肾癌中CD133~+细胞和CD133~-细胞生物学特性差异的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:人CD133(Human prominin-1 PROM-1)是在不同组织中鉴定干/祖细胞或肿瘤干细胞(肿瘤启动细胞)(cancer stem cells,tumor-initiating cells)的标志物。本文目的在于研究对比人肾癌细胞系786-0和OS-RC-2中CD133~+细胞和CD133~-细胞的生物学特性差异。
     方法:应用流式细胞仪检测肾癌细胞系786-0和OS-RC-2中CD133的膜表达状况;以免疫磁珠法将CD133~+细胞和CD133~-细胞分离纯化,比较两者在光镜下的形态、生长特点、体外增殖能力、长期分化能力及体外克隆形成率的差异;流式细胞术分析两者细胞周期分布的变化,采用MTT法比较两者对化疗药物顺铂(DDP)敏感性的差别。
     结果:786-0和OS-RC-2中均有CD133的少量表达(8.12±0.86)%、(6.83±0.20)%,CD133~+细胞相比CD133~-细胞具有较强的体外增殖、克隆形成及长期分化能力;786-0中CD133~+细胞、CD133~-细胞以及未分选细胞群体倍增时间分别为19.46h、22.03h、20.03h:OS-RC-2中CD133~+细胞、CD133~-细胞以及未分选细胞群体倍增时间分别为18.84h、22.26h、21.18h;786-0和OS-RC-2中CD133~+细胞克隆形成率分别为(38.47±4.27)%和(32.47±5.21)%,CD133~-细胞克隆形成率分别为(21.38±3.58)%和(26.04±7.12)%;786-0中CD133~+细胞、CD133~-细胞G_0/G_1期分别为(65.77±0.81)%、(44.9±2.21)%,S期分别为(13.65±0.42)%、(39.66±1.25)%,G_2/M分别为(10.83±0.35)%、(12.24±0.31)%,OS-RC-2中CD133~+细胞、CD133~-细胞G_0/G_1期分别为(61.58±1.32)%、(42.3±3.11)%,S期分别为(12.17±0.22)%、(37.80±0.32)%,G_2/M期分别为(11.36±0.22)%、(16.23±0.36)%,CD133~+细胞、CD133~-细胞两者相比差异均有显著性统计学意义(P<0.01)。MTT法分析表明CD133~+细胞、CD133~-细胞对DDP敏感性差异无统计学意义。
     结论:证实肾癌细胞系中CD133~+细胞具有肾癌干细胞的部分特征,能否作为肾癌干细胞的表面标志还需要进一步的实验加以明确。
Background CD133 was used as a marker to detect stem cells (progenitor cells)and cancer stem cells(tumor-initiating cells)in various tissues.The purpose of this study was to investigate the different biological characteristics of CD133~+ cells and CD133~-cells in renal cell carcinoma with in vitro analyses.
     methods The CD133 surface expression of both 786-0 and OS-RC-2 cell lines was evaluated by flow cytometry.CD133~+ cells were isolated by MACS(magnetic activated cell sorting)and examimed in vitro proliferation,growth characteristics and colony formation efficiency(CFE). Flow cytometry was used to evaluate the cell cycle distribution and long-term differentiation ability.The sensitivity to diamminedichloroplatinum(DDP)between CD133~+ cells and CD133~-cells were contrasted by drug sensitivity testing in vitro(MTT assay).
     Result CD133 surface expression were found in 2 /2 RCC cell lines.It was shown that isolated CD133~+ cells from 786-0 and OS-RC-2 cell lines are more proliferetive and have higher colony-forming and more long-term differentiation abilities than CD133~-cells in vitro.CD133~+ cells from 786-0 and OS-RC-2 cell lines had relatively shorter colony doubling time than CD133~-cells[(19.46 h vs 22.03 h)and(18.80 h vs 22.26 h)] indicating that the growth of CD133~+ cells was faster.There was significant difference in the mean CFE between CD133~+ cells and CD133~-cells of 786-0 and OS-RC-2 cell lines[(38.47±4.27)%vs(21.38±3.58)%and (32.47±5.21)%vs(26.04±7.12)%,P<0.01].There also was significant difference in the cell cycle distribution between CD133~+ cells and CD133~-cells[(65.77±0.81)%vs(44.9±2.21)%and(61.58±1.32)%vs (42.93±3.11)%]in G_0/G_1 phase,(13.65±0.42)%vs(39.66±1.25) %and(12.17±0.22)%vs(37.80±0.32)in S phase,and(10.83±0. 35)%vs(12.24±0.31)%and(11.36±0.22)%vs(16.23±0.36)% in G_2/M phase,P<0.01].Additionally,the difference of sensitivity to diamminedichloroplatinum(DDP)between CD133~+ cells and CD133~-cells was not significant.
     Conclusion It was confirmed that CD133~+ cells in RCC cell lines are useful markers for the detection of cancer stem cells(tumor-initiating cells).The subsequent further biological characterization of CD133~+ cells in RCC cell lines shoul reveal whether they possess features of stem cells such as the capacity for increased tumorgenity.The biological characteristics of CD133~+ cells in RCC cell lines will help elucidate more details of cancer stem cells in RCC.
引文
1.Fearon, E, R Vogelstein, B. A genetic model for colorectal cancer tumorigenesis. Cell 61,759-767 (1990).
    
    2.Guo W, LASKY JL 3rd, Wu H. Cancer Stem Cells [J]. Pediatr Res, 2006,59:59-64.
    3.Reya T, Morrislon SJ, Clarke MF, etal. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859); 105-111.
    4.Al-Hajj. M, Clarke MF.Self-renewal and solid tumor stem cells [J]. On cogene, 2004,23(43):7274~7282.
    5. Jordan CT. Cancer stem cell biology: from leukemia to solid tumors [J]. Curr Opin Cell Biol,2004,16(6):708~712.
    6.HAO Shi-hong, YAOYun-hong. Stemcell,cancer stem cell and cancer[J].Modern On cology,2005,13(3):430~432.
    
    7.Bettiol E, Clement S, Krause KH, et al. Embryonic and adult stem cell-derived cardiomyocytes: lessons from in vitro models .Rev Physiol Biochem Pharmacol 2006; 157:1-30.
    8.Ledger WL.Human embryonic s tem cells: a jus tification for their use in medical therapeutics. South Med J 2006; 99(12): 1436-1437
    9.Liu N, Lu M, Tian X, et al. Molecular mechanisms involved inself-renewal and pluripotency of embryonic s tem cells J Cell Phys iol2007; 211(2): 279-286
    10.Hope, K.J, Jin, L.Dick, and J.E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol.5, 738-743(2004)
    11.Wang, J.C Dick, J.E. Cancer stem cells: lessons from leukemia. Trends Cell Biol.l5,494-501(2005).
    12. Lapidot T, Sirard C, Vormoor J , et al A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature 1994;367 (6464):645-658
    13.Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breas t cancer cells. Proc Natl Acad Sci U SA 2003; 100(7): 3983-3988
    14.Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors.Cancer Res 2003;63(18):5821-5828
    15.Pardal.R,Clarke MF,Morrison SJ.Applying the principles of stem-cell biology to cancer.Nat Rev Cancer.2003;3(12):895-902
    16.NowellPD.The clonale volutinof tumor cell population[J].Science,1976,194(4260):23-28.
    17.MattoxDE,VonHoffDD.Culture of human head and neck cancer stem cells usings of tagar[J].ArehOtolaryngol,1980,106(11):672-674.
    18.Hamburger A W,Salmon S E.Primary bioassay of human tumor stem cells.Science 1977;197:461-463
    19.Lapidot'T,SirardC,VormorJ,etal.Acellinitiatinghumanacutemyeloidleukaemiaaftertranspl antationintoSCIDmice[J].Nature,1994,367(6464):645-648.
    20.BonnetD,DiekJE.Humanacutemyeloidleukemiaisorganizedasahierarchythatoriginatesfr omaprimitivehematopoieticcell[J].NatMed,1997,3(7):730-737.
    21.DiekJE.Acutemyeloidleukemiastemcells[J].AnnNYAcadSci,2005,1044:1-5
    22.JordanCT.Unique molecular and cell ular feature so facute myelo genous leukemia stem cells[J].Leukemia,2002,16(4):559-562.
    23.MooreMA.Convergingpathwaysinleukemogenesisandstemcellself-renewal[J].ExpHema tol,2005,33(7):719-737.
    24.WangJC,DickJE.Cancerstemcells:lessonsfromleukemia3161现代肿瘤医学2006年12月第14卷第12期[J].TrendsCellBiol,2005,15(9):494-501.
    25.BonnetD.Leukemicstemcellsshowtheway[J].FoliaHistochemCytobiol,2005,43(4):183-186.
    26.ClarkeM.F.Aself-renewalassayforcancerstemcells[J].CancerChemotherPharmacol,2005,56(Suppll):64-68.
    27.Al-HajjM,WichaMS,Benito-HernandezA,etal.Prospectiveidentificationoftumorigenicb reastcancercells[J].ProcNatlAcadSciUSA,2003,100(7):3983-3988.
    28.HemmatiHD,NakanoI,LazareffJA,etal.Cancerousstemcellscanarisefrompediatricbraint umors[J].ProcNatlAcadSciUSA,2003,100(25):15178-15183.
    29 SinghSK,HawkinsC,ClarkeID,etal.Identificationofacancerstemcellinhumanbraintumors [J].CancerRes,2003,63(18):5821~5828.
    30.SinghSK,ClarkeID,TerasakiM,etal.Identificationofhumanbraintumourinitiatingcells[J]. Nature,2004,432 (7015):396~401.
    31 .NakanoI,HemmatiHD,KomblumHI.Cancerstemcellsinpediatricbraintumors[J] .NoShin keiGeka,2004,32(8):827~834.
    32.YuanX,CurtinJ,XiongY,etal.Isolationofcancerstemcellsfromadultglioblastomamultifor me[J].Oncogene,2004,23(58):9392~9400.
    33.GalliR,BindaE,OrfanelliU,etal.Isolationandcharacterizationoftumorigenic,stem-likene uralprecursorsfromhumanglioblastoma[J].CancerRes,2004,64(19):7011~7021.
    34.RizzoS,AttardG,HudsonDL.Prostateepithelialstemcells[J].CellProlif,2005,38(6):363~374.
    35.CollinsAT,BerryPA,HydeC,etal.Prospective identification of tumori genic prostate cancer stem cells[J].CancerRes,2005, 65(23): 10946~10951. 28
    36.OsborneT.Tumorigenicprostatecancerstemcells [J]. NatClinPractUrol, 2006,3(3): 122.
    37 Goodell MA, Brose K, Paradis g, Mulliqan RS.Isolation and functional properties of murine hematopoietics stem that are replicating in vivo. J Exp Med, 1996; 183(4): 1797-1806
    
    38. Zhou S, Schuetz JD, The ABC transporter ABCG2/Bcrp 1 is expressed in a wide variety of stem cells and is molecular determinant of the side population phenotype. Nat Med, 2001; 7:1028-034.
    39. Scharenberg CW, Harkey MA, Torok-stor B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 2002; 99:507-512.
    40.Kim M, Turqnuist H, Jackson J, Sqaias M, Yan Y, GonqM, Dean M, Sharp JG, Cowan K. The multidrug resistance transporter ABCG2 (breast cancer resistance protein) efflux Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res, 2002; 66(8): 22-28.
    41 .Bunting KD ABC transporters as phenotype markers and functional regulational regulators of stem cell. Stem Cells, 2002; 20:11-20.
    42.吴永华,洪天配,张玲,等.胎儿胰腺来源的单克隆SP细胞具有间充质的表型特征.世界华人消化杂志,2005;13:1824-1827.
    43.Toru K,Takao S,Tetsuya T.persistence of a small subpopulation of cance stem-like cells in the C6 glioma cell line.PNAS,2004;101:81-786.
    44.Hirschmann-Jax C,Foster AE,Wulf GG,Nuchtem JG,Jax TW,Gobel U,Goodell MA,Brenner MK.A distinct "side population" of cells with high drug efflux capacity in human tumor cells.PNAS,2004;101:14228-14233.
    45.Tetsuhiro C,Kaoru K,Yun-Wen Z,Osamu Y,Hiromitsu S,Atsushi I,Hiromitsu N,Hideki T.Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-lide properties.Hepatolgy,2006;44:240-251.
    46.张朵,朱海英,谢东甫,等.二乙基亚硝胺诱导转化的肝癌组织中小鼠SP细胞的观察.医学研究生学报,2005;19:424-427.
    47.Depaiva CS,Pfluqfelder SC,Li D.Cell size correlates with phenotype and proliferative capacity in human corneal epithelial ceils.Stem Cells,2006;24:368-375.
    48.张玥,张凤春,张雁云.乳腺癌MCF—7肿瘤细胞SP亚群初步分析.上海交通大学学报(医学版),2006;26:507-510.
    49.Lubna P,Tammy C,Robin S,Jianjun Z,Kent C,Dean GT.Side population is enriched in tumorigenic,stem-like cancer cells,whereas ABCG2+ and ABCG2-cancer cells are similar tumorigenic.Cancer Res,2005;65(14):6207-6219.
    50.We4ndy AW,Mercy SC,Fariba B,Maria PA,Thomas AB,Jeffrey MR.WNT/-Catenin mediates radiation resistance of mouse mammary progenitor cells.PNAS,2007;104:618-623.
    51.Naotsugu H,Tohru U,Hiroshi I,Fumiaki T,Koshi M,Graham F,Masaki M.Characterization of a side population of cancer cells from human gasterointestinal system.Stem Cells,2006;24:506-513.
    52.GrichnikJM,BurchJA,SchulteisRD,etal.Melanoma,atumorbasedonamutantstemcell[J]JInvestDermatol,2006,126(1):142-153.
    53.Kams trup MR,Gniadecki R,Skovgaard GL.Putative cancer stem cells in cutaneous malignancies .Exp Dermatol 2007; 16(4): 297-301Jordan CT. The leukemic stem cell.Best Pract Res Clin Haematol2007;20(1):13-8
    54.Lou H, Dean M. Targeted therapy for cancer s tem cells: the patchedpathway and ABC transporters. Oncogene 2007; 26(9): 1357-1360
    55.Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW .A novel five transmembrane hematopoietic stem cellantigen: isolation, characterization, and molecular cloning. Blood 1997,90:5013-5021.
    56.Maw MA, Corbeil D, Koch J, et al. A frameshift mutation in prominin (mouse)-likel causes human retinal degeneration.Hum Mol Genet. 2000; 9(1): 27-34.
    57.Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood.1997; 90(12): 5002-12.
    58.Fargeas, C.A., Florek, M., Huttner, W.B. and Corbeil, D.. AC133 antigen, CD133, prominin-1, prominin-2, Etc.: Prominin family gene products in need of a rational nomenclature. Stem Cells. 21: 506-508
    59.Nobuke U,Buck DW,He D,et al. Direct isolation of human central nervous system stem cells [J]. Proc Natl Acad Sci USA, 2000,97:14720-14725.
    60.Collins AT, Habib FK, Maitland NJ, et al. Identification and isolation of human prostrate epithelial stem cells based on a281-integrin expression [J]. J. Cell Sci.114, 3865-3872
    
    61.Godley P, Kim SW.Renal cells carcinoma. Curr Opin Oncol.2002; 14:280-285.
    62.Bander NH, Finstad CL, Cordon-Cardo C, et al. Analysis of a mouse monoclonal antibody that reacts with a specific region of the human proximal tubule and subsets renal cell carcinomas. Cancer Res.1989; 49(23): 6774-6780.
    63.Gomella LG, Sargent ER, Wade TP, et al. Expression of transforming growth factor alpha in normal human adult kidney and enhanced expression of transforming growth factors alpha and beta 1 in renal cell carcinoma. Cancer Res.l989;49:6972-6975
    64.Bussolati B, Bruno S, Grange C, et al. Isolation of renal progenitor cells from adult human kidney. Am J Pathol. 2005; 166(2): 545-55
    65.Costanza Sagrinati, Giuseppe Stefano Netti, Benedetta Mazzinghi. Isolation and Characterization of Multipotent Progenitor Cells from the Bowman's Capsule of Adult Human Kidneys.J Am Soc Nephrol 2006; 17:2443-2456,
    66.KimCF, JacksonEL, WoolfendenAE,etal.Identification of bronch ioalveolarstem cells in normal lung and lung cancer[J]. Cell, 2005, 121 (6): 823~835.
    67.FlorekM,HaaseM,MarzescoAM,etal.Prominin-1/CD133,aneuralandhematopoieticstem cellmarker, is expressed inadult human differentiated cells and certain types of kidney cancer[J].CellTissueRes,2005,319(1):15~26.
    68.Lucia Ricci-Vitiani, Dario GLombardi, Emanuela Pilozzi, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007; 445(7123): 111-5
    69.Zhou L,Wei X,Cheng L,et al. CD133, One of the Markers of Cancer Stem Cells in Hep-2 Cell Line.Laryngoscope.2007;117(3):455-460.
    
    70.Keisuke Ieta, MD, PhD, 1,2. Fumiaki Tanaka, MD, PhD Biological and Genetic Characteristics of Tumor-Initiating. Cells in Colon CancerAnn. Surg. Oncol., February 1, 2008; 15(2): 638 - 648.
    71.Monika Olempska, Patricia Alice Eisenach, Ole Ammerpohl, Hendrik Ungefroren, Detection of tumor stem cell markers in pancreatic carcinoma cell linesHepatobiliary Pancreat Dis Int, Vol 6, No 1. February 15, 2007.
    72.Stefania Bruno, Benedetta Bussolati, Cristina Grange, Federica Collino, Manuela Efrem Graziano, Ugo Ferrando, andGiovanni Camussi. CD133~+Renal Progenitor Cells Contribute toTumor Angiogenesis, The American Journal of Pathology, 2006; 169(6): 2223-2235.
    73. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, MoscaJD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999,284:143-147.
    74.Weigmann A Corbei D, Hellwing A, Huttner WB, Promininm,a novel microvilli-specific polytopie member protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epi-thelial cells. Proc Natl Acad Sci USA 1997; 94:12425-30.
    75. Shmelkov SV, St. Clair R, Lyden D, Rafii S. AC133/CD133/prominin-1, Int J Biochem Cell Biol 2005; 37:715-9.
    76. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006; 441:1086-74.
    77. Clevers H, Stem cells, asymmetric division, and cancer. Nat Genet 2005; 37:1027-8.
    78. FANG Jia-sheng, DENG Yong-wen, LI Ming-chu, et al. Isolation and identification of brain tumor stem cells from human brain neuroeplthellal tumors [J]. Natl Med Jchina, 2007,87950:298-303.
    79. Donnenberg V S, Donnenberg SD. Multiple drug rsistance in cancer revisited: the cancer stem cell hypothesis [J]. J Clin pharmacol, 2005,45(8): 872-877.
    80. Dick JE, Lapidot T (2005) Biology of normal and acute myeloid leukemia stem cells. Int J Hematol 82:389-396.
    81. Xhang M, Rosen JM. Stem cells in the etiology and treatment of cancer. Curr Opin Genet Dev, 2005 Dec 2; [Epub abead of print].
    82. Kondo T. Brain cancer stem-like cell. Eur J Cancer, 2006, 42(9): 1237-42.
    83. Zhang X,Yamashita M,Uetsaki H,et al. Angiogenesis in renalcell carcinoma: evaluation of microvessel density, vascular endothelialgrowth factor and matrix metalloproteinates[J]. Int J Urol, 2002; 9 (9) : 509- 514.
    84. Miyajima A, Kosada T, Asano T, et al. Angiostensin II type I antagonist prevents Pulmonary metastasis of murine renal cancer by inhibiting tumor angiogensis[J]. Cancer Res, 2002; 62 (15) : 4176-4179.
    
    85. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR,Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S: Impaired recruitment of bone-marrow-derived endothelial and hematopoieticprecursor cells blocks tumor angiogenesis and growth. Nat Med 2001,7:1194-1201.
    86. Peters BA, Diaz LA, Polyak K, Meszler L, Romans H, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, Lengauer C: Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 2005, 11:261-262.
    87. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W: Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 2004,94:230-238.
    88. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L: Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005,8:211-226.
    89. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Cimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003, 114:763-776.
    90. Cossu G, Bianco P: Mesoangioblasts-vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev 2003,13:537-542
    91. Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T,Roy RR, Edgerton VR: Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 2002,157:571-577.
    92. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995,1:27-31.
    93. Le Jan S, Amy C, Cazes A, et al. Angiopoietin- like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma [J]. Am J Pathol, 2003; 162 (5) : 1523-1528.
    94. Dekel Y, Korea R, Kugel V, et al. Significance of angiogenesis and microvascular invasion in renal cell carcinoma [J].Pathol Oncol Res, 2002; 8 (2) : 129-132.
    95. Zhang X, Yamashita M, Uetsaki H, et al.Angiogenesis in renalcell carcinoma: evaluation of microvessel density, vascular endothelialgrowth factor and matrix metalloproteinates[J].Int J Urol, 2002; 9 (9) : 509-514.
    96. Miyajima A, Kosada T, Asano T, et al. Angiostensin II type I antagonist prevents Pulmonary metastasis of murine renal cancer by inhibiting tumor angiogensis[J].Cancer Res, 2002; 62 (15) : 4176-4179.
    97. Bathia M: AC133 expression in human stem cells. Leukemia 2001,15:1685-1688.
    98. Shmelkov SV, Jun L, St. Clair R, McGarrigle D, Derderian CA, Usenko JK, Costa C, Zhang F, Guo X, Rafii S: Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 2004,103:2055-2061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700