水环境中几种有机污染物的检测与降解方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步,国家对经济发展重视的同时,对环境保护的关注也逐渐增加。水环境安全是环境保护中很重要的一方面,特别是在水资源比较匮乏的情况下,水环境更容易受到周围环境的影响。人们日常生活排放的污水或者很多行业生产过程中排放出来的工业废水对自然水体都会造成比较大的影响,从而间接对人的身体健康产生一定的危害。因此,对水环境的监测与治理是环境研究的重要方向。本研究对造成水环境污染的几种典型物质进行了检测和降解方面的研究,通过考察各项影响因素对检测和降解过程的影响,选择最优的实验条件,从而实现对目标物进行高效的检测和降解。主要研究结果如下:
     (1)建立了项空固相微萃取(HS-SPME)和气相色谱联用测定人工湿地废水中二甲基硫(DMS)和二甲基二硫(DMDS)的分析方法。选择75μm的CAR-PDMS纤维头,温度为15℃,pH值为中性,样品体积为20 ml,氯化钠加入量为6.5 g的最优实验条件,测定二甲基硫和二甲基二硫的线性范围分别是1060-13780 ng/L和159-4240 ng/L,检出限分别为1020ng/L和140 ng/L;相对标准偏差小于10%。以二甲基硫为内标物,将本方法用于实际废水样品中DMS和DMDS的测定获得了满意的结果,DMS和DMDS的回收率分别为85%和105%。
     (2)基于纳米四氧化三铁粒子具有类似过氧化氢酶的性质,能够催化提高过氧化氢氧化能力,建立了一种类似Fenton试剂原理的化学降解染料废水的方法。实验中详细比较了四氧化三铁纳米粒子浓度,过氧化氢浓度,pH值,反应时间,超声时问和超声温度几个条件对催化降解反应的影响作用。当四氧化三铁纳米粒子浓度为600 mg/L,过氧化氢浓度为0.32mol/L,pH值为5,超声3 min,超声温度为30℃,反应时间为2 h时为最优条件,降解实验室模拟的亚甲蓝染料废水,最后的去除率为92%,重现性良好。
     (3)利用纳米四氧化三铁粒子具有催化增强过氧化氢的氧化能力,降解表面活性剂SDBS。考察了四氧化三铁纳米粒子浓度,过氧化氢浓度,pn值,温度等因素对降解率的影响。当四氧化三铁纳米粒子的浓度480 mg/L,过氧化氢浓度0.05mol/L,pH值为3,反应时间3 h时为最优实验条件,降解模拟的SDBS废水,最大去除率达到84%。
In this study, we investigated the analytical method for dimethyl sulfide and dimethyl disulfide, nanomaterial-based degradation methods for removal of methylene blue dye and SDBS surfactant. The main contents are as followings:
     1、A headspace solid phase microextraction (HS-SPME) combined with gas chromatography/flame photometric detection (FPD) has been developed for the determination of dimethyl sulfide and dimethyl disulfide in wastewater from constructed wetlands. The various parameters including type of fibers, extraction temperature, pH value, ionic strength, sample volume were investigated for optimization of HS-SPME performance for dimethylsulfide and dimethyldisulfide. The DB-VRX capillary column (1.4μm,60 m×0.25 mm) was used for separation of dimethylsulfide and dimethyldisulfide with 1 mL/min of high purity nitrogen as carrier gas by GC. The initial oven temperature was 50℃, then was programmed at a rate of 8℃/min until 120℃, holding 2 min, and then a rate of 6℃/min until 180℃, holding the final temperature for 3 min. The enriched targets were detected by FPD. Under the optimized conditions, the linear dynamic ranges were 1060-13780 and 159-4240 ng/L for dimethylsulfide and dimethyldisulfide, respectively. The detection limits (3σ) for dimethylsulfide and dimethyldisulfide were 1020 and 140 ng/L, respectively. The relative standard deviations for the determination of studied compounds were less than 7%. By using dimethyl sulphide as internal standard, the proposed method has been successfully applied to the analysis of dimethyl sulfide and dimethyl disulfide in wastewater and recoveries are in the range of 85-114% and 105-113% for dimethylsulfide and dimethyldisulfide, respectively.
     2、Ultrasound-assisted nano-Fe3O4 nanoparticles for catalyzed degradation of methylene blue dye wastewater in the presence of hydrogen peroxide. Based on the fact that nano-Fe3O4 has similar property of hydrogen peroxidase, nano-Fe3O4 is able to enhance the catalytic ability of hydrogen peroxide. The optimal experimental conditions were obtained as follows:600 mg/L of nano-Fe3O4, 0.32 mol/L of hydrogen peroxide, pH at 5,3 min of ultrasonic time,30℃of ultrasonic temperature, 2 h of reaction time. The 92% removal rate was obtained with good reproducibility.
     3、Ultrasound-assisted nano-Fe3O4 nanoparticles for catalyzed degradation of SDBS surfactant wastewater in the presence of hydrogen peroxide. Various factors affecting the SDBS removal were investigated and the optimal degradation conditions were obtained as follows:
     480 mg/L of nano-Fe3O4,0.05 mol/L of hydrogen peroxide, pH at 3,3 h of reaction time. The 84% removal rate was obtained with good reproducibility.
引文
[1]P. G.. Hill, R. M. Smith. Determination of sulphur compounds in beer using headspace solidphase microextraction and gas chromatographic analysis with pulsed flame photometric detection [J]. Journal of Chromatography A,2000,872: 203-213
    [2]L. A. Komarnisky, D. V. M, R. J. Christopherson, P. D, and T. K. Basu, PhD. Sulfur: Its Clinical and Toxicologic Aspects [J]. Nutrition,2003,19:54-61
    [3]J. Filipy, B. Rumburg, G. Mount, et. Identification and quantification of volatile organic compounds from a dairy [J]. Atmospheric Environment,2006,40:1480-1494
    [4]P. D. Franzmann, A. Heitz, L. R. Zappla, J. E. Wajon, K. Xanthis. The formation of malodorous dimethyl oligosulphides in treated groundwater:The role of biofilms and potential precursors [J]. Water Research.2001,35:1730-1738
    [5]B. Ronald, T. G. Chasteen. Environmental VOSCs-formation and degradation of dimethyl sulfide, methanethiol and related materials [J]. Chemosphere,2004,55: 291-317
    [6]W. Wardencki. Problems with the determination of environmental sulphur compounds by gas chromatography [J]. Journal of Chromatography A,1998,793: 1-19
    [7]Zang-Ho Shon, Ki-Hyun Kim, Eui-Chan Jeon, Min-Young Kim, Yoo-Keun Kim, Sang-Keun Song. Photochemistry of reduced sulfur compounds in ala ndfill environment [J]. Atmospheric Environment.2005,39:4803-4814
    [8]王永华,顶空气相色谱法测定沉积物中可酸挥发硫化物[J],分析化学,2003,31:55-57
    [9]Rafel Simo, Trace chromatographic analysis of dimethyl sulfoxide and related methylated sulfur compounds in natural waters [J]. Journal of Chromatography A. 1998,807:151-164
    [10]Munkhtsetseg Luvsanjamba, Bram Sercu, Julie Van Peteghem, Herman Van Langenhove. Long-term operation of a thermophilic biotrickling filter for removal of dimethyl sulfide [J]. Chemical Engineering Journal,2008,142:248-255
    [11]Francisco Pena-Pereira, L. Isela, Carlos Bendicho. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation:A review [J]. Spectrochimica Acta Part B.2009, 64:1-15
    [12]M. Visan, W. J. Parker. An evaluation of solid phase microextraction for analysis of odorant emissions from stored biosolids cake [J]. Water Research,2004,38: 3800-3808
    [13]Ki-Hyun Kim, Eui-Chan Jeon, Ye-Jin Choi, Youn-Seo Koo. The emission characteristics and the related malodor intensities of gaseous reduced sulfur compounds (RSC) in a large industrial complex [J]. Atmospheric Environment, 2006,40:4478-4490
    [14]吴婷,易志刚,王新明.吹扫捕集GC-MS-SIM法测定水中挥发性硫化合物[J].分析试验室,2007,26:54-57
    [15]M. H. P. Santana, L. M. D. Silva, A. C. Freitas, F. C. Julien. Boodts, K. C. Fernandes, L. A. De Faria. Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122 [J]. Journal of Hazardous Materials.2009,164:10-17
    [16]Parag A. Deshpande, Giridhar Madras. Photocatalytic degradation of dyes over combustion-synthesized Cel-xFexVO4[J]. Chemical Engineering Journal,2010, 158:571-577
    [17]A. C. Serra, D. Cristina, A.M.da. Rocha Gonsalves. Efficient azo dye degradation by hydrogen peroxide oxidation with metalloporphyrins as catalysts [J]. Journal of Molecular Catalysis A:Chemical [J].2005,238:192-198
    [18]R. Astrid, T. Michael, C. Georg. Application of power ultrasound for azo dye degradation [J]. Ultrasonics Sonochemistry,2004,11:177-182
    [19]Fang Han, Venkata Subba Rao Kambala, Madapusi Srinivasan, Dharmarajan Rajarathnam, Ravi Naidu. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment:A review [J]. Applied Catalysis A:General,2009,359:25-40
    [20]Idil Arslan-Alaton, Betul Hande Gursoy, Jens-Ejbye Schmidt. Advanced oxidation of acid and reactive dyes:Effect of Fenton treatment on aerobic, anoxic and anaerobic processes [J]. Dyes and Pigments,2008,78:117-130
    [21]Sheng-Jie You, Rahul A. Damodar, Sheng-Chon Hou. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor [J]. Journal of Hazardous Materials,2010,177: 1112-1118
    [22]Belgin Gozmena, Berkant Kayan, A. Murat Gizir, Arif Hesenov. Oxidative degradations of reactive blue 4 dye by different advanced oxidation methods [J]. Journal of Hazardous Materials,2009,168:129-136
    [23]Ioannis K. Konstantinou, Triantafyllos A. Albanis. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations A review [J]. Applied Catalysis B:Environmental 2004,49:1-14
    [24]A. R. Khataee, V. Vatanpour, A. R. Amani Ghadim. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes:A comparative study [J]. Journal of Hazardous Materials,2009,161:1225-1233
    [25]Y. R. Peng, D. M. Fu, R. H. Liu, F. F. Zhang, X. M. Liang. NaNO2/FeCl3 catalyzed wet oxidation of the azo dye Acid Orange 7 [J]. Chemosphere,2008,71: 990-997
    [26]Jen-Mao Fanchiang, Dyi-Hwa Tseng. Degradation of anthraquinone dye C.I. Reactive Blue 19 in aqueous solution by ozonation [J]. Chemosphere,2009,77: 214-221
    [27]S. Songa, J. Q. Fan, Z. Q. He, L. Y. Zhan, Z. W. Liu, J. M. Chen, X. H. Xu. Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes [J]. Electrochimica Acta,2010,55: 3606-3613
    [28]S. Raghua, ChangWoo Leeb, S. Chellammal, S. Palanichamy, C. Ahmed Basha. Evaluation of electrochemical oxidation techniques for degradation of dye effluents-A comparative approach [J]. Journal of Hazardous Materials,2009, 171:748-754
    [29]X. J. Lu, Y. M. Xu, K. L. Lu, G C. Zhang. Photo-assisted degradation of anionic and cationic dyes over iron(III)-loaded resin in the presence of hydrogen peroxide [J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,173: 121-127
    [30]F. Xia, E. C. Ou, L. Wang, J. Q. Wang. Photocatalytic degradation of dyes over cobalt doped mesoporous SBA-15 under sunlight [J]. Dyes and Pigments,2008, 76:76-81
    [31]Serge chiron, Amadeo Fernandez-alba, Antonio Rodriguez, Eloy Garcia-calvo. Pesticide Chemical Oxidation:State-of-the-art [J]. Water Research,2000,34: 366-377
    [32]Abdurrahman Akyol, Mahmut Bayramoglu. The degradation of an azo dye in a batch slurry photocatalytic reactor [J]. Chemical Engineering and Processing, 2008,47:2150-2156
    [33]R. Molinari, F. Pirillo, M. Falco, V. Loddo, L. Palmisano. Photocatalytic degradation of dyes by using a membrane reactor [J]. Chemical Engineering and Processing,2004,43:1103-1114
    [34]F. Chen, Y. D. Xie, J. J. He, J. C. Zhao. Photo-Fenton degradation of dye in methanolic solution under both UV and visible irradiation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,138:139-146
    [35]M. H. Zhou, J. J. He. Degradation of azo dye by three clean advanced oxidation processes:Wet oxidation, electrochemical oxidation and wet electrochemical oxidation-A comparative study [J]. Electrochimica Acta,2007,53:1902-1910
    [36]J. M. Peralta-Hernandez, M.V. Yunny, F. J. Rodriguez, T. W. Chapman, M. I. Maldonado, L. A. Godinez. In situ electrochemical and photo-electrochemical generation of the fenton reagent:A potentially important new water treatment technology [J]. Water Research,2006,40:1754-1762
    [37]A. Ventura, G Jacquet, A. Bermond, V. Camel. Electrochemical generation of the Fenton's reagent:application to atrazine degradation [J]. Water Research,2002, 36:3517-3522
    [38]Z. M. Qiang, Jih-Hsing Chang, Chin-Pao Huang. Electrochemical regeneration of Fe2+in Fenton oxidation processes [J]. Water Research,2003,37:1308-1319
    [39]J. H. Sun, S. P. Sun, G. L. Wang, L. P. Qiao. Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process [J]. Dyes and Pigments, 2007,74:647-652
    [40]Miguel Rios-Enriquez, Nabil Shahin, Carmen Duran-de-Bazua, Josef Lang, Esther Oliveros, Stefan H. Bossmann, Andre M. Braun. Optimization of the heterogeneous Fenton-oxidation of the model pollutant 2,4-xylidine using the optimal experimental design methodology [J]. Solar Energy,2004,77:491-501
    [41]X. J. Lu, Y. M. Xu, K. L. Lv, G. H. Zhang. Photo-assisted degradation of anionic and cationic dyes over iron (Ⅲ)-loaded resin in the presence of hydrogen peroxide [J]. Journal of Photochemistry and Photobiology A:Chemistry,2005, 173:121-127
    [42]L. K. Roberta, M. D. Rogerio, D. L. Marco. Degradation of dimethyl disulfide using homogeneous Fenton's reaction [J]. Journal of Hazardous Materials,2009, 169:443-447
    [43]Jorg Hofmann, Ute Freier, Mike Wecks, Susen Hohmann. Degradation of diclofenac in water by heterogeneous catalytic oxidation with H2O2 [J]. Applied Catalysis B:Environmental,2007,70:447-451
    [44]Y. C. Dong, Z. B. Han, C. Y. Liu, F. Du. Preparation and photocatalytic performance of Fe (Ⅲ)-amidoximated PAN fiber complex for oxidative degradation of azo dye under visible light irradiation [J]. Science of the Total Environment,2010,408:2245-2253
    [45]Masahiro Tokumura, Hussein Tawfeek Znad, Yoshinori Kawase. Modeling of an external light irradiation slurry photoreactor:UVlight or sunlight-photoassisted Fenton discoloration of azo-dye Orange II with natural mineral tourmaline powder [J]. Chemical Engineering Science,2006,61:6361-6371
    [46]E. R. Bandala, L. Brito, M. Pelaez. Degradation of domoic acid toxin by UV-promoted Fenton-like processes in seawater [J]. Desalination,2009,245: 135-145
    [47]T. X. Wu, G M. Liu, J. C. Zhao. Evidence for H2O2 Generation during the TiO2-Assisted Photodegradation of Dyes in Aqueous Dispersions under Visible Light Illumination [J]. J. Phys. Chem. B,1999,103:4862-4867
    [48]M. H. Zhou, J. J. He. Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO2 electrode [J]. Journal of Hazardous Materials,2008, 153:357-363
    [49]D. M. Xu, J. Hong, K. L. Sheng, L. Dong, S. D. Yao. Preparation of polyethyleneimine nanogels via photo-Fenton reaction [J]. Radiation Physics and Chemistry,2007,76:1606-1611
    [50]J. Wang, Z. Jiang, L. Q. Zhang, P. L. Kang, et. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation [J]. Ultrasonics Sonochemistry,2009,16:225-231
    [51]S. Chakrabarti, B. K. Dutta. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst [J]. Journal of Hazardous Materials B,2004,112:269-278
    [52]N. Wang, L. H. Zhu, D. L. Wang, M. Q. Wang, Z. F. Lin, H. Q. Tang. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2 [J]. Ultrasonics Sonochemistry,2010,17:526-533
    [53]N. Wang, L. H. Zhu, M. Q. Wang, D. L. Wang, H. Q. Tang. Sono-enhanced degradation of dye pollutants with the use of H2O2 activated by Fe3O4 magnetic nanoparticles as peroxidase mimetic [J]. Ultrasonics Sonochemistry,2010,17: 78-83
    [54]T. Aarthi, P. Narahari, G. Madras. Photocatalytic degradation of Azure and Sudan dyes using nano TiO2 [J]. Journal of Hazardous Materials,2007,149:725-734
    [55]齐文启,齐平志.恶臭的检测分析[J].环境检测管理与技术,1994,6:18-20
    [56]K. Soutsas, V. Karayannis, I. Poulios, A. Rigad, K. Ntampegliotis, X. Spiliotis, G Papapolymerou. Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes [J]. Desalination,2010,250:345-350
    [57]S. Y. Yang, P. Wang, X. Yang, L. Shan, W. Y. Zhang, et. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants:persulfate, peroxymonosulfate and hydrogen peroxide [J]. Journal of Hazardous Materials,2010, xxx:xxx-xxx
    [58]Natalia Jakubowska, Bogdan Zygmunt, Zaneta Polkowska, Bozena Zabiegala, Jacek Namiesnik. Sample preparation for gas chromatographic determination of halogenated volatile organic compounds in environmental and biological samples [J]. Journal of Chromatography A,2009,1216:422-441
    [59]G. Theodoridis, E. H. M. Koster, G. J. de Jong. Solid-phase microextraction for the analysis of biological samples [J]. Journal of Chromatography B,2000,745: 49-82
    [60]Mira Petrovic, Marinella Farre, Miren Lopez de Alda, et. Recent trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in environmental samples [J]. Journal of Chromatography A,2010, xxx:xxx-xxx
    [61]E. G. Garrido-Ramirez, B. K. G Theng, M. L. Mora. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions [J]. Applied Clay Science, 2010,47:182-192
    [62]J. Rivera-Utrilla, J. Mendez-Diaz, M. Sa nchez-Polo, M. A. Ferro-Garcia, I. Bautista-Toledo. Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: Comparison with systems based on O3 and O3/H2O2 [J]. WAT ER RE S E ARCH, 2006,40:1717-1725
    [63]K. Yang, L. Z. Zhu, B. S. Xing. Sorption of sodium dodecylbenzene sulfonate by montmorillonite [J]. Environmental Pollution,2007,145:571-576
    [64]Marcio Jose dos Reis, Fabiano Silverio, Jairo Tronto, Joao Barros Valim. Effects of pH, temperature, and ionic strength on adsorption of sodium dodecylbenzenesulfonate into Mg-Al-CO3 layered double hydroxides [J]. Journal of Physics and Chemistry of Solids,2004,65:487-492
    [65]李冬梅,任毅,刘春柳,李绍秀,黄辉.纳米SiO2对含十二烷基苯磺酸钠微污染原水的助凝特性[J].环境科学研究,2009,22:966-970
    [66]孙红杰,孙道玮,孙天竹等.超声-Fenton试剂联合降解水中十二烷基苯磺酸钠的研究[J].大连民族学院学报,2005,7:54-57
    [67]J. Beltran-Heredia, J. Sanchez-Martin, C. Solera-Hernandez. Removal of sodium dodecyl benzene sulfonate from water by means of a new tannin-based coagulant: Optimisation studies through design of experiments [J]. Chemical Engineering Journal,2009,153:56-61
    [68]J. D. Mendez-Diaz, M. Sanchez-Polo, J. Rivera-Utrilla, M. I. Bautista-Toledo. Effectiveness of different oxidizing agents for removing sodiumdodecylbenzenesulphonate in aqueous systems [J]. Water research,2009, 43:1621-1629
    [69]Eleni Manousaki, Elefteria Psillakis, Nicolas Kalogerakis, Dionissios Mantzavinos. Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation [J]. Water Research,2004,38:3751-3759
    [70]H. M. Zhang, X. Quan, S. Chen, H. M. Zhao, Y. Z. Zhao. The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability [J]. Applied Surface Science,2006,252:8598-8604
    [71]L. M. Cotoruelo, M. D. Marques, J. Rodriguez-Mirasol, J. J. Rodriguez, T. Cordero. Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate: Equilibrium and kinetic studies [J]. Journal of Colloid and Interface Science,2009, 332:39-45
    [72]B. Louhichi, M.F. Ahmadi, N. Bensalah, A. Gadri, M.A. Rodrigo. Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes [J]. Journal of Hazardous Materials,2008,158:430-437
    [73]J. R. Utrilla, M. S. Polo, J. D. M. Diaz, M. A. Ferro-Garcia, M. I. Bautista-Toledo. Behavior of two different constituents of natural organic matter in the removal of sodium dodecylbenzenesulfonate by O3 and O3-based advanced oxidation processes [J]. Journal of Colloid and Interface Science,2008,325:432-439
    [74]S. H. Lin, C.M. Lin, H. G. Leu. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation [J]. Water Research,1999,33: 1735-1741
    [75]D.A. Patterson, I. S. Metcalfe, F. Xiong, A. G. Livingston. Biodegradability of linear alkylbenzene sulfonates subjected to wet air oxidation [J]. Journal of Chemical Technology & Biotechnology,2002,77:1039-1049
    [76]王君,陈红亮.21世纪的前沿材料-纳米材料[J].2001,30:12-14 1. van Leerdam RC, de Bok FA, Lomans BP, Stams AJ, Lens P N, Janssen A J. Environ Toxico Chem [J],2006,25(12):3101 2. Devai I, DeLaune RD. Water Environ Res [J],1999,71:203 3. Lomans BP, van der Drift C, Pol A, Op den Camp HJM. CMLS, Cell. Mol. Life Sci.,2002,59:575 4. Bentley R, Chasteen TG. Chemosphere [J],2004,55:291 5. Vallina S M, Simo R. Science [J],2007,315:5066. 江桂斌等.环境样品前处理技术[M].北京:化学工业出版社,20047. Hawthorne SB, Miller DJ, Pawliszyn J, Arthur CL. J Chromatogr [J],1992, 603(1-2):185.8.金晓英,袁东星,陈猛,李猛.海洋环境科学[J],2004,23(2):129. Mestres M, Marti M P, Busto O, Guasch J. J Chromatogr A [J],2000,881:583 10. Hill PG, Smith RM. J Chromatogr A [J],2000,872:203 11. Abalos M, Prieto X, Bayona JM. J Chromatogr A [J],2002,963:249 12. Xianhao Cheng, Peterkin E, Burlingame G A. Water Res [J],2005,39(16):3781
    [1]O.A. Makhotkina, S.V. Preis, E.V. Parkhomchuk. Water delignification by advanced oxidation processes:Homogeneous and heterogeneous Fenton and H2O2 photo-assisted reactions [J]. Applied Catalysis B:Environmental,2008,84:821-826
    [2]R. Vinu, S. U. Akki, G. Madras. Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2 [J]. Journal of Hazardous Materials, 2010,176:765-773
    [3]Sanja Papic, Dinko Vujevi c, Natalija Koprivanac, Danijel Sinko. Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes [J]. Journal of Hazardous Materials, 2009,164:1137-1145
    [4]P. Canizares, R. Paz, C. Saez, M. A. Rodrigo. Costs of the electrochemical oxidation of wastewaters:A comparison with ozonation and Fenton oxidation processes [J]. Journal of Environmental Management,2009,90:410-420
    [5]W. P. Du, Q. Sun, X. J. Lu, Y. M. Xu. Enhanced activity of iron oxide dispersed on bentonite for the catalytic degradation of organic dye under visible light [J]. Catalysis Communications,2009,10:1854-1858
    [6]X. Y. Bi, P. Wang, C. Y. Jiao, H. L. Cao. Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process [J]. Journal of Hazardous Materials,2009,168:895-900
    [7]N. P. Tantak, S. Chaudhari. Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment [J]. Journal of Hazardous Materials B, 2006,136:698-705
    [1]S. H. Lin, C. M. Lin, H. G. Leu. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation [J]. Water Research,1999,33: 1735-1741
    [2]J. Rivera-Utrilla, M. Sanchez-Polo, J. D. Mendez-Diaz, M. A. Ferro-Garcia, M. I. Bautista-Toledo. Behavior of two different constituents of natural organic matter in the removal of sodium dodecylbenzenesulfonate by O3 and O3-based advanced oxidation processes [J]. Journal of Colloid and Interface Science,2008,325:432-439
    [3]H. M. Zhang, X. Quan, S. Chen, H. M. Zhao, Y. Z. Zhao. The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability [J]. Applied Surface Science,2006,252:8598-8604
    [4]L. M. Cotoruelo, M. D. Marques, Jose Rodriguez-Mirasol, J. J. Rodriguez, Tomas Cordero. Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate:Equilibrium and kinetic studies [J]. Journal of Colloid and Interface Science,2009,332:39-45
    [5]B. Louhichi, M. F. Ahmadi, N. Bensalah, A. Gadri, M. A. Rodrigo. Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes [J]. Journal of Hazardous Materials,2008,158:430-437

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700