses by HesSian ?y,Mayetiola destructor,to wheats varying in surfaces waxes[J]. J Chem Ecol, 2002, 28:193–210.
    [78] Agrawal AA. Induced responses to herbivory and increased plant performance[J]. Science, 1998, 279:1201–1202.
    [79] Ehrlich PR,Raven PH. Butter?ies and plants: a study in coevolution[J]. Ecology, 1964, 279: 18:586–608.
    [80] Fraenkel GS. The raison d’etre of secondary plant substances: these odd chemicals arose as a means of protecting plants from insects and now guide insects to food [J]. Science, 1959, 129:1466–1470.
    [81] Karban R, Myers JH. Induced plant responses to herbivory[J].Ann Rev Ecol Sys, 1989, 20:331–348.
    [82] Bergvinson DJ,Hamilton RI,Arnason JT. Leaf profile of maize resistance factors to european corn borer, Ostrinia nubilalis[J]. J Chem Ecol, 1995, 21:343–354.
    [83] P. H. D. SCHüNMANN, R. C. SMITH. Expression of XET-related genes and its relation to elongation in leaves of barley (Hordeum vulgare L.)[J]. Plant, Cell & Environment, 2008, 20(12):1439-1450.
    [84] RA Dixon, NL Paiva. Stress-Induced Phenylpropanoid Metabolism[J]. Plant Cell, 1995, 7(7): 1085-1097.
    [85] Dianjing Guo, Fang Chen, Kentaro Inoue. downregulation of caffeic acid 3-O-Methyltransferase and Caffeoyl CoA 3-O-Methyltransferase in transgenic alfalfa: Impacts on Lignin Structure and Implications for the Biosynthesis of G and S Lignin[J]. Plant Cell, 2001, 13:73-88.
    [86] A.Maris,D.Suslov,S.C.Fry, J.P. Verbelen, K. Vissenberg. Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension[J]. J. Exp. Bot, 2009, 60(13):3959– 3972.
    [87] Y Liu, RA Salzman, T Pankiw, K Zhu-Salzman K. Transcriptional regulation in southern corn rootworm larvae challenged by soyacystatin[J]. Insect Biochem MolBiol, 2004, 34:1069–1077.
    [88] Hisashi Koiwa, Richard E. Shadeb. A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm (Diabrotica virgifera virgifera)[J]. FEBS Letters, 2000, 471:67-70.
    [89] Gregg A. Howe, Georg Jander. Plant Immunity to Insect Herbivores[J]. Annual Review of Plant Biology, 2008, 59:41-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700